Abstract

We demonstrate a fully integrated extended distributed Bragg reflector (DBR) laser with 1kHz linewidth and over 37 mW output power, as well as a ring-assisted DBR laser with less than 500 Hz linewidth. The extended DBR lasers are fabricated by heterogeneously integrating III-V material on Si as a gain section plus a 15 mm long, low-kappa Bragg grating reflector in an ultralow-loss silicon waveguide. The low waveguide loss (0.16 dB/cm) and long Bragg grating with narrow bandwidth (2.9 GHz) are essential to reducing the laser linewidth while maintaining high output power and single-mode operation. The combination of narrow linewidth and high power enable its use in coherent communications, RF photonics, and optical sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser

Jing Zhang, Yanlu Li, Sören Dhoore, Geert Morthier, and Gunther Roelkens
Opt. Express 25(6) 7092-7100 (2017)

Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication

Hang Guan, Ari Novack, Tal Galfsky, Yangjin Ma, Saeed Fathololoumi, Alexandre Horth, Tam N. Huynh, Jose Roman, Ruizhi Shi, Michael Caverley, Yang Liu, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 26(7) 7920-7933 (2018)

Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser

Shahram Keyvaninia, Gunther Roelkens, Dries Van Thourhout, Christophe Jany, Marco Lamponi, Alban Le Liepvre, Francois Lelarge, Dalila Make, Guang-Hua Duan, Damien Bordel, and Jean-Marc Fedeli
Opt. Express 21(3) 3784-3792 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express 26, 4522–4530 (2018).
    [Crossref]
  2. Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).
  3. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
    [Crossref]
  4. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref]
  5. J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
    [Crossref]
  6. C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.
  7. D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  8. P. A. Morton and Z. Mizrahi, “Low-cost, low-noise hybrid lasers for high SFDR RF photonic links,” in IEEE Avionics, Fiber-Optics and Photonics Digest CD (2012), pp. 64–65.
  9. J. Hulme, M. Kennedy, R.-L. Chao, L. Liang, T. Komljenovic, J.-W. Shi, B. Szafraniec, D. Baney, and J. E. Bowers, “Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V,” Opt. Express 25, 2422–2431 (2017).
    [Crossref]
  10. J. Yao, “Microwave photonics: photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol. 5, 16–21 (2010).
  11. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [Crossref]
  12. “Continuous Wave Single Frequency IR Laser NPRO 125/126 Series,” https://www.lumentum.com/en/products/laser-solid-state-cw-1064-1319-npro .
  13. “NP Photonics,” http://www.npphotonics.com/rock-module .
  14. “Koheras Adjustik E15,” https://www.nktphotonics.com/wp-content/uploads/sites/3/2015/04/koheras-adjustik-e15.pdf?1550069496 .
  15. A. Verdier, G. De Valicourt, R. Brenot, H. Debregeas, H. Carr, and Y. Chen, “Ultrawideband wavelength-tunable hybrid external-cavity lasers,” J. Lightwave Technol. 36, 37–43 (2018).
    [Crossref]
  16. B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541–4544 (2017).
    [Crossref]
  17. Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.
  18. H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26, 7920–7933 (2018).
    [Crossref]
  19. N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, and H. Yamazaki, “Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers,” J. Lightwave Technol. 33, 1241–1246 (2015).
    [Crossref]
  20. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref]
  21. T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, E. Stanton, C. Zhang, and J. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
    [Crossref]
  22. T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
    [Crossref]
  23. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.
  24. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
    [Crossref]
  25. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
    [Crossref]
  26. P. A. Morton, “Ultra-low noise, highly stable single-mode operation, high power, Bragg grating based semiconductor laser,” U.S. patent10/193,306 (22February2018).
  27. P. A. Morton and M. J. Morton, “High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing,” J. Lightwave Technol. 36, 5048–5057 (2018).
    [Crossref]
  28. M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
    [Crossref]
  29. P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
    [Crossref]
  30. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4241 (2012).
    [Crossref]
  31. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
    [Crossref]
  32. C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
    [Crossref]
  33. D. D’Agostino, G. Carnicella, C. Ciminelli, P. Thijs, P. J. Veldhoven, H. Ambrosius, and M. Smit, “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express 23, 25143–25157 (2015).
    [Crossref]
  34. D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
    [Crossref]
  35. A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express 15, 9147–9151 (2007).
    [Crossref]
  36. M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
    [Crossref]
  37. C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon,” Optica 3, 1483–1488 (2016).
    [Crossref]
  38. P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
    [Crossref]
  39. D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23, 30329–30336 (2015).
    [Crossref]
  40. M. Davenport, “Heterogeneous silicon III-V mode-locked lasers,” Ph.D. dissertation (University of California, Santa Barbara, 2017).
  41. P. Bardella and I. Montrosset, “Analysis of self-pulsating three-section DBR lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 361–366 (2005).
    [Crossref]
  42. X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
    [Crossref]

2019 (1)

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

2018 (8)

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express 26, 4522–4530 (2018).
[Crossref]

A. Verdier, G. De Valicourt, R. Brenot, H. Debregeas, H. Carr, and Y. Chen, “Ultrawideband wavelength-tunable hybrid external-cavity lasers,” J. Lightwave Technol. 36, 37–43 (2018).
[Crossref]

H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26, 7920–7933 (2018).
[Crossref]

P. A. Morton and M. J. Morton, “High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing,” J. Lightwave Technol. 36, 5048–5057 (2018).
[Crossref]

2017 (2)

2016 (3)

C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon,” Optica 3, 1483–1488 (2016).
[Crossref]

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

2015 (5)

2014 (1)

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

2013 (2)

2012 (2)

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4241 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
[Crossref]

2010 (1)

J. Yao, “Microwave photonics: photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol. 5, 16–21 (2010).

2008 (1)

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

P. Bardella and I. Montrosset, “Analysis of self-pulsating three-section DBR lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 361–366 (2005).
[Crossref]

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

1988 (1)

X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
[Crossref]

1985 (1)

Absil, P. P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Abstract, A.

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Alippi, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Ambrosius, H.

Baehr-Jones, T.

Baney, D.

Bardella, P.

P. Bardella and I. Montrosset, “Analysis of self-pulsating three-section DBR lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 361–366 (2005).
[Crossref]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
[Crossref]

Benelajla, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Bergman, K.

Biberman, A.

Bluestone, A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Boller, K.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Boller, K. J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Bordel, D.

Bowers, J.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, E. Stanton, C. Zhang, and J. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

Bowers, J. E.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

J. Hulme, M. Kennedy, R.-L. Chao, L. Liang, T. Komljenovic, J.-W. Shi, B. Szafraniec, D. Baney, and J. E. Bowers, “Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V,” Opt. Express 25, 2422–2431 (2017).
[Crossref]

C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon,” Optica 3, 1483–1488 (2016).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23, 30329–30336 (2015).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
[Crossref]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Brenot, R.

Briles, T. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Byer, R. L.

Campany, J.

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Carnicella, G.

Carr, H.

Caverley, M.

Chandrasekhar, S.

Chang, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Chao, R.-L.

Chen, H.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Chen, X.

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express 26, 4522–4530 (2018).
[Crossref]

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Chen, Y.

Cho, J.

Ciminelli, C.

Cohen, O.

D’Agostino, D.

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
[Crossref]

Davenport, M.

Davenport, M. L.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

De Coster, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

De Heyn, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

De Valicourt, G.

Debregeas, H.

Dekker, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Desalvo, R.

C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.

Diddams, S. A.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Drake, T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Drake, T. E.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Drissi, Y.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Duan, G.-H.

Dutt, A.

Epping, J. P.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Fan, Y.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Fang, A. W.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Fathololoumi, S.

Fedeli, J.-M.

Fredrick, C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Galfsky, T.

Geng, J.

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Geskus, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Geuzebroek, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Grootjans, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Guan, H.

Guo, J.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Heck, M. J. R.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

Heideman, R. G.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Hochberg, M.

Hoekman, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Hollberg, L.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Horth, A.

Huang, D.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Hulme, J.

Hulme, J. C.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

Hummon, M. T.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Huynh, T. N.

Ilic, B. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Jany, C.

Ji, X.

Jiang, S.

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Johnson, C.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Johnson, D. M. S.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Jones, R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

Kane, T. J.

Kennedy, M.

Keyvaninia, S.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Khanna, A.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Khurgin, J.

Khurgin, J. B.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon,” Optica 3, 1483–1488 (2016).
[Crossref]

Kippenberg, T. J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Kita, T.

Kitching, J.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Klein, E. J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Kobayashi, N.

Koch, B. R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Komljenovic, T.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

J. Hulme, M. Kennedy, R.-L. Chao, L. Liang, T. Komljenovic, J.-W. Shi, B. Szafraniec, D. Baney, and J. E. Bowers, “Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V,” Opt. Express 25, 2422–2431 (2017).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Liu, C. Santis, A. Spott, S. Srinivasan, E. Stanton, C. Zhang, and J. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34, 20–35 (2015).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Kuo, Y. H.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Lamponi, M.

Le Liepvre, A.

Lee, S. H.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Leinse, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Lelarge, F.

Lepage, G.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Li, Q.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Liang, D.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Liang, L.

Lipson, M.

Liu, A.

Liu, Y.

H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26, 7920–7933 (2018).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Lively, E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

Ma, Y.

Make, D.

Makovejs, S.

Malik, A.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Marchenko, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Marpaung, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Martin, H. P.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Mashanovich, G. Z.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Maurice, V.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Meredith, S.

C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.

Middleton, C.

C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.

Mizrahi, Z.

P. A. Morton and Z. Mizrahi, “Low-cost, low-noise hybrid lasers for high SFDR RF photonic links,” in IEEE Avionics, Fiber-Optics and Photonics Digest CD (2012), pp. 64–65.

Montrosset, I.

P. Bardella and I. Montrosset, “Analysis of self-pulsating three-section DBR lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 361–366 (2005).
[Crossref]

Morton, C. D.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

Morton, M. J.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

P. A. Morton and M. J. Morton, “High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing,” J. Lightwave Technol. 36, 5048–5057 (2018).
[Crossref]

Morton, P.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Morton, P. A.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

P. A. Morton and M. J. Morton, “High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing,” J. Lightwave Technol. 36, 5048–5057 (2018).
[Crossref]

C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Ultralinear heterogeneously integrated ring-assisted Mach-Zehnder interferometer modulator on silicon,” Optica 3, 1483–1488 (2016).
[Crossref]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23, 30329–30336 (2015).
[Crossref]

P. A. Morton, “Ultra-low noise, highly stable single-mode operation, high power, Bragg grating based semiconductor laser,” U.S. patent10/193,306 (22February2018).

P. A. Morton and Z. Mizrahi, “Low-cost, low-noise hybrid lasers for high SFDR RF photonic links,” in IEEE Avionics, Fiber-Optics and Photonics Digest CD (2012), pp. 64–65.

Namiwaka, M.

Nedeljkovic, M.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Newbury, N. R.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Newman, Z. L.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Norberg, E.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Novack, A.

Oh, D. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Oldenbeuving, R. M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Olesen, H.

X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
[Crossref]

Olsson, S. L. I.

Pan, X.

X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
[Crossref]

Paniccia, M. J.

Pantouvaki, M.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Papp, S. B.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Park, H.

Peach, R.

C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.

Peters, J.

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Peters, J. D.

Pintus, P.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

Reed, G. T.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Roelkens, G.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Roeloffzen, C. G.

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Roman, J.

Sales, S.

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Santis, C.

Sato, K.

Schmid, J. H.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Schreuder, E.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Selvaraja, S. K.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Shaw, M. J.

Shen, B.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Shi, J.-W.

Shi, R.

Sinclair, L. C.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Skendzic, S.

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

Smit, M.

Spencer, D. T.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23, 30329–30336 (2015).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Spiegelberg, C.

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Spott, A.

Srinivasan, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Srinivasan, S.

Stanton, E.

Stern, B.

Stone, J.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Stone, J. R.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Suh, M.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Suh, M. G.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Suh, M.-G.

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Sun, X.

Szafraniec, B.

Taballione, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Taddei, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Theogarajan, L.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Thijs, P.

Thomson, D. J.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Timens, R. B.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Timurdogan, E.

Tran, M.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

Tran, M. A.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

Tromborg, B.

X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
[Crossref]

Vahala, K.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Vahala, K. J.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Van Campenhout, J.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Van Dijk, P. W. L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Van Rees, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Van Thourhout, D.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

Veldhoven, P. J.

Verdier, A.

Verheyen, P.

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Visscher, I.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Volet, N.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

Watanabe, S.

Watts, M. R.

Westly, D.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Wevers, L. S.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Winzer, P. J.

Worhoff, K.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Wright, J. B.

Xu, D. X.

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

Yamada, H.

Yamamoto, K.

Yamazaki, H.

Yang, K. Y.

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

Yang, Q. F.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Yao, J.

J. Yao, “Microwave photonics: photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol. 5, 16–21 (2010).

Yariv, A.

Yi, X.

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Zhang, C.

Zhuang, L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

Appl. Sci. (1)

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Pan, H. Olesen, and B. Tromborg, “A theoretical model of multielectrode DBR lasers,” IEEE J. Quantum Electron. 24, 2423–2432 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

P. Bardella and I. Montrosset, “Analysis of self-pulsating three-section DBR lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 361–366 (2005).
[Crossref]

M. L. Davenport, S. Skendzic, N. Volet, J. C. Hulme, M. J. R. Heck, and J. E. Bowers, “Heterogeneous silicon/III-V semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 22, 78–88 (2016).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. Van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Worhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. Van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K. J. Boller, “Low-loss Si3N4 triplex optical waveguides: technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).
[Crossref]

D. X. Xu, J. H. Schmid, G. T. Reed, G. Z. Mashanovich, D. J. Thomson, M. Nedeljkovic, X. Chen, D. Van Thourhout, S. Keyvaninia, and S. K. Selvaraja, “Silicon photonic integration platform-have we found the sweet spot?” IEEE J. Sel. Top. Quantum Electron. 20, 8100217 (2014).
[Crossref]

IEEE Photon. J. (1)

P. A. Morton, M. J. Morton, C. Zhang, J. B. Khurgin, J. Peters, C. D. Morton, and J. E. Bowers, “High-power, high-linearity, heterogeneously integrated III-V on Si MZI modulators for RF photonics systems,” IEEE Photon. J. 11, 5501310 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y. H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett. 20, 1667–1669 (2008).
[Crossref]

J. Geng, C. Spiegelberg, S. Jiang, and A. Abstract, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photon. Technol. Lett. 17, 1827–1829 (2005).
[Crossref]

Int. J. Microw. Opt. Technol. (1)

J. Yao, “Microwave photonics: photonic generation of microwave and millimeter-wave signals,” Int. J. Microw. Opt. Technol. 5, 16–21 (2010).

J. Lightwave Technol. (4)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Campany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Light: Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl. 1, e1 (2012).
[Crossref]

Nature (1)

D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, “An optical-frequency synthesizer using integrated photonics,” Nature 557, 81–85 (2018).
[Crossref]

Opt. Express (8)

S. L. I. Olsson, J. Cho, S. Chandrasekhar, X. Chen, P. J. Winzer, and S. Makovejs, “Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection,” Opt. Express 26, 4522–4530 (2018).
[Crossref]

J. Hulme, M. Kennedy, R.-L. Chao, L. Liang, T. Komljenovic, J.-W. Shi, B. Szafraniec, D. Baney, and J. E. Bowers, “Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V,” Opt. Express 25, 2422–2431 (2017).
[Crossref]

H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, M. Caverley, Y. Liu, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication,” Opt. Express 26, 7920–7933 (2018).
[Crossref]

A. Yariv and X. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: a proposal and analysis,” Opt. Express 15, 9147–9151 (2007).
[Crossref]

D. D’Agostino, G. Carnicella, C. Ciminelli, P. Thijs, P. J. Veldhoven, H. Ambrosius, and M. Smit, “Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc,” Opt. Express 23, 25143–25157 (2015).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref]

S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, and J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21, 3784–3792 (2013).
[Crossref]

D. T. Spencer, M. Davenport, S. Srinivasan, J. Khurgin, P. A. Morton, and J. E. Bowers, “Low kappa, narrow bandwidth Si3N4 Bragg gratings,” Opt. Express 23, 30329–30336 (2015).
[Crossref]

Opt. Lett. (3)

Optica (1)

Proc. IEEE (1)

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106, 2246–2257 (2018).
[Crossref]

Proc. SPIE (1)

P. P. Absil, P. De Heyn, H. Chen, P. Verheyen, G. Lepage, M. Pantouvaki, J. De Coster, A. Khanna, Y. Drissi, D. Van Thourhout, and J. Van Campenhout, “Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,” Proc. SPIE 9367, 93670V (2015).
[Crossref]

Science (1)

M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref]

Other (10)

Z. L. Newman, V. Maurice, T. E. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M.-G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hummon, “Photonic integration of an optical atomic clock,” arXiv:1811.00616 (2018).

P. A. Morton and Z. Mizrahi, “Low-cost, low-noise hybrid lasers for high SFDR RF photonic links,” in IEEE Avionics, Fiber-Optics and Photonics Digest CD (2012), pp. 64–65.

C. Middleton, S. Meredith, R. Peach, and R. Desalvo, “Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization,” in IEEE Avionics, Fiber- Optics and Photonics Technology Conference (2011), pp. 115–116.

“Continuous Wave Single Frequency IR Laser NPRO 125/126 Series,” https://www.lumentum.com/en/products/laser-solid-state-cw-1064-1319-npro .

“NP Photonics,” http://www.npphotonics.com/rock-module .

“Koheras Adjustik E15,” https://www.nktphotonics.com/wp-content/uploads/sites/3/2015/04/koheras-adjustik-e15.pdf?1550069496 .

Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser,” in Conference on Lasers and Electro-Optics (2017), paper JTh5C.9.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. Morton, and J. E. Bowers, “Sub-kHz linewidth extended-DBR lasers heterogeneously integrated on silicon,” in 2019 Optical Fiber Communications Conference and Exhibit (OFC), San Diego, California, USA, 3–7 March2019.

P. A. Morton, “Ultra-low noise, highly stable single-mode operation, high power, Bragg grating based semiconductor laser,” U.S. patent10/193,306 (22February2018).

M. Davenport, “Heterogeneous silicon III-V mode-locked lasers,” Ph.D. dissertation (University of California, Santa Barbara, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Impact of grating strength on the (a) full-width half maximum (FWHM) bandwidth, and (b) reflected power assuming a 15 mm long uniform grating. The simulations are shown over various lengths and waveguide losses.
Fig. 2.
Fig. 2. (a) Schematic of the E-DBR laser, with SEM images of the transitions between the various sections of the laser. (b) A ring resonator is incorporated in the cavity to form the RAE-DBR laser.
Fig. 3.
Fig. 3. Simplified fabrication procedure for the lasers. (1–6) The process begins with silicon processing with patterning of waveguides and gratings. (7) The III-V epi is bonded, followed by (8–10) patterning of the mesa, etching of the p -InP, MQW, and n -InP layers. The mesas are passivated, followed by (11) metallization of the n -contact, (12) p -contacts, (13) heaters, and (14) probe metal.
Fig. 4.
Fig. 4. (a) Test setup used to characterize the grating-based reflectors in each laser without having to use separate test structures. (b) The measurements for the E-DBR are shown for a 15 mm long grating with designed κ L = 0.375 , 0.75, and 3, respectively. (c) The measurement for the RAE-DBR is shown, in which the transmission through both the grating and ring is recorded. By tuning the ring across a full FSR, the shape of the grating can be revealed.
Fig. 5.
Fig. 5. (a) LIV curve for the E-DBR laser with κ L = 0.375 with and without active tuning of the phase control section. The on-chip output power reaches over 37 mW. (b) The LI characteristics of the RAE- are shown with and without active tuning of the ring heater.
Fig. 6.
Fig. 6. At a fixed gain of 200 DBR mA, the laser encounters different multimode regimes, which are shaded, depending on whether the longitudinal modes are (a) red shifted with increasing power to the phase section, or (b) blue shifted. In (c) the multimode regions, the laser can enter (2) a mode-locked state or (3) a chaotic state.
Fig. 7.
Fig. 7. Frequency noise spectra for the E-DBR and RAE-DBR lasers on (a) logarithmic and (b) linear frequency scales. The analyzer is limited to 20 MHz, which may not be sufficient to see the white noise floor of the FN. (c) RIN measurements of the E-DBR with κ L = 0.375 at different drive currents.

Tables (2)

Tables Icon

Table 1. Comparison of Foundry Compatible Low-loss Single-Mode Waveguide Platforms

Tables Icon

Table 2. Comparison of Lorentzian Linewidth of E-DBR and RAE-DBR

Metrics