Abstract

Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PICs). An ideal integrated optical isolator for a PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-diverse operation, and be compatible with multiple materials platforms. Despite significant progress, the optical isolators reported so far do not meet all of these requirements. In this paper we present monolithically integrated broadband magneto-optical isolators on silicon and silicon nitride (SiN) platforms operating for both TE and TM modes with record-high performances, fulfilling all the essential characteristics for PIC applications. In particular, we demonstrate fully TE broadband isolators by depositing high-quality magneto-optical garnet thin films on the sidewalls of Si and SiN waveguides, a critical result for applications in TE-polarized on-chip lasers and amplifiers. This work demonstrates monolithic integration of high-performance optical isolators on-chip for polarization-diverse silicon photonic systems, enabling new pathways to impart nonreciprocal photonic functionality to a variety of integrated photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review [Invited]

Karthik Srinivasan and Bethanie J. H. Stadler
Opt. Mater. Express 8(11) 3307-3318 (2018)

Towards heterogeneous integration of optical isolators and circulators with lasers on silicon [Invited]

Duanni Huang, Paolo Pintus, and John E. Bowers
Opt. Mater. Express 8(9) 2471-2483 (2018)

Versatile broadband polarization-independent optical circulators for nanophotonic integrated circuits

Curtis J. Firby, PoHan Chang, Amr S. Helmy, and Abdulhakem Y. Elezzabi
J. Opt. Soc. Am. B 35(7) 1504-1513 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
    [Crossref]
  2. B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
    [Crossref]
  3. S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
    [Crossref]
  4. Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
    [Crossref]
  5. D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
    [Crossref]
  6. C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22, 4493–4498 (2014).
    [Crossref]
  7. M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
    [Crossref]
  8. C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
    [Crossref]
  9. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
    [Crossref]
  10. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  11. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15, 7737–7751 (2007).
    [Crossref]
  12. D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
    [Crossref]
  13. Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2016).
    [Crossref]
  14. D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100  nm tuning range,” Opt. Lett. 42, 4901–4904 (2017).
    [Crossref]
  15. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
    [Crossref]
  16. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
    [Crossref]
  17. M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
    [Crossref]
  18. P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
    [Crossref]
  19. A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
    [Crossref]
  20. X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
    [Crossref]
  21. T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer bonded magneto-optical garnet materials,” MRS Bull. 43, 419–424 (2018).
    [Crossref]
  22. P. Pintus, F. D. Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
    [Crossref]
  23. E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, and S. Arai, “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express 25, 452–462 (2017).
    [Crossref]
  24. Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
    [Crossref]
  25. S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
    [Crossref]
  26. D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon,” Opt. Mater. Express 8, 2471–2483 (2018).
    [Crossref]
  27. M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
    [Crossref]
  28. http://www.thorlabs.com/ .
  29. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
    [Crossref]
  30. Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
    [Crossref]
  31. S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
    [Crossref]
  32. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [Crossref]
  33. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005).
    [Crossref]

2018 (3)

D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
[Crossref]

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer bonded magneto-optical garnet materials,” MRS Bull. 43, 419–424 (2018).
[Crossref]

D. Huang, P. Pintus, and J. E. Bowers, “Towards heterogeneous integration of optical isolators and circulators with lasers on silicon,” Opt. Mater. Express 8, 2471–2483 (2018).
[Crossref]

2017 (4)

E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, and S. Arai, “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express 25, 452–462 (2017).
[Crossref]

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100  nm tuning range,” Opt. Lett. 42, 4901–4904 (2017).
[Crossref]

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

2016 (6)

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2016).
[Crossref]

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
[Crossref]

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

2015 (2)

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
[Crossref]

2014 (5)

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
[Crossref]

C. R. Doerr, L. Chen, and D. Vermeulen, “Silicon photonics broadband modulation-based isolator,” Opt. Express 22, 4493–4498 (2014).
[Crossref]

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref]

2013 (2)

P. Pintus, F. D. Pasquale, and J. E. Bowers, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21, 5041–5052 (2013).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

2012 (1)

2011 (2)

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

2008 (2)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

2007 (1)

2006 (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

2005 (1)

2002 (1)

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[Crossref]

2000 (1)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

Aimon, N. M.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

Amili, A. E.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Antoš, R.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Arai, S.

Baets, R.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer bonded magneto-optical garnet materials,” MRS Bull. 43, 419–424 (2018).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

Bah, G.

D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
[Crossref]

Bahari, B.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Bender, C. M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Beran, L.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Block, A. D.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

Bowers, J. E.

Chen, L.

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Dionne, G. F.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Doerr, C. R.

Dötsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Du, Q.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

Dulal, P.

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

Fainman, Y.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Fan, S.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
[Crossref]

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005).
[Crossref]

Fujie, A.

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
[Crossref]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Gage, T. E.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

Ghosh, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

Gianfreda, M.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Goto, T.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref]

Haldren, H. A.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

Hu, J.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Hua, Q.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Hua, S.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Huang, D.

Hutchings, D. C.

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

Huynh, N.

Ishida, E.

Jiang, L.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Jiang, X.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Kakihara, K.

Kanté, B.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

Keyvaninia, S.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

Keyvavinia, S.

Kim, D. H.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kim, S.

D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kono, N.

Koshiba, M.

Kromer, H.

Lei, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Levy, M.

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Long, G. L.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Mistrík, J.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Miura, K.

Mizumoto, T.

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer bonded magneto-optical garnet materials,” MRS Bull. 43, 419–424 (2018).
[Crossref]

E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, and S. Arai, “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express 25, 452–462 (2017).
[Crossref]

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100  nm tuning range,” Opt. Lett. 42, 4901–4904 (2017).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2016).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19, 11740–11745 (2011).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

Monifi, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Morton, P.

Ndao, A.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Nishiyama, N.

Nori, F.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Onbasli, M. C.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref]

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Özdemir, S. K.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Pasquale, F. D.

Peng, B.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Pintus, P.

Roelkens, G.

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

S. Ghosh, S. Keyvavinia, W. V. Roy, T. Mizumoto, G. Roelkens, and R. Baets, “Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express 20, 1839–1848 (2012).
[Crossref]

Ross, C. A.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, “Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates,” Opt. Express 22, 25183–25192 (2014).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Roy, W. V.

Saitoh, K.

Seaton, N. C. A.

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

Shi, Y.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
[Crossref]

Shirato, Y.

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
[Crossref]

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

Shoji, Y.

E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, and S. Arai, “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express 25, 452–462 (2017).
[Crossref]

D. Huang, P. Pintus, Y. Shoji, P. Morton, T. Mizumoto, and J. E. Bowers, “Integrated broadband Ce:YIG/Si Mach–Zehnder optical isolators with over 100  nm tuning range,” Opt. Lett. 42, 4901–4904 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2016).
[Crossref]

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
[Crossref]

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

Sohn, D. B.

D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
[Crossref]

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Stadler, B. J.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

Stadler, B. J. H.

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

Sun, X.

Sun, X. Y.

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

Sung, S.

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

Tien, M. C.

Vallini, F.

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Veis, M.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Vermeulen, D.

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991 (2005).
[Crossref]

Wen, J.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

Xiao, M.

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Yang, L.

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Yokoi, H.

E. Ishida, K. Miura, Y. Shoji, H. Yokoi, T. Mizumoto, N. Nishiyama, and S. Arai, “Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift,” Opt. Express 25, 452–462 (2017).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

Yu, Z.

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
[Crossref]

Zahradník, M.

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

Zhang, C.

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

ACS Photon. (2)

P. Dulal, A. D. Block, T. E. Gage, H. A. Haldren, S. Sung, D. C. Hutchings, and B. J. Stadler, “Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality,” ACS Photon. 3, 1818–1825 (2016).
[Crossref]

X. Y. Sun, Q. Du, T. Goto, M. C. Onbasli, D. H. Kim, N. M. Aimon, J. Hu, and C. A. Ross, “Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation,” ACS Photon. 2, 856–863 (2015).
[Crossref]

Appl. Phys. Lett. (2)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92, 90–93 (2008).
[Crossref]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. Huang, P. Pintus, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Electrically driven and thermally tunable integrated optical isolators for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).
[Crossref]

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[Crossref]

Y. Shoji, A. Fujie, and T. Mizumoto, “Silicon waveguide optical isolator operating for TE mode input light,” IEEE J. Sel. Top. Quantum Electron. 22, 4403307 (2016).
[Crossref]

IEEE Photon. J. (2)

S. Ghosh, S. Keyvaninia, Y. Shirato, T. Mizumoto, G. Roelkens, and R. Baets, “Optical isolator for TE polarized light realized by adhesive bonding of Ce:YIG on silicon-on-insulator waveguide circuits,” IEEE Photon. J. 5, 6601108 (2013).
[Crossref]

A. D. Block, P. Dulal, B. J. H. Stadler, and N. C. A. Seaton, “Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high Faraday rotations,” IEEE Photon. J. 6, 600308 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287–2289 (2006).
[Crossref]

J. Opt. (1)

Y. Shoji, K. Miura, and T. Mizumoto, “Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics,” J. Opt. 18, 013001 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Shoji, Y. Shirato, and T. Mizumoto, “Silicon Mach–Zehnder interferometer optical isolator having 8  nm bandwidth for over 20  dB isolation,” Jpn. J. Appl. Phys. 53, 022202 (2014).
[Crossref]

MRS Bull. (1)

T. Mizumoto, R. Baets, and J. E. Bowers, “Optical nonreciprocal devices for silicon photonics using wafer bonded magneto-optical garnet materials,” MRS Bull. 43, 419–424 (2018).
[Crossref]

Nat. Commun. (1)

S. Hua, J. Wen, X. Jiang, Q. Hua, L. Jiang, and M. Xiao, “Demonstration of a chip-based optical isolator with parametric amplification,” Nat. Commun. 7, 1–6 (2016).
[Crossref]

Nat. Photon. (2)

Y. Shi, Z. Yu, and S. Fan, “Limitations of nonlinear optical isolators due to dynamic reciprocity,” Nat. Photon. 9, 388–392 (2015).
[Crossref]

D. B. Sohn, S. Kim, and G. Bah, “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits,” Nat. Photon. 12, 91–97 (2018).
[Crossref]

Nat. Photonics (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Nat. Phys. (1)

B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering gallery microcavities,” Nat. Phys. 10, 394–398 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[Crossref]

Sci. Rep. (2)

M. C. Onbasli, L. Beran, M. Zahradník, R. Antoš, J. Mistrík, G. F. Dionne, M. Veis, and C. A. Ross, “Optical and magneto-optical behavior of cerium yttrium iron garnet thin films at wavelengths of 200–1770  nm,” Sci. Rep. 6, 1–10 (2016).
[Crossref]

C. Zhang, P. Dulal, B. J. H. Stadler, and D. C. Hutchings, “Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seed layer-free garnet,” Sci. Rep. 7, 5820 (2017).
[Crossref]

Science (1)

B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and B. Kanté, “Nonreciprocal lasing in topological cavities of arbitrary geometries,” Science 358, 636–640 (2017).
[Crossref]

Other (1)

http://www.thorlabs.com/ .

Supplementary Material (1)

NameDescription
» Supplement 1       supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematics of the TM and TE isolators. (a) Illustration of the device layout. The red arrows represent the light propagation direction. (b) Sketch of the magneto-optical waveguide cross section for the TE isolator. The magnetic field is applied perpendicular to the film plane. (c) Sketch of the magneto-optical waveguide cross section for the TM isolator. The magnetic field is applied in the film plane. (d) Simulated E x field distribution of the fundamental TE mode for the magneto-optical waveguide. (e) Simulated H x field distribution of the fundamental TM mode for the magneto-optical waveguide.
Fig. 2.
Fig. 2. Optical microscope and SEM images of the TM and TE isolators. Parts (a) and (c) show the optical microscope image for the TM and TE isolators, respectively. The scale bars are 100 μm. Parts (b) and (d) show the cross-sectional SEM image of the magneto-optical waveguides for the TM and TE isolators, respectively. The scale bars are 100 nm. In (b) and (d) the MO layer is colored in green and the Si waveguide in purple.
Fig. 3.
Fig. 3. Forward and backward transmission spectra of the isolators. Parts (a) and (b) show the transmission spectra of the TM and TE mode isolators, respectively. The corresponding isolation ratio and insertion loss in the dashed regions are shown in (c) for the TM isolator and (d) for the TE isolator, respectively.
Fig. 4.
Fig. 4. SiN-based microring magneto-optical isolator. (a) Optical microscope image of the SiN microring isolator. The gap between the bus waveguide and the racetrack resonator is 1500 nm. (b) Cross-sectional SEM image of the SiN magneto-optical waveguide. (c) Forward and backward transmission spectrum of the isolator. The inset shows the transmission spectra of three resonance peaks of the same device. (d) The peak positions of the forward and backward propagation light for multiple measurements.

Tables (1)

Tables Icon

Table 1. Comparison of Device Performance at 1550  nm for Broadband Optical Isolators on Si

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β ( TM ) = 2 β T M ω ε 0 N γ n 0 4 H x y H x d x d y , Δ β ( TE ) = 2 ω ε 0 β T E N γ E x x E x d x d y ,

Metrics