Abstract

Advances in x-radiation sources put greater demands on x-ray optics. Fabrication errors in optical elements lead to deformation of the radiation wavefront, which prevents diffraction-limited imaging of the source. A new adaptable x-ray phase compensator using refracting elements has been developed, fabricated, and tested. The compensator makes a sinusoidal correction to the x-ray wavefront with variable amplitude, period, and phase. The adaptable compensator was used to correct two planar compound refractive lenses and a Kirkpatrick–Baez mirror system on an x-ray beamline. Wavefront measurements showed a reduction in the rms wavefront error by a factor of seven for the lenses and three for the mirror system, reducing rms wavefront errors down to of order $ \lambda /100 $. This concept could be used with optics on existing x-ray beamlines to enable diffraction-limited focusing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Possibility of corrector plate tuning of x-ray focusing

Richard Talman
Appl. Opt. 48(13) 2522-2535 (2009)

Nearly diffraction-limited hard X-ray line focusing with hybrid adaptive X-ray mirror based on mechanical and piezo-driven deformation

Takumi Goto, Satoshi Matsuyama, Hiroki Hayashi, Hiroyuki Yamaguchi, Junki Sonoyama, Kazuteru Akiyama, Hiroki Nakamori, Yasuhisa Sano, Yoshiki Kohmura, Makina Yabashi, Tetsuya Ishikawa, and Kazuto Yamauchi
Opt. Express 26(13) 17477-17486 (2018)

Miniaturized compound refractive X-ray zoom lens

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr
Opt. Express 25(19) 22455-22466 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
    [Crossref]
  2. F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
    [Crossref]
  3. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9, 1669–1671 (1970).
    [Crossref]
  4. S. Barbero, “The Alvarez and Lohmann refractive lenses revisited,” Opt. Express 17, 9376 (2009).
    [Crossref]
  5. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), vol. 10.
  6. P. Kirkpatrick and A. V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766–774 (1948).
    [Crossref]
  7. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
    [Crossref]
  8. C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 054802 (2005).
    [Crossref]
  9. H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
    [Crossref]
  10. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, 1980), Vol. 2 of Course of theoretical physics.
  11. D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
    [Crossref]
  12. S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
    [Crossref]
  13. H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
    [Crossref]
  14. M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
    [Crossref]
  15. V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
    [Crossref]
  16. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
    [Crossref]
  17. L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
    [Crossref]
  18. K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
    [Crossref]
  19. V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
    [Crossref]

2019 (1)

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

2018 (1)

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

2017 (2)

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

2016 (2)

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

2014 (2)

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

2010 (2)

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

2009 (1)

2006 (1)

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

2005 (1)

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 054802 (2005).
[Crossref]

2003 (1)

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

1986 (1)

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

1970 (1)

1948 (1)

Ahrens, G.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Aigeldinger, G.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Alianelli, L.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Baez, A. V.

Barbero, S.

Becker, E. W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Bednarzik, M.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Bianchi, D.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Boesenberg, U.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), vol. 10.

Cocco, D.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Conley, R.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Degen, R.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Desta, Y. M.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Dhamgaye, V.

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

Dhamgaye, V. P.

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

Dolbnya, I. P.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Du, G.

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

Ehrfeld, W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Falkenberg, G.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Galtier, E. C.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Garg, C. K.

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

Garrevoet, J.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Giakoumidis, S.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Glass, M.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Goettert, J.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Gowri Sankar, B.

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

Gruetzner, G.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Hagmann, P.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Handa, S.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Idir, M.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Inagaki, K.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Inoue, I.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Inoue, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Inubushi, Y.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Ishikawa, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Ja Lee, H.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Jian, L.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Jiang, H.

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

Jin, Y.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Kang, H. C.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Kant, C.

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

Kim, J.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Kimura, T.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Kirkpatrick, P.

Koyama, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, 1980), Vol. 2 of Course of theoretical physics.

Laundy, D.

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

Lengeler, B.

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 054802 (2005).
[Crossref]

Liang, D.

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, 1980), Vol. 2 of Course of theoretical physics.

Liu, C.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Lodha, G. S.

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

Loechel, B.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Lohmann, A. W.

Macrander, A. T.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Maner, A.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Maser, J.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Matsuyama, S.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Metz, J.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Mimura, H.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Münchmeyer, D.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Nagler, B.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Nishino, Y.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Nolte, S.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Ohashi, H.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Osaka, T.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Pape, I.

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

Parfeniukas, K.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Pedersen, U. K.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Preece, G. M.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Rahomäki, J.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Raimondi, L.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Rau, C.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Rebuffi, L.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Reininger, R.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Rödel, C.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Ruhmann, R.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Sanchez del Rio, M.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Sano, Y.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Sawhney, K.

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

Sawhney, K. J.

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Sawhney, K. J. S.

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

Scholz, M.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Schroer, C. G.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 054802 (2005).
[Crossref]

Schropp, A.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Scott, S. M.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Seiboth, F.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Shi, X.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Siewert, F.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Singh, V.

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Spielmann-Jaeggi, S.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Stephenson, G. B.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Takacs, P.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Tamasaku, K.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Tian, N.

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

Tiwari, M. K.

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Tiwari, P.

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

Tomasset, M.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Tonnessen, T.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Tono, K.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Ullsperger, T.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Vivo, A.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Vogt, S.

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Vogt, U.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Wagner, U.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Walton, R. D.

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Wittwer, F.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), vol. 10.

Wünsche, M.

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Yabashi, M.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Yamada, J.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Yamakawa, D.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Yamamura, K.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Yamauchi, K.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Yan, S.

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

Yashchuk, V.

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

Yokoyama, H.

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Yumoto, H.

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

AIP Conf. Proc. (1)

K. J. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, and R. D. Walton, “A test beamline on diamond light source,” AIP Conf. Proc. 1234, 387–390 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Sawhney, D. Laundy, V. Dhamgaye, and I. Pape, “Compensation of x-ray mirror shape-errors using refractive optics,” Appl. Phys. Lett. 109, 051904 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Synchrotron Radiat. (3)

H. Jiang, N. Tian, D. Liang, G. Du, and S. Yan, “A piezoelectric deformable x-ray mirror for phase compensation based on global optimization,” J. Synchrotron Radiat. 26, 729–736 (2019).
[Crossref]

M. Sanchez del Rio, D. Bianchi, D. Cocco, M. Glass, M. Idir, J. Metz, L. Raimondi, L. Rebuffi, R. Reininger, X. Shi, F. Siewert, S. Spielmann-Jaeggi, P. Takacs, M. Tomasset, T. Tonnessen, A. Vivo, and V. Yashchuk, “DABAM: an open-source database of x-ray mirrors metrology,” J. Synchrotron Radiat. 23, 665–678 (2016).
[Crossref]

V. P. Dhamgaye, G. S. Lodha, B. Gowri Sankar, and C. Kant, “Beamline BL-07 at Indus-2: a facility for microfabrication research,” J. Synchrotron Radiat. 21, 259–263 (2014).
[Crossref]

Microelectron. Eng. (1)

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–56 (1986).
[Crossref]

Microsyst. Technol. (1)

V. P. Dhamgaye, M. K. Tiwari, C. K. Garg, P. Tiwari, K. J. S. Sawhney, and G. S. Lodha, “Development of high aspect ratio X-ray parabolic compound refractive lens at Indus-2 using X-ray lithography,” Microsyst. Technol. 10, 2055 (2014).
[Crossref]

Nat. Commun. (1)

F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E. C. Galtier, H. Ja Lee, B. Nagler, and C. G. Schroer, “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nat. Commun. 8, 14623 (2017).
[Crossref]

Nat. Phys. (1)

H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard-x-ray focusing,” Nat. Phys. 6, 122–125 (2010).
[Crossref]

Opt. Express (1)

Phys. Rev. Lett. (2)

C. G. Schroer and B. Lengeler, “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 054802 (2005).
[Crossref]

H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer linear focusing of hard x rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).
[Crossref]

Proc. SPIE (2)

D. Laundy, V. Dhamgaye, I. Pape, and K. J. Sawhney, “Refractive optics to compensate x-ray mirror shape-errors,” Proc. SPIE 10386, 103860B (2017).
[Crossref]

L. Jian, Y. M. Desta, J. Goettert, M. Bednarzik, B. Loechel, Y. Jin, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, and R. Degen, “SU-8 based deep x-ray lithography/LIGA,” Proc. SPIE 4979, 394 (2003).
[Crossref]

Sci. Rep. (1)

S. Matsuyama, T. Inoue, J. Yamada, J. Kim, H. Yumoto, Y. Inubushi, T. Osaka, I. Inoue, T. Koyama, K. Tono, H. Ohashi, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Nanofocusing of x-ray free-electron laser using wavefront-corrected multilayer focusing mirrors,” Sci. Rep. 8, 1–10 (2018).
[Crossref]

Other (2)

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, 1980), Vol. 2 of Course of theoretical physics.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), vol. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Knife-edge scanning method with a pixel detector to determine the wavefront error in vertical direction. Intensity is measured by detector pixel at position $ {P_2} $. $ {P_2} $ is projected back along the wavefront normal to point $ {P_1} $, intersecting the focal plane at a point offset by distance $y$ from the optical axis.
Fig. 2.
Fig. 2. Schematic of the experimental layout showing a section of the two structure sequences with the KB mirror pair focusing the beam. Inset shows the vertical motion $ {y_0} $ that changes the phase and $ \epsilon $ that changes the amplitude of the sinusoidal wavefront correction.
Fig. 3.
Fig. 3. Wavefront error: the difference along the propagation direction between actual wavefront and the ideal spherical surface as measured by the knife-edge method as a function of transverse position. Blue: no wavefront correction; red: wavefront correction by the single adaptable refractive compensator.
Fig. 4.
Fig. 4. Calculated beam intensity of a fully coherent 15 keV x-ray beam propagating through the focal plane of the HKB mirror. The calculation uses the measured wavefront error, with residual second- and third-order terms removed by polynomial fitting, to modify the coherent field amplitude of the focused beam. The field amplitude is then propagated numerically, using the Fresnel–Kirchhoff equation, to positions $ z $ before and after the focal plane at $ z = 0 $. Intensity is plotted as a function of $ z $ and transverse distance in the focusing direction ($ y $). Left plot shows the intensity distribution with no wavefront correction; right plot shows intensity distribution with the wavefront compensator inserted.

Tables (1)

Tables Icon

Table 1. Measurement Summary of Wavefront Correction Using the Adaptable Refractive Compensator

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n = 1 δ ( E ) i β ( E ) .
σ W = [ y 1 y 2 x 1 x 2 w ( x , y ) 2 d x d y / ( x 2 x 1 ) / ( y 2 y 1 ) ] 1 / 2 .
I ( 0 ) / I 0 ( 0 ) = 1 4 π 2 σ W 2 λ 2 ,
w ( x , y ) = w v ( y ) + w h ( x ) .
t 1 ( y ) = A ( 1 + sin [ 2 π Λ ( y y 0 + ϵ ) ] ) + t 0 ,
t 2 ( y ) = A ( 1 sin [ 2 π Λ ( y y 0 ϵ ) ] ) + t 0 ,
t ( y ) = t 1 ( y ) + t 2 ( y ) ,
t ( y ) = 2 A sin [ 2 π ϵ Λ ] cos [ 2 π ( y y 0 ) Λ ] + 2 ( A + t 0 ) .
cos [ 2 π ( y y 0 ) Λ ] = 1 2 π 2 ( y y 0 ) 2 Λ 2 + 2 π 4 3 ( y y 0 ) 4 Λ 4 4 π 6 4 5 ( y y 0 ) 6 Λ 6 + .