Abstract

We report a novel generalized optical measurement system and computational approach to determine and correct aberrations in optical systems. The system consists of a computational imaging method capable of reconstructing an optical system’s pupil function by adapting overlapped Fourier coding to an incoherent imaging modality. It recovers the high-resolution image latent in an aberrated image via deconvolution. The deconvolution is made robust to noise by using coded apertures to capture images. We term this method coded-aperture-based correction of aberration obtained from overlapped Fourier coding and blur estimation (CACAO-FB). It is well-suited for various imaging scenarios where aberration is present and where providing a spatially coherent illumination is very challenging or impossible. We report the demonstration of CACAO-FB with a variety of samples including an in vivo imaging experiment on the eye of a rhesus macaque to correct for its inherent aberration in the rendered retinal images. CACAO-FB ultimately allows for an aberrated imaging system to achieve diffraction-limited performance over a wide field of view by casting optical design complexity to computational algorithms in post-processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Overlapped Fourier coding for optical aberration removal

Roarke Horstmeyer, Xiaoze Ou, Jaebum Chung, Guoan Zheng, and Changhuei Yang
Opt. Express 22(20) 24062-24080 (2014)

Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography

Jaebum Chung, Jinho Kim, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang
Biomed. Opt. Express 7(2) 352-368 (2016)

Combined hardware and computational optical wavefront correction

Fredrick A. South, Kazuhiro Kurokawa, Zhuolin Liu, Yuan-Zhi Liu, Donald T. Miller, and Stephen A. Boppart
Biomed. Opt. Express 9(6) 2562-2574 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [Crossref]
  2. G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
    [Crossref]
  3. P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
    [Crossref]
  4. D. Williams, “Imaging single cells in the living retina,” Vis. Res. 51, 1379–1396 (2011).
    [Crossref]
  5. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. 72, 52–61 (1982).
    [Crossref]
  6. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
    [Crossref]
  7. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
    [Crossref]
  8. S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
    [Crossref]
  9. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  10. R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
    [Crossref]
  11. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
    [Crossref]
  12. X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
    [Crossref]
  13. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
    [Crossref]
  14. L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient,” Sci. Rep. 6, 27384 (2016).
    [Crossref]
  15. L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23, 4856–4866 (2015).
    [Crossref]
  16. J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. A 339, 521–553 (1992).
    [Crossref]
  17. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
    [Crossref]
  18. A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27, 5433–5446 (2019).
    [Crossref]
  19. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref]
  20. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [Crossref]
  21. J. Qian, S. Dang, Z. Wang, X. Zhou, D. Dan, B. Yao, Y. Tong, H. Yang, Y. Lu, Y. Chen, X. Yang, M. Bai, and M. Lei, “Large-scale 3D imaging of insects with natural color,” Opt. Express 27, 4845–4857 (2019).
    [Crossref]
  22. T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
    [Crossref]
  23. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
    [Crossref]
  24. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
    [Crossref]
  25. L. H. Yeh, J. Dong, J. Zhong, L. Tian, and M. Chen, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23, 33214–33240 (2015).
    [Crossref]
  26. L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Lett. 39, 6648–6651 (2014).
    [Crossref]
  27. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7, 1336–1350 (2016).
    [Crossref]
  28. Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).
    [Crossref]
  29. P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
    [Crossref]
  30. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
    [Crossref]
  31. A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26, 23119–23131 (2018).
    [Crossref]
  32. A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
    [Crossref]
  33. T. Kamal, L. Yang, and W. M. Lee, “In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography,” Opt. Express 26, 2708–2719 (2018).
    [Crossref]
  34. J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7, 352–368 (2016).
    [Crossref]
  35. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
    [Crossref]
  36. J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
    [Crossref]
  37. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
    [Crossref]
  38. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
    [Crossref]
  39. A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
    [Crossref]
  40. S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
    [Crossref]
  41. J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
    [Crossref]
  42. C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23, 26999–27010 (2015).
    [Crossref]
  43. C. Zhou and S. Nayar, “What are good apertures for defocus deblurring?” in IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.
  44. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [Crossref]
  45. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
    [Crossref]
  46. F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.
  47. E. Thiébaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995).
    [Crossref]
  48. S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
    [Crossref]
  49. N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
    [Crossref]
  50. D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(3), 43–64 (1996).
    [Crossref]
  51. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
    [Crossref]
  52. A. Kumar, D. Fechtig, L. Wurster, L. Ginner, M. Salas, M. Pircher, and R. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4, 924–931 (2017).
    [Crossref]
  53. L. Ginner, T. Schmoll, A. Kumar, M. Salas, N. Pricoupenko, L. Wurster, and R. Leitgeb, “Holographic line field en-face OCT with digital adaptive optics in the retina in vivo,” Biomed. Opt. Express 9, 472–485 (2018).
    [Crossref]
  54. G. Gunjala, S. Sherwin, A. Shanker, and L. Waller, “Aberration recovery by imaging a weak diffuser,” Opt. Express 26, 21054–21068 (2018).
    [Crossref]
  55. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
    [Crossref]
  56. B. K. Gunturk and X. Li, Image Restoration: Fundamentals and Advances (CRC Press, 2012), Vol. 7.
  57. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).
  58. L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
    [Crossref]
  59. S. H. Lim and D. A. Silverstein, “Method for deblurring an image,” U.S. patent8,654,201 (February18, 2014).
  60. A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regularization,” SIAM Rev. 40, 636–666 (1998).
    [Crossref]
  61. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
    [Crossref]
  62. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24, 15765–15781 (2016).
    [Crossref]
  63. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
    [Crossref]
  64. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
    [Crossref]
  65. J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.
  66. A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
    [Crossref]
  67. E. Dowski and T. W. Cathey, “Extended depth of field through wavefront coding,” Appl. Opt. 34, 1859–1866 (1995).
    [Crossref]
  68. K. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108(2003).
    [Crossref]
  69. G. Muyo and A. R. Harvey, “Wavefront coding for athermalization of infrared imaging systems,” Proc. SPIE 5612, 227–235 (2004).
    [Crossref]
  70. G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
    [Crossref]
  71. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
    [Crossref]
  72. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006).
    [Crossref]
  73. A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: current concepts and perspectives-a narrative review,” Seizure 50, 209–218 (2017).
    [Crossref]
  74. L. Yaroslavsky, Theoretical Foundations of Digital Imaging Using MATLAB (CRC Press, 2013).
  75. A. R. Wade and F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998).
    [Crossref]

2019 (2)

2018 (4)

2017 (5)

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

A. Kumar, D. Fechtig, L. Wurster, L. Ginner, M. Salas, M. Pircher, and R. Leitgeb, “Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo,” Optica 4, 924–931 (2017).
[Crossref]

A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: current concepts and perspectives-a narrative review,” Seizure 50, 209–218 (2017).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

2016 (9)

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient,” Sci. Rep. 6, 27384 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7, 352–368 (2016).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7, 1336–1350 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24, 15765–15781 (2016).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
[Crossref]

2015 (8)

L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2, 104–111 (2015).
[Crossref]

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro Fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
[Crossref]

C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23, 26999–27010 (2015).
[Crossref]

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).
[Crossref]

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

L. H. Yeh, J. Dong, J. Zhong, L. Tian, and M. Chen, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23, 33214–33240 (2015).
[Crossref]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23, 4856–4866 (2015).
[Crossref]

2014 (7)

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
[Crossref]

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Lett. 39, 6648–6651 (2014).
[Crossref]

L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5, 2376–2389 (2014).
[Crossref]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

2013 (5)

2012 (1)

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

2011 (2)

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

D. Williams, “Imaging single cells in the living retina,” Vis. Res. 51, 1379–1396 (2011).
[Crossref]

2010 (1)

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (2)

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

2006 (2)

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006).
[Crossref]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

2004 (3)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

G. Muyo and A. R. Harvey, “Wavefront coding for athermalization of infrared imaging systems,” Proc. SPIE 5612, 227–235 (2004).
[Crossref]

2003 (2)

2001 (1)

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

1998 (2)

1996 (2)

1995 (3)

1992 (1)

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. A 339, 521–553 (1992).
[Crossref]

1982 (1)

Adie, S.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Ahmad, A.

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Alexandrov, S. A.

Amor, R.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Amos, W. B.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Andersson, M.

Ao, Z.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

Artal, P.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Atchison, D. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Bai, M.

Barbastathis, G.

Bates, R. H. T.

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. A 339, 521–553 (1992).
[Crossref]

Batey, D. J.

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

Bian, L.

Bian, Z.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

Boppart, S.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Burns, S. A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Campbell, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Carney, S.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Carroll, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Cathey, T. W.

Cathey, W. T.

Chen, F.

Chen, L.

Chen, M.

Chen, Q.

Chen, Y.

Choi, S. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Chung, J.

Conan, J.-M.

Cote, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

Dai, Q.

Dan, D.

J. Qian, S. Dang, Z. Wang, X. Zhou, D. Dan, B. Yao, Y. Tong, H. Yang, Y. Lu, Y. Chen, X. Yang, M. Bai, and M. Lei, “Large-scale 3D imaging of insects with natural color,” Opt. Express 27, 4845–4857 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

Dang, S.

Dasari, R. R.

Datar, R.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

Dempster, J.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Denis, L.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.

Di, J.

Doble, N.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Dong, J.

Dong, S.

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

Dorsch, R. G.

Dowski, E.

Dowski, E. R.

Drexler, W.

Dubis, A.

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Dubis, A. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Dubra, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Duncan, J.

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Durand, F.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Edo, T. B.

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

Elsner, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Fan, Q.

Faulkner, H. M. L.

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Fechtig, D.

Fergus, R.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

Ferreira, C.

Fienup, J. R.

Figueiredo, M. A. T.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.

Fitzke, F. W.

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Freeman, W. T.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

Fried, D. L.

Gesell, L. H.

T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
[Crossref]

Ginner, L.

Godara, P.

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

Graf, B.

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Gunjala, G.

Gunturk, B. K.

B. K. Gunturk and X. Li, Image Restoration: Fundamentals and Advances (CRC Press, 2012), Vol. 7.

Guo, K.

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23, 4856–4866 (2015).
[Crossref]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

Gutzler, T.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Hampson, K. M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Harvey, A. R.

G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
[Crossref]

G. Muyo and A. R. Harvey, “Wavefront coding for athermalization of infrared imaging systems,” Proc. SPIE 5612, 227–235 (2004).
[Crossref]

Hatzinakos, D.

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(3), 43–64 (1996).
[Crossref]

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Hertzmann, A.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

Hillman, T. R.

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Hofer, H.

Horstmeyer, R.

Huckridge, D.

Hunter, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Jiang, H.

Jiang, W.

Jonnal, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Jonnal, R. S.

Kamal, T.

Kim, J.

Kuang, C.

Kubala, K.

Kumar, A.

Kundur, D.

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(3), 43–64 (1996).
[Crossref]

Lapides, J.

T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
[Crossref]

Leal, B.

A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: current concepts and perspectives-a narrative review,” Seizure 50, 209–218 (2017).
[Crossref]

Lee, J.

Lee, W. M.

Legras, R.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Lei, M.

Leitgeb, R.

Leitgeb, R. A.

Levin, A.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Li, P.

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

Li, X.

Lim, S. H.

S. H. Lim and D. A. Silverstein, “Method for deblurring an image,” U.S. patent8,654,201 (February18, 2014).

Liu, Y.-Z.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Liu, Z.

Lohmann, A. W.

Lu, H.

Lu, Y.

Lundstrom, L.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Ma, Y.

Marcos, S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Martins da Silva, A.

A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: current concepts and perspectives-a narrative review,” Seizure 50, 209–218 (2017).
[Crossref]

McConnell, G.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Mendlovic, D.

Merigan, W. H.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Metha, A.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Miller, D. T.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006).
[Crossref]

Miller, J. J.

Min, J.

Muyo, G.

G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
[Crossref]

G. Muyo and A. R. Harvey, “Wavefront coding for athermalization of infrared imaging systems,” Proc. SPIE 5612, 227–235 (2004).
[Crossref]

Nanda, P.

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

Nayar, S.

C. Zhou and S. Nayar, “What are good apertures for defocus deblurring?” in IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Neumaier, A.

A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regularization,” SIAM Rev. 40, 636–666 (1998).
[Crossref]

Oliveira, J. P.

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.

Ou, X.

J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7, 352–368 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient,” Sci. Rep. 6, 27384 (2016).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
[Crossref]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref]

Palczewska, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Pan, A.

Paques, M.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Pfåffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Pircher, M.

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Price, C. H.

T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
[Crossref]

Pricoupenko, N.

Qian, J.

Qu, J.

Quan, L.

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

Ramchandran, K.

Rawal, S.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

Reid, E.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Rha, J.

Rodenburg, J. M.

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. A 339, 521–553 (1992).
[Crossref]

Roorda, A.

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Roweis, S. T.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

Salas, M.

Sampson, D. D.

Schallek, J.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Schmoll, T.

Shanker, A.

Shemonski, N.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Sherwin, S.

Shiradkar, R.

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

Shum, H.-Y.

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

Silverstein, D. A.

S. H. Lim and D. A. Silverstein, “Method for deblurring an image,” U.S. patent8,654,201 (February18, 2014).

Sincich, L. C.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Singer, B.

Singh, A.

Singh, B.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

Situ, G.

Smithson, H. E.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

So, P. T. C.

Soulez, F.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.

South, F.

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Sun, J.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24, 15765–15781 (2016).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7, 1336–1350 (2016).
[Crossref]

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

Sun, W.

Suo, J.

Thiébaut, E.

E. Thiébaut and J.-M. Conan, “Strict a priori constraints for maximum-likelihood blind deconvolution,” J. Opt. Soc. Am. A 12, 485–492 (1995).
[Crossref]

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.

Thorn, K. E.

Tian, L.

Tong, Y.

Tourneur, Y.

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.

Trägårdh, J.

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

Turpin, T. M.

T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
[Crossref]

Wade, A. R.

Waller, L.

Wang, Z.

J. Qian, S. Dang, Z. Wang, X. Zhou, D. Dan, B. Yao, Y. Tong, H. Yang, Y. Lu, Y. Chen, X. Yang, M. Bai, and M. Lei, “Large-scale 3D imaging of insects with natural color,” Opt. Express 27, 4845–4857 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

Weiss, Y.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

Wen, K.

Werner, J. S.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Williams, A.

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

Williams, D.

D. Williams, “Imaging single cells in the living retina,” Vis. Res. 51, 1379–1396 (2011).
[Crossref]

Williams, D. R.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Wood, A.

Wurster, L.

Yamauchi, Y.

Yang, C.

L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient,” Sci. Rep. 6, 27384 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7, 4787–4802 (2016).
[Crossref]

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7, 352–368 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
[Crossref]

Yang, H.

Yang, L.

Yang, X.

Yao, B.

Yaqoob, Z.

Yaroslavsky, L.

L. Yaroslavsky, Theoretical Foundations of Digital Imaging Using MATLAB (CRC Press, 2013).

Yeh, L. H.

Yeh, L.-H.

Yoon, G.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Yoon, G. Y.

Young, L. K.

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Yuan, L.

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

Zalevsky, Z.

Zhang, L.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

Zhang, P.

Zhang, Y.

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26, 23119–23131 (2018).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24, 15765–15781 (2016).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7, 1336–1350 (2016).
[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).
[Crossref]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006).
[Crossref]

Zhao, J.

Zhao, T.

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

Zheng, G.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23, 4856–4866 (2015).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
[Crossref]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Lett. 39, 6648–6651 (2014).
[Crossref]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, C. Yang, and G. Zheng, “Quantitative phase imaging via Fourier ptychographic microscopy,” Opt. Lett. 38, 4845–4848 (2013).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

Zhong, J.

Zhou, C.

C. Zhou and S. Nayar, “What are good apertures for defocus deblurring?” in IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

Zhou, H.

Zhou, M.

Zhou, R.

Zhou, X.

Zuo, C.

ACM Trans. Graph. (3)

L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” ACM Trans. Graph. 26, 1 (2007).
[Crossref]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006).
[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26, 70 (2007).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797 (2004).
[Crossref]

Biomed. Opt. Express (5)

eLife (1)

G. McConnell, J. Trägårdh, R. Amor, J. Dempster, E. Reid, and W. B. Amos, “A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout,” eLife 5, e18659 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag. 13(3), 43–64 (1996).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

J. Biomed. Opt. (2)

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22, 096005 (2017).
[Crossref]

A. Williams, J. Chung, X. Ou, G. Zheng, S. Rawal, Z. Ao, R. Datar, C. Yang, and R. Cote, “Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis,” J. Biomed. Opt. 19, 066007 (2014).
[Crossref]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3, e165 (2014).
[Crossref]

Nat. Photonics (3)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

N. Shemonski, F. South, Y.-Z. Liu, S. Adie, S. Carney, and S. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9, 440–443 (2015).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Opt. Express (22)

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006).
[Crossref]

K. Kubala, E. R. Dowski, and W. T. Cathey, “Reducing complexity in computational imaging systems,” Opt. Express 11, 2102–2108(2003).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Sampling criteria for Fourier ptychographic microscopy in object space and frequency space,” Opt. Express 24, 15765–15781 (2016).
[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21, 10850–10866 (2013).
[Crossref]

G. Gunjala, S. Sherwin, A. Shanker, and L. Waller, “Aberration recovery by imaging a weak diffuser,” Opt. Express 26, 21054–21068 (2018).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21, 15131–15143 (2013).
[Crossref]

C. Kuang, Y. Ma, R. Zhou, J. Lee, G. Barbastathis, R. R. Dasari, Z. Yaqoob, and P. T. C. So, “Digital micromirror device-based laser-illumination Fourier ptychographic microscopy,” Opt. Express 23, 26999–27010 (2015).
[Crossref]

S. Dong, K. Guo, P. Nanda, R. Shiradkar, and G. Zheng, “FPscope: a field-portable high-resolution microscope using a cellphone lens,” Opt. Express 5, 3305–3310 (2014).
[Crossref]

T. Kamal, L. Yang, and W. M. Lee, “In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography,” Opt. Express 26, 2708–2719 (2018).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22, 24062–24080 (2014).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22, 4960–4972 (2014).
[Crossref]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643 (2001).
[Crossref]

A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27, 5433–5446 (2019).
[Crossref]

L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Wirtinger flow optimization,” Opt. Express 23, 4856–4866 (2015).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust Fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

J. Qian, S. Dang, Z. Wang, X. Zhou, D. Dan, B. Yao, Y. Tong, H. Yang, Y. Lu, Y. Chen, X. Yang, M. Bai, and M. Lei, “Large-scale 3D imaging of insects with natural color,” Opt. Express 27, 4845–4857 (2019).
[Crossref]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009).
[Crossref]

L. H. Yeh, J. Dong, J. Zhong, L. Tian, and M. Chen, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23, 33214–33240 (2015).
[Crossref]

Y. Zhang, W. Jiang, L. Tian, L. Waller, and Q. Dai, “Self-learning based Fourier ptychographic microscopy,” Opt. Express 23, 18471–18486 (2015).
[Crossref]

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26, 23119–23131 (2018).
[Crossref]

G. Muyo, A. Singh, M. Andersson, D. Huckridge, A. Wood, and A. R. Harvey, “Infrared imaging with a wavefront-coded singlet lens,” Opt. Express 17, 21118–21123 (2009).
[Crossref]

A. R. Wade and F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998).
[Crossref]

Opt. Lett. (2)

Optica (4)

Optom. Vis. Sci. (1)

P. Godara, A. Dubis, A. Roorda, J. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Philos. Trans. R. Soc. A (1)

J. M. Rodenburg and R. H. T. Bates, “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Philos. Trans. R. Soc. A 339, 521–553 (1992).
[Crossref]

Phys. Rev. Lett. (1)

H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[Crossref]

S. Adie, B. Graf, A. Ahmad, S. Carney, and S. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. USA 109, 7175–7180 (2012).
[Crossref]

Proc. SPIE (2)

G. Muyo and A. R. Harvey, “Wavefront coding for athermalization of infrared imaging systems,” Proc. SPIE 5612, 227–235 (2004).
[Crossref]

T. M. Turpin, L. H. Gesell, J. Lapides, and C. H. Price, “Theory of the synthetic aperture microscope,” Proc. SPIE 2566, 230–240 (1995).
[Crossref]

Sci. Rep. (3)

L. Bian, J. Suo, J. Chung, X. Ou, C. Yang, F. Chen, and Q. Dai, “Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient,” Sci. Rep. 6, 27384 (2016).
[Crossref]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfåffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref]

Seizure (1)

A. Martins da Silva and B. Leal, “Photosensitivity and epilepsy: current concepts and perspectives-a narrative review,” Seizure 50, 209–218 (2017).
[Crossref]

SIAM Rev. (1)

A. Neumaier, “Solving ill-conditioned and singular linear systems: a tutorial on regularization,” SIAM Rev. 40, 636–666 (1998).
[Crossref]

Ultramicroscopy (1)

P. Li, D. J. Batey, T. B. Edo, and J. M. Rodenburg, “Separation of three-dimensional scattering effects in tilt-series Fourier ptychography,” Ultramicroscopy 158, 1–7 (2015).
[Crossref]

Vis. Res. (2)

D. Williams, “Imaging single cells in the living retina,” Vis. Res. 51, 1379–1396 (2011).
[Crossref]

S. Marcos, J. S. Werner, S. A. Burns, W. H. Merigan, P. Artal, D. A. Atchison, K. M. Hampson, R. Legras, L. Lundstrom, G. Yoon, J. Carroll, S. S. Choi, N. Doble, A. M. Dubis, A. Dubra, A. Elsner, R. Jonnal, D. T. Miller, M. Paques, H. E. Smithson, L. K. Young, Y. Zhang, M. Campbell, J. Hunter, A. Metha, G. Palczewska, J. Schallek, and L. C. Sincich, “Vision science and adaptive optics, the state of the field,” Vis. Res. 132, 3–33 (2017).
[Crossref]

Other (7)

S. H. Lim and D. A. Silverstein, “Method for deblurring an image,” U.S. patent8,654,201 (February18, 2014).

J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “Total variation-based image deconvolution: a majorization-minimization approach,” in IEEE International Conference on Acoustics Speech and Signal Processing (IEEE, 2006), pp. 861–864.

L. Yaroslavsky, Theoretical Foundations of Digital Imaging Using MATLAB (CRC Press, 2013).

F. Soulez, L. Denis, Y. Tourneur, and E. Thiébaut, “Blind deconvolution of 3D data in wide field fluorescence microscopy,” in 9th IEEE International Symposium on Biomedical Imaging (ISBI) (IEEE, 2012), pp. 1735–1738.

C. Zhou and S. Nayar, “What are good apertures for defocus deblurring?” in IEEE International Conference on Computational Photography (IEEE, 2009), pp. 1–8.

B. K. Gunturk and X. Li, Image Restoration: Fundamentals and Advances (CRC Press, 2012), Vol. 7.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

Supplementary Material (2)

NameDescription
» Supplement 1       Supplemental document
» Visualization 1       Motion-reference camera images registered for rotation and translation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. Optical architecture of CACAO-FB. The CACAO-FB system consists of three tube lenses (L1, L2, and L3) to relay the image from the target system for analysis. The target system consists of an unknown lens and an unknown sample with spatially incoherent field. The CACAO-FB system has access to the conjugate plane of the target system’s pupil, which can be arbitrarily modulated with binary patterns using a spatial light modulator. The images captured by the CACAO-FB system are intensity only. f 0 , f 1 , f 2 , and f 3 are the focal lengths of the unknown lens, L1, L2, and L3, respectively. d is an arbitrary distance smaller than f 3 .
Fig. 2.
Fig. 2. Outline of CACAO-FB pipeline. (a) The captured images are broken into small tiles of isoplanatic patches (i.e., aberration is spatially invariant within each tile). (b) Data acquisition and post-processing for estimating the pupil function P t ( u , v ) . Limited-aperture images i m , t ( ξ , η ) are captured with small masks, W m ( u , v ) applied at the pupil plane. Local PSFs b m , t ( ξ , η ) are determined by the blur estimation procedure, Algorithm 1. These PSFs are synthesized into the full-aperture pupil function P t ( u , v ) with Fourier-ptychography-based alternating projections algorithm, Algorithm 2. (c) Data acquisition with big masks A n ( u , v ) at the pupil plane. (d) The recovered P t ( u , v ) from (b) and the big-aperture images ϕ n , t ( ξ , η ) from (c) are used for deconvolution (Algorithm 3) to recover the latent aberration-free intensity distribution of the sample o t ( x , y ) .
Fig. 3.
Fig. 3. Simulating image acquisition with different small masks at the pupil plane. (a) The full pupil function masked by the lens’s NA-limited aperture. Differently masked regions of the pupil, (b1)–(b3), give rise to different blur kernels, (c1)–(c3), which allows us to capture images of the sample under the influence of different PSFs. Only the phase is plotted for P t ( u , v ) and P m , t ( u , v ) s, and their apertures are marked by the black boundaries. W 1 ( u , v ) , W 45 ( u , v ) , and W 52 ( u , v ) are three small masks from a spiraling-out scanning sequence.
Fig. 4.
Fig. 4. Flowchart of Algorithm 1: blur estimation algorithm for determining local PSFs from images captured with small apertures W m , t ( u , v ) .
Fig. 5.
Fig. 5. Flowchart of Algorithm 2: Fourier-ptychography-based alternating projections algorithm for reconstructing the unknown lens’s pupil function P t ( u , v ) .
Fig. 6.
Fig. 6. Simulation of our pupil function recovery procedure and a comparison with blind deconvolution algorithms. (a) The Siemens star pattern used in the simulation. (b) The system’s pupil function and the associated PSF. (c) A series of images i m , t ( ξ , η ) s captured with small masks W m ( u , v ) applied to the pupil function. (d) An image captured with the full-pupil-sized mask A n ( u , v ) on the pupil function, which simulates the general imaging scenario by an aberrated imaging system. (e) The system’s pupil function and PSF recovered by our procedure. They show high fidelity to the original functions in (b). (f) Blur functions recovered by MATLAB’s and Fergus et al.’s blind deconvolution algorithm, respectively. They both show poor reconstructions compared to the recovered PSF in (e).
Fig. 7.
Fig. 7. Simulation that demonstrates the benefit of coded-aperture-based deconvolution. (a1)–(a5) Masked pupil functions obtained by masking the same pupil function with the full circular aperture and coded apertures under different rotation angles (0°, 45°, 90°, 135°), their associated OTFs along one spatial frequency axis, and captured images. Each coded aperture is able to shift the null regions of the OTF to different locations. (b) Comparison between the OTF of a circular-aperture-masked pupil function and the summed OTFs of the circular- and coded-aperture-masked pupil functions. Null regions in the frequency spectrum are mitigated in the summed OTF, which allows all the frequency content of the sample within the band limit to be captured with the imaging system. The OTF of an ideal pupil function is also plotted. (c1) Deconvolved image with only a circular aperture shows poor recovery with artifacts corresponding to the missing frequency contents in the OTF’s null regions. (c2) A recovered image using one coded aperture only. Reconstruction is better than (c1) but still has some artifacts. (c3) A recovered image using circular and multiple coded apertures is free of artifacts since it does not have missing frequency contents.
Fig. 8.
Fig. 8. Flowchart of Algorithm 3: iterative Tikhonov regularization for recovering the latent sample image o t ( x , y ) from the aberrated images. Here, ϕ n , t ( u , v ) = F { ϕ n , t ( ξ , η ) } ( u , v ) .
Fig. 9.
Fig. 9. Experimental setup of imaging a sample with a crude lens (i.e., unknown lens). Sample is illuminated by a monochromatic LED (520 nm), and the lens’s surface is imaged onto the SLM by a 1 1 lens relay. The part of light modulated by the SLM is reflected by the PBS and is further filtered by a polarizer to account for the PBS’s low extinction ratio in reflection (1:20). The pupil-modulated image of the sample is captured on the sCMOS camera. L, lens; P, polarizer; PBS, polarizing beam splitter.
Fig. 10.
Fig. 10. Resolution performance measured by imaging a Siemens star target. (a) A crude lens has optical aberration that prevents resolving the Siemens star’s features. (b) CACAO-FB is able to computationally remove the aberration and resolve 19.6 μm periodicity feature size, which lies between the coherent and incoherent resolution limit given by the focal length of 130 mm, the aperture diameter of 5.5 mm, and the illumination wavelength of 520 nm. (c) Pupil function recovered by CACAO-FB used for removing the aberration. (d) The PSF associated with the pupil function. (e) Intensity values from the circular traces on (a) and (b) that correspond to the minimum resolvable feature size of 19.6 μm periodicity. The Siemens star’s spokes are not visible in the raw image’s trace, whereas 40 cycles are clearly resolvable in the deconvolved result’s trace.
Fig. 11.
Fig. 11. Spatially varying aberration compensation result on a grid of USAF target. (a) The full FOV captured by our camera with the full circular aperture at 5.5 mm displayed on the SLM. Each small region denoted by (b), (c), and (d) had a different aberration map as indicated by varying pupil function and PSFs. Spatially varying aberration is adequately compensated for in post-processing as shown by the deconvolution results (b2), (c2), and (d2).
Fig. 12.
Fig. 12. Eye model with a USAF target embedded on the retinal plane. (a) A cut-out piece of glass of USAF target is attached on the retina of the eye model. The lid simulates the cornea and also houses a lens element behind it. (b) The model is filled with water with no air bubbles in its optical path. (c) The water-filled model is secured by screwing it in its case.
Fig. 13.
Fig. 13. Experimental setup of imaging an eye model and an in vivo eye. Illumination is provided by a fiber-coupled laser diode (520 nm), and the eye’s pupil is imaged onto the SLM by a 1 1 lens relay. The sample is slightly defocused from the focal length of the crude lens to add additional aberration into the system. Pupil alignment camera provides fiduciary to the user for adequate alignment of the pupil on the SLM. PBS2 helps with removing corneal reflection. The motion-reference camera is synchronized with encoded-image camera to capture images not modulated by the SLM. BS, beam splitter; L, lens; M, mirror; P, polarizer; PBS, polarized beam splitter; QWP, quarter-wave plate.
Fig. 14.
Fig. 14. CACAO-FB result of imaging the USAF target in the eye model. (a) Raw image ( 2560 × 1080 pixels) averaged over 12 frames captured with the full circular aperture at 4.5 mm. The pupil function and PSF in each boxed region show the spatially varying aberration. (b)–(d) Deconvolution results show sharp features of the USAF target. The uneven background is from the rough surface of the eye model’s retina.
Fig. 15.
Fig. 15. Showing the importance of masked pupil kernel shape determination for successful deconvolution. (a1)–(a3) Limited PSFs determined only by considering their centroids. (b) Recovered aberration and deconvolution result obtained with centroid-only limited PSFs. Some features of USAF are distorted. (c1)–(c3) Limited PSFs determined with the blur estimation algorithm. (d) Recovered aberration and deconvolution result obtained with the blur-estimated local PSFs. No distortions in the image are present, and more features of the USAF target are resolved.
Fig. 16.
Fig. 16. CACAO-FB result from imaging an in vivo eye of a rhesus macaque. (a) Raw image averaged over 213 frames captured with 4.5 mm full circular aperture. (b) Deconvolution result using the (c) pupil function reconstructed by CACAO-FB procedure. (d) PSF associated with the pupil function.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U 0 ( x , y ; x 0 , y 0 ) = δ ( x x 0 , y y 0 ) ,
U F ( u , v ; x 0 , y 0 ) = P ( u , v ; x 0 , y 0 ) exp [ j 2 π λ f 0 ( x 0 u + y 0 v ) ] ,
U F ( u , v ; x 0 , y 0 ) = M ( u , v ) P t ( u , v ) exp [ j 2 π λ f 0 ( x 0 u + y 0 v ) ] ,
i PSF , t ( ξ , η ; x 0 , y 0 ) = | F { M ( u , v ) P t ( u , v ) } ( ξ , η ) * δ ( ξ + x 0 λ f 0 , η + y 0 λ f 0 ) | 2 = h t ( ξ + x 0 λ f 0 , η + y 0 λ f 0 ) ,
i t ( ξ , η ) = h t ( ξ , η ) * | s t ( ξ , η ) | 2 = h t ( ξ , η ) * o t ( ξ , η ) ,

Metrics