Abstract

Metalenses consist of nanostructures that locally control the optical phase. They offer many degrees of freedom for manipulating a wavefront, which gives a number of advantages over bulk lenses, such as the straightforward elimination of spherical aberrations and an ultrathin dimension. Here, we compare the phase profiles of metalenses made of different dielectric materials and note the advantage of high refractive index materials. Higher refractive index materials such as silicon afford more degrees of freedom in terms of design and fabrication and are the basis for high-performance metalenses, even in the visible. Nevertheless, the imaging performance of single-element metalenses is still limited by coma and chromatic aberrations. This limitation is exacerbated by high numerical apertures and large areas. We review the challenges and trade-offs between numerical aperture, field of view, coma, chromatic aberration, and size. We also evaluate different phase engineering approaches to address these problems. We believe this review will help guide future developments in high-performance metalenses toward wide-field and high-resolution imaging, enabling scientific high-end miniature imaging systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Role of refractive index in metalens performance

Elyas Bayati, Alan Zhan, Shane Colburn, Maksym Viktorovich Zhelyeznyakov, and Arka Majumdar
Appl. Opt. 58(6) 1460-1466 (2019)

Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens

Hao Chen, Zhixiang Wu, Zeyu Li, Zhenfei Luo, Xue Jiang, Zhongquan Wen, Liguo Zhu, Xun Zhou, Hua Li, Zhengguo Shang, Zhihai Zhang, Kun Zhang, Gaofeng Liang, Senlin Jiang, Lianghui Du, and Gang Chen
Opt. Express 26(23) 29817-29825 (2018)

Optical manipulation of Rayleigh particles by metalenses—a numerical study

Zhe Shen, Hongchao Liu, Shuang Zhang, Yao-Chun Shen, Baifu Zhang, and Saiyu Luo
Appl. Opt. 58(21) 5794-5799 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
    [Crossref]
  2. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
    [Crossref]
  3. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
    [Crossref]
  4. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
    [Crossref]
  5. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
    [Crossref]
  6. P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
    [Crossref]
  7. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  8. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
    [Crossref]
  9. M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
    [Crossref]
  10. M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
    [Crossref]
  11. H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
    [Crossref]
  12. G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
    [Crossref]
  13. A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
    [Crossref]
  14. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
    [Crossref]
  15. M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
    [Crossref]
  16. W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
    [Crossref]
  17. E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
    [Crossref]
  18. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  19. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  20. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
    [Crossref]
  21. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
    [Crossref]
  22. E. Yabonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref]
  23. S. John, “Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref]
  24. E. Yabonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B. 10, 283–295 (1993).
    [Crossref]
  25. T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
    [Crossref]
  26. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref]
  27. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref]
  28. A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
    [Crossref]
  29. A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
    [Crossref]
  30. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref]
  31. B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23, 22611–22618 (2015).
    [Crossref]
  32. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
    [Crossref]
  33. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
    [Crossref]
  34. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
    [Crossref]
  35. M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
    [Crossref]
  36. A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
    [Crossref]
  37. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  38. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
    [Crossref]
  39. S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
    [Crossref]
  40. A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Phys. Rev. X 8, 011036 (2018).
    [Crossref]
  41. S. Pancharatnam, in Proceedings of the Indian Academy of Sciences–Section A (Springer, 1956), Vol. 44, pp. 398–417.
  42. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
    [Crossref]
  43. M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
    [Crossref]
  44. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref]
  45. J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
    [Crossref]
  46. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
    [Crossref]
  47. K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
    [Crossref]
  48. J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
    [Crossref]
  49. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  50. R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
    [Crossref]
  51. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  52. E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
    [Crossref]
  53. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
    [Crossref]
  54. Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
    [Crossref]
  55. B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
    [Crossref]
  56. Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
    [Crossref]
  57. N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
    [Crossref]
  58. A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
    [Crossref]
  59. S. Colbrun, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, and A. Majumdar, “Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited],” Opt. Mater. Express 8, 2330–2344 (2018).
    [Crossref]
  60. Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
    [Crossref]
  61. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
    [Crossref]
  62. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
    [Crossref]
  63. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
    [Crossref]
  64. L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
    [Crossref]
  65. L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
    [Crossref]
  66. C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.
  67. D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
    [Crossref]
  68. Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
    [Crossref]
  69. J. Yang and J. A. Fan, “Analysis of material selection on dielectric metasurface performance,” Opt. Express 25, 23899–23909 (2017).
    [Crossref]
  70. G. Tkachenko, D. Stellinga, A. Ruskuc, M. Chen, K. Dholakia, and T. F. Krauss, “Optical trapping with planar silicon metalenses,” Opt. Lett. 43, 3224–3227 (2018).
    [Crossref]
  71. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
    [Crossref]
  72. A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
    [Crossref]
  73. A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Broadband c-Si, metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography,” Opt. Express 26, 30740–30752 (2018).
    [Crossref]
  74. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
    [Crossref]
  75. E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
    [Crossref]
  76. R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
    [Crossref]
  77. S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24, 5110–5124 (2016).
    [Crossref]
  78. A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
    [Crossref]
  79. F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21, 31530–31539 (2013).
    [Crossref]
  80. A. Kalvach and S. Szabó, “Aberration-free flat lens design for a wide range of incident angles,” J. Opt. Soc. Am. B. 33, A66–A71 (2016).
    [Crossref]
  81. B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
    [Crossref]
  82. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  83. B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate aberration and correction for meta-lens imaging: an analytical approach,” Appl. Opt. 57, 2973–2980 (2018).
    [Crossref]
  84. Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
    [Crossref]
  85. M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
    [Crossref]
  86. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
    [Crossref]
  87. Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
    [Crossref]
  88. S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
    [Crossref]
  89. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
    [Crossref]
  90. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
    [Crossref]
  91. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
    [Crossref]
  92. S. Shrestha, A. C. Overvig, and N. Yu, “Multi-element meta-lens systems for imaging,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FF2B.8.
  93. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
    [Crossref]
  94. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
    [Crossref]
  95. O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
    [Crossref]
  96. S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).
  97. W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
    [Crossref]
  98. R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
    [Crossref]
  99. Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
    [Crossref]
  100. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
    [Crossref]
  101. Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
    [Crossref]

2019 (5)

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

2018 (27)

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate aberration and correction for meta-lens imaging: an analytical approach,” Appl. Opt. 57, 2973–2980 (2018).
[Crossref]

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

S. Colbrun, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, and A. Majumdar, “Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited],” Opt. Mater. Express 8, 2330–2344 (2018).
[Crossref]

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

G. Tkachenko, D. Stellinga, A. Ruskuc, M. Chen, K. Dholakia, and T. F. Krauss, “Optical trapping with planar silicon metalenses,” Opt. Lett. 43, 3224–3227 (2018).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Broadband c-Si, metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography,” Opt. Express 26, 30740–30752 (2018).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Phys. Rev. X 8, 011036 (2018).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

2017 (17)

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

J. Yang and J. A. Fan, “Analysis of material selection on dielectric metasurface performance,” Opt. Express 25, 23899–23909 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

2016 (15)

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

A. Kalvach and S. Szabó, “Aberration-free flat lens design for a wide range of incident angles,” J. Opt. Soc. Am. B. 33, A66–A71 (2016).
[Crossref]

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24, 5110–5124 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref]

2015 (7)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23, 22611–22618 (2015).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

2014 (6)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

2013 (2)

2012 (4)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4, 379–440 (2012).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

1999 (1)

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

1998 (1)

1996 (1)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

1993 (1)

E. Yabonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B. 10, 283–295 (1993).
[Crossref]

1987 (3)

E. Yabonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

Adams, D. C.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Agrawal, A.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Aieta, F.

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Almeida, E.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Arbabi, A.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Arbabi, E.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Astilean, S.

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
[Crossref]

Avayu, O.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

Bagheri, M.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Bai, B.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Bakker, R. M.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Ball, A. J.

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Banerji, S.

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

Bao, Y.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Bayati, E.

Berry, M. V.

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

Bharwani, Z.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

Bhumkar, P.

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

Borges, B.-H. V.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Brake, J.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Brener, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Brongersma, M. L.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Byrnes, S. J.

Cai, Z.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Cambril, E.

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
[Crossref]

Capasso, F.

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate aberration and correction for meta-lens imaging: an analytical approach,” Appl. Opt. 57, 2973–2980 (2018).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24, 5110–5124 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21, 31530–31539 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chang-Hasnain, C. J.

Chase, C.

Chaudhary, K.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

Chavel, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
[Crossref]

Chen, B. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Chen, H.-T.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Chen, J.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Chen, J.-W.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Chen, K.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Chen, M.

Chen, M. K.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Chen, M.-K.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Chen, S.

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Chen, W. T.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Chen, X.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Chen, Y. H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Chen, Y.-J.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Cheng, H.

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Choi, S.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Chong, K. E.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Chu, C. H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Clarke, D. R.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

Colbrun, S.

Cui, L.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

da Mota, A. F.

De La Rue, R. M.

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Decker, M.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Demir, H. V.

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Desiatov, B.

Devlin, R.

Devlin, R. C.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Dholakia, K.

Ding, V.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Ding, Z.-W.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

Divitt, S.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

do Carmo, J. P.

Dodson, C. M.

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Dominguez, J.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dong, J.-W.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Dorpe, P. V.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

Doshay, S.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

Eleftheriades, G. V.

A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Phys. Rev. X 8, 011036 (2018).
[Crossref]

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
[Crossref]

Ellenbogen, T.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

Emani, N. K.

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Epstein, A.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref]

Fainman, Y.

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fan, J. A.

J. Yang and J. A. Fan, “Analysis of material selection on dielectric metasurface performance,” Opt. Express 25, 23899–23909 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Fan, Q.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Fan, Z.-B.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Fang, H.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Faraji-Dana, M.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

Faraon, A.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Feng, T.

Feng, Y.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Fryett, T. K.

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Fu, Y. H.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Gao, J.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Genevet, P.

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21, 31530–31539 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Giessen, H.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gissibl, T.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gomez-Iglesias, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

Gradinaru, V.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

Groever, B.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate aberration and correction for meta-lens imaging: an analytical approach,” Appl. Opt. 57, 2973–2980 (2018).
[Crossref]

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

Gu, C.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Gu, G.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

Guo, K.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Guo, L.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

Guo, Z.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Han, S.

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

Hao, H.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

Hariri, L. P.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Hasman, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Hong, J.-Y.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Hopkins, B.

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

Horie, Y.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

Hsiao, H.-H.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Hu, Z.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

Huang, L.

S. Colbrun, A. Zhan, E. Bayati, J. Whitehead, A. Ryou, L. Huang, and A. Majumdar, “Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited],” Opt. Mater. Express 8, 2330–2344 (2018).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Huang, T.-T.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Huang, Y.-W.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Hutchins, R. J.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

Huyet, G.

Hwang, S. H.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

James, A. R.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Jang, M.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Jeon, S.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Jeong, J.-H.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Jin, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

John, S.

S. John, “Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Kalvach, A.

A. Kalvach and S. Szabó, “Aberration-free flat lens design for a wide range of incident angles,” J. Opt. Soc. Am. B. 33, A66–A71 (2016).
[Crossref]

Kamali, S. M.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,” Optica 4, 625–632 (2017).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, “Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,” Optica 3, 628–633 (2016).
[Crossref]

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

Kang, H.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Kang, M.

Karagodsky, V.

Kats, M.

Kats, M. A.

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Khaidarov, E.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Khorasaninejad, M.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4, 139–152 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Kim, H.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Kim, M.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
[Crossref]

Kivshar, Y. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

Klemm, A. B.

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
[Crossref]

Krauss, T. F.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

G. Tkachenko, D. Stellinga, A. Ruskuc, M. Chen, K. Dholakia, and T. F. Krauss, “Optical trapping with planar silicon metalenses,” Opt. Lett. 43, 3224–3227 (2018).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Kravchenko, I. I.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

Krivitsky, L. A.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Kuan, C.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Kuo, H. Y.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Kurk, S.

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

Kuznetsov, A. I.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Lai, Y. C.

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Lai, Y.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Lalanne, P.

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
[Crossref]

Lan, Y.-C.

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Launois, H.

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings,” Opt. Lett. 23, 1081–1083 (1998).
[Crossref]

Lee, B.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Lee, E.

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Lee, G.-Y.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Lee, I. C.

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Lenef, A.

Leong, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Levy, U.

Lewis, L.

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
[Crossref]

Lezec, H. J.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Li, J.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Broadband c-Si, metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography,” Opt. Express 26, 30740–30752 (2018).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

Li, K.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Li, T.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Liang, H.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Liang, X.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Lin, Q.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Lin, R.-M.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Lin, Y.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

Lin, Z.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

Liu, A.-Q.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Liu, J.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Liu, L.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Liu, M.

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

Liu, S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Liu, W.

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

Liu, Y.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Loncar, M.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

Long, L.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

Lu, F.

Lu, S.

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Lu, S.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

Majumda, A.

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Majumdar, A.

Majumder, A.

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

Martins, A.

Martins, E. R.

Mazurski, N.

Meem, M.

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

Menon, R.

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

Miroshnichenko, A.

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

Mishra, L.

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Moon, S.

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

Mueller, J. P. B.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Neshev, D. N.

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Neto, L. G.

Ng, J. S. K.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

Ni, P.

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

Nobis, T.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Nolen, J. R.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

O’Faolain, L.

Oh, J.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

Overvig, A. C.

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

S. Shrestha, A. C. Overvig, and N. Yu, “Multi-element meta-lens systems for imaging,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FF2B.8.

Pahlevaninezhad, H.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Pancharatnam, S.

S. Pancharatnam, in Proceedings of the Indian Academy of Sciences–Section A (Springer, 1956), Vol. 44, pp. 398–417.

Pang, X.-N.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Pepino, V. M.

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Petschulat, J.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

Prior, Y.

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

Qiu, C.-W.

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Qiu, Y.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Reardon, C. P.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Rodriguez, A. W.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

Roques-Carmes, C.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

B. Groever, C. Roques-Carmes, S. J. Byrnes, and F. Capasso, “Substrate aberration and correction for meta-lens imaging: an analytical approach,” Appl. Opt. 57, 2973–2980 (2018).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

Rousso, D.

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Ruan, H.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Ruan, W.-S.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Rubin, N. A.

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

Ruskuc, A.

Ryou, A.

Sanjeev, V.

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

Sawant, R.

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

Sedgwick, F. G.

Sell, D.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

Sensale-Rodriguez, B.

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

Shao, Z.-K.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

She, A.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Shen, F.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Shi, Z.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

Shian, S.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

Shibukawa, A.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Shrestha, S.

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

S. Shrestha, A. C. Overvig, and N. Yu, “Multi-element meta-lens systems for imaging,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FF2B.8.

Sisler, J.

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Staude, I.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Stein, A.

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

Stellinga, D.

G. Tkachenko, D. Stellinga, A. Ruskuc, M. Chen, K. Dholakia, and T. F. Krauss, “Optical trapping with planar silicon metalenses,” Opt. Lett. 43, 3224–3227 (2018).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, G. Huyet, L. O’Faolain, and T. F. Krauss, “Experimental high numerical aperture focusing with high contrast gratings,” Opt. Lett. 38, 3410–3413 (2013).
[Crossref]

Su, R.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Su, V.-C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Subramania, G. S.

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Sun, G.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Sun, Q.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Suter, M. J.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Szabó, S.

A. Kalvach and S. Szabó, “Aberration-free flat lens design for a wide range of incident angles,” J. Opt. Soc. Am. B. 33, A66–A71 (2016).
[Crossref]

Tamagnone, M.

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

Tan, Q.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Tan, S. T.

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Teixeira, F. L.

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Tian, J.

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Tkachenko, G.

Toh, Y. T.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

Trivedi, R.

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

Tsai, D. P.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Tseng, M. L.

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Valentine, J.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

Valuckas, V.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Wagenaar, D. A.

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

Wan, R.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

Wang, H.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

Wang, H.-T.

Wang, J.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Wang, J.-H.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

Wang, L.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

Wang, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Wang, X.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Wang, X.-H.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Wang, Y.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Broadband c-Si, metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography,” Opt. Express 26, 30740–30752 (2018).
[Crossref]

Wang, Z.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

White, T. P.

Whitehead, J.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Wong, A. M. H.

A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Phys. Rev. X 8, 011036 (2018).
[Crossref]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
[Crossref]

Wong, J. P. S.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref]

Wu, P. C.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Xie, M.-Y.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Xie, X.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Xiong, L.

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

Xu, B.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Xu, H.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Xu, S.

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

Xu, T.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Yabonovitch, E.

E. Yabonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B. 10, 283–295 (1993).
[Crossref]

E. Yabonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

Yan, J.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

Yang, C.

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

Yang, H.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

J. Yang and J. A. Fan, “Analysis of material selection on dielectric metasurface performance,” Opt. Express 25, 23899–23909 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

Yang, W.

Yang, Z.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Yannai, M.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

Yao, B.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Yap, S. L. K.

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

Yin, Z.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Yousef, K. M. A.

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

Yu, N.

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

S. Shrestha, A. C. Overvig, and N. Yu, “Multi-element meta-lens systems for imaging,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FF2B.8.

Yu, P.

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Yu, S.-Y.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Yu, X.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Yu, Y.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Yu, Y. F.

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhan, A.

Zhang, C.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Zhang, K.

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Zhang, L.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Zhang, S.

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

Zhang, X.

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

Zhao, F.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Zhao, F.-L.

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zhou, H.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Zhou, J.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Zhou, L.

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Zhou, Q.

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Zhou, Y.

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Zhou, Z.

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Zhou, Z.-K.

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Zhu, A.

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

Zhu, A. Y.

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Zhu, S.

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Zhu, W.

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Zhu, X.

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Zuo, R.

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

ACS Photon. (5)

M. Decker, W. T. Chen, T. Nobis, A. Y. Zhu, M. Khorasaninejad, Z. Bharwani, F. Capasso, and J. Petschulat, “Imaging performance of polarization-insensitive metalenses,” ACS Photon. 6, 1493–1499 (2019).
[Crossref]

K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, “Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,” ACS Photon. 3, 514–519 (2016).
[Crossref]

A. Zhan, S. Colbrun, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumda, “Low-contrast dielectric metasurface optics,” ACS Photon. 3, 209–214 (2016).
[Crossref]

D. Sell, J. Yang, S. Doshay, K. Zhang, and J. A. Fan, “Visible light metasurfaces based on single-crystal silicon,” ACS Photon. 3, 1919–1925 (2016).
[Crossref]

Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, “Efficient silicon metasurfaces for visible light,” ACS Photon. 4, 544–551 (2017).
[Crossref]

Adv. Funct. Mater. (2)

J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H.-T. Chen, and J. Tian, “Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces,” Adv. Funct. Mater. 25, 704–710 (2015).
[Crossref]

Y. Bao, Y. Yu, H. Xu, Q. Lin, Y. Wang, J. Li, Z.-K. Zhou, and X.-H. Wang, “Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching end encoding,” Adv. Funct. Mater. 28, 1805306 (2018).
[Crossref]

Adv. Mater. (2)

R. Sawant, P. Bhumkar, A. Y. Zhu, P. Ni, F. Capasso, and P. Genevet, “Mitigating chromatic dispersion with hybrid optical metasurfaces,” Adv. Mater. 31, 1805555 (2019).
[Crossref]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27, 1195–1200 (2014).
[Crossref]

Adv. Opt. Mater. (3)

R. Zuo, W. Liu, H. Cheng, S. Chen, and J. Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, and D. P. Tsai, “Metalenses: advances and applications,” Adv. Opt. Mater. 6, 1800554 (2018).
[Crossref]

Adv. Opt. Photon. (1)

APL Photon. (1)

S. Kurk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Invited article: broadband highly efficient dielectric metadevices for polarization control,” APL Photon. 1, 030801 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. K. Emani, E. Khaidarov, R. Paniagua-Domínguez, Y. H. Fu, V. Valuckas, S. Lu, X. Zhang, S. T. Tan, H. V. Demir, and A. I. Kuznetsov, “High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths,” Appl. Phys. Lett. 111, 221101 (2017).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987).
[Crossref]

J. Nanophoton. (1)

L. Guo, S. Xu, R. Wan, T. Li, L. Xiong, L. Wang, and W. Zhu, “Design of aluminum nitride metalens in the ultraviolet spectrum,” J. Nanophoton. 12, 043513 (2018).
[Crossref]

J. Opt. Soc. Am. A. (1)

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A. 16, 1143–1156 (1999).
[Crossref]

J. Opt. Soc. Am. B. (2)

E. Yabonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B. 10, 283–295 (1993).
[Crossref]

A. Kalvach and S. Szabó, “Aberration-free flat lens design for a wide range of incident angles,” J. Opt. Soc. Am. B. 33, A66–A71 (2016).
[Crossref]

J. Phys. D (1)

Y. Qiu, F. Zhao, X. Zhu, J. Li, H. Liang, J. Wang, and Z. Cai, “Deflecting transmissive light beams with metasurfaces based on crystalline silicon high-contrast grating,” J. Phys. D 52, 084001 (2019).
[Crossref]

Laser Photon. Rev. (1)

P. Lalanne and P. Chavel, “Metalenses at visible wavelengths: past, present, perspectives,” Laser Photon. Rev. 11, 1600295 (2017).
[Crossref]

Light Sci. Appl. (2)

E. Maguid, I. Yulevich, M. Yannai, V. Kleiner, M. L. Brongersma, and E. Hasman, “Multifunctional interleaved geometric-phase dielectric metasurfaces,” Light Sci. Appl. 6, e17027 (2017).
[Crossref]

S. Shrestha, A. C. Overvig, M. Liu, A. Stein, and N. Yu, “Broadband achromatic dielectric metalenses,” Light Sci. Appl. 7, 85 (2018).
[Crossref]

Nano Lett. (13)

B. Groever, W. T. Chen, and F. Capasso, “Meta-lens doublet in the visible region,” Nano Lett. 17, 4902–4907 (2017).
[Crossref]

H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Lett. 18, 4460–4466 (2018).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17, 3752–3757 (2017).
[Crossref]

E. Khaidarov, H. Hao, R. Paniagua-Domínguez, Y. F. Yu, Y. H. Fu, V. Valuckas, S. L. K. Yap, Y. T. Toh, J. S. K. Ng, and A. I. Kuznetsov, “Asymmetric nanoantennas for ultrahigh angle broadband visible light bending,” Nano Lett. 17, 6267–6272 (2017).
[Crossref]

R. Paniagua-Domínguez, Y. F. Yu, E. Khaidarov, S. Choi, V. Leong, R. M. Bakker, X. Liang, Y. H. Fu, V. Valuckas, L. A. Krivitsky, and A. I. Kuznetsov, “A metalens with a near-unity numerical aperture,” Nano Lett. 18, 2124–2132 (2018).
[Crossref]

Z. Shi, M. Khorasaninejad, Y.-W. Huang, C. Roques-Carmes, A. Y. Zhu, W. T. Chen, V. Sanjeev, Z.-W. Ding, M. Tamagnone, K. Chaudhary, R. C. Devlin, C.-W. Qiu, and F. Capasso, “Single-layer metasurface with controllable multiwavelength functions,” Nano Lett. 18, 2420–2427 (2018).
[Crossref]

M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, and F. Capasso, “Multispectral chiral imaging with a metalens,” Nano Lett. 16, 4595–4600 (2016).
[Crossref]

Y. Zhou, I. I. Kravchenko, H. Wang, J. R. Nolen, G. Gu, and J. Valentine, “Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics,” Nano Lett. 18, 7529–7537 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. A. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, “Broadband achromatic metasurface-refractive optics,” Nano Lett. 18, 7801–7808 (2018).
[Crossref]

B. H. Chen, P. C. Wu, V.-C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, “GaN metalens for pixel-level full-color routing at visible light,” Nano Lett. 17, 6345–6352 (2017).
[Crossref]

M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, L. Mishra, R. C. Devlin, and F. Capasso, “Polarization-insensitive metalenses at visible wavelengths,” Nano Lett. 16, 7229–7234 (2016).
[Crossref]

W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, “Immersion meta-lenses at visible wavelengths for nanoscale imaging,” Nano Lett. 17, 3188–3194 (2017).
[Crossref]

E. Arbabi, J. Li, R. J. Hutchins, S. M. Kamali, A. Arbabi, Y. Horie, P. V. Dorpe, V. Gradinaru, D. A. Wagenaar, and A. Faraon, “Two-photon microscopy with a double-wavelength metasurface objective lens,” Nano Lett. 18, 4943–4948 (2018).
[Crossref]

Nanomaterials (1)

Z. Guo, H. Xu, K. Guo, F. Shen, H. Zhou, Q. Zhou, J. Gao, and Z. Yin, “High-efficiency visible transmitting polarizations devices based on the GaN metasurface,” Nanomaterials 8, 333 (2018).
[Crossref]

Nanophotonics (1)

L. Guo, Z. Hu, R. Wan, L. Long, T. Li, J. Yan, Y. Lin, L. Zhang, W. Zhu, and L. Wang, “Design of aluminum nitride metalens for broadband ultraviolet incidence routing,” Nanophotonics 8, 171–180 (2019).
[Crossref]

Nat. Commun (1)

A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, and A. Faraon, “Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations,” Nat. Commun 7, 13682 (2016).
[Crossref]

Nat. Commun. (7)

G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9, 4562 (2018).
[Crossref]

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref]

A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, “Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,” Nat. Commun. 6, 7069 (2015).
[Crossref]

O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, “Composite functional metasurfaces for multispectral achromatic optics,” Nat. Commun. 8, 14992 (2017).
[Crossref]

W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, “A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,” Nat. Commun. 10, 335 (2019).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, “Broadband achromatic optical metasurface devices,” Nat. Commun. 8, 187 (2017).
[Crossref]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11, 917–924 (2012).
[Crossref]

Nat. Nanotechnol. (4)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[Crossref]

W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2018).
[Crossref]

Nat. Photonics (5)

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8, 889–898 (2014).
[Crossref]

H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, and M. J. Suter, “Nano-optics endoscope for high-resolution optical coherent tomography in vivo,” Nat. Photonics 12, 540–547 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

M. Jang, Y. Horie, A. Shibukawa, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, “Wavefront shaping with disorder-engineered metasurfaces,” Nat. Photonics 12, 84–90 (2018).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Nature (2)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structure operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref]

Opt. Eng. (1)

A. B. Klemm, D. Stellinga, E. R. Martins, L. Lewis, L. O’Faolain, and T. F. Krauss, “Focusing with planar microlenses made of two-dimensionally varying high contrast gratings,” Opt. Eng. 53, 095104 (2014).
[Crossref]

Opt. Express (10)

B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23, 22611–22618 (2015).
[Crossref]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express 18, 12606–12614 (2010).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

M. Kang, T. Feng, H.-T. Wang, and J. Li, “Wave front engineering from an array of thin aperture antennas,” Opt. Express 20, 15882–15890 (2012).
[Crossref]

J. Yang and J. A. Fan, “Analysis of material selection on dielectric metasurface performance,” Opt. Express 25, 23899–23909 (2017).
[Crossref]

S. J. Byrnes, A. Lenef, F. Aieta, and F. Capasso, “Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light,” Opt. Express 24, 5110–5124 (2016).
[Crossref]

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Large area metalenses: design, characterization, and mass manufacturing,” Opt. Express 26, 1573–1585 (2018).
[Crossref]

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21, 31530–31539 (2013).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, J. P. do Carmo, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Highly efficient holograms based on c-Si metasurfaces in the visible range,” Opt. Express 26, 9573–9583 (2018).
[Crossref]

A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, and B.-H. V. Borges, “Broadband c-Si, metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography,” Opt. Express 26, 30740–30752 (2018).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (3)

Phys. Rev. Appl. (2)

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Loncar, “Topology-optimized multilayered metaoptics,” Phys. Rev. Appl. 9, 044030 (2018).
[Crossref]

Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, and J.-W. Dong, “Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging,” Phys. Rev. Appl. 10, 014005 (2018).
[Crossref]

Phys. Rev. Lett. (3)

J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118, 113901(2017).
[Crossref]

E. Yabonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref]

S. John, “Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref]

Phys. Rev. X (3)

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of local reflection coefficients,” Phys. Rev. X 4, 041042 (2014).
[Crossref]

A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite Huygens’ metasurface,” Phys. Rev. X 8, 011036 (2018).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, M. Faraji-Dana, and A. Faraon, “Angle-multiplexed metasurfaces: encoding independent wavefront in a single metasurface under different illumination angles,” Phys. Rev. X 7, 041056 (2017).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. USA 113, 10473–10478 (2016).
[Crossref]

Sci. Adv. (1)

A. She, S. Zhang, S. Shian, D. R. Clarke, and F. Capasso, “Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift,” Sci. Adv. 4, eaap9957 (2018).
[Crossref]

Sci. Rep. (1)

K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, and T. Jiang, “Geometric phase coded metasurface: from polarization dependent directive electromagnetic wave scattering to diffusion-like scattering,” Sci. Rep. 6, 35968 (2016).
[Crossref]

Science (5)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358, eaam8100 (2017).
[Crossref]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science 352, 1190–1194 (2016).
[Crossref]

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science 347, 1342–1345 (2015).
[Crossref]

Other (6)

S. Banerji, M. Meem, A. Majumder, B. Sensale-Rodriguez, and R. Menon, “Imaging over an unlimited bandwidth with a single diffractive surface,” arXiv: 1907.06251 (2019).

S. Shrestha, A. C. Overvig, and N. Yu, “Multi-element meta-lens systems for imaging,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FF2B.8.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

S. Pancharatnam, in Proceedings of the Indian Academy of Sciences–Section A (Springer, 1956), Vol. 44, pp. 398–417.

C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, T. Xu, and H. J. Lezec, “All-dielectric deep ultraviolet metasurfaces,” in Conference on Lasers and Electro-Optics (CLEO) (2019), paper FM3C.3.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. High-level schematic of different types of nanostructures to achieve phase control in metasurfaces, grouped into resonant and nonresonant effects. (a) Localized resonances, such as Mie resonances. Plasmonic resonances that were used in earlier work also fall into this category; (b) Extended resonances such as photonic crystals and high-contrast gratings; (c) Effective index, whereby the fill factor of the nanostructure controls the phase; and (d) Pancharatnam–Berry (PB) phase whereby the rotation of a meta-atom controls the phase of a circularly polarized beam.
Fig. 2.
Fig. 2. Examples of (a) TiO2, (b) GaN, and (c) c-Si metalenses, and their corresponding focusing performance. All data were taken at 532nm: (a) With permission from [8]; (b) With permission from [55]; and (c) With permission from [71].
Fig. 3.
Fig. 3. Schematic of (a) back immersion and (b) front immersion metalenses.
Fig. 4.
Fig. 4. Diffraction reconstructions of three metalenses (f=15μm) with the following phase profiles: (a)–(c) hyperbolic, (d)–(f) hyperbolic superimposed with optimized polynomial, and (g-i) spherical. The first and second columns show the longitudinal field distributions at normal and oblique (30°) incidences, respectively. The third column shows the resulting point spread function (PSF) at 0° (black), 7.5° (red), 15° (green), 22.5° (blue), and 30° (orange). The operating wavelength is 532 nm. The dashed boxes in (d) and (e) highlight that the corresponding phase profiles impose an effective aperture onto the lens.
Fig. 5.
Fig. 5. Fourier transform amplitude of the field at the exit of the spherical metalens at normal (a) and oblique (b) incidences as a function of a normalized k-vector. (c) Corresponding line plot through the origin showing normal incidence (red) and oblique incidence (blue). (e)–(g) Same line plot for the hyperbolic metalens. The light line is shown by the white dashed circle in (a), (b), (e), and (f) and as dashed black lines in (c) and (g). Ray tracing of a bulk spherical lens is shown in (d) for perpendicular incidence and (h) for oblique incidence, superimposed onto the field distributions of an equivalent metalens with spherical phase profile.
Fig. 6.
Fig. 6. Illustration to explain how a metalens doublet removes both coma and spherical aberrations by adding a Schmidt plate for correcting spherical aberrations. When the Schmidt plate is placed directly onto the focusing lens (a), a hyperbolic profile is created, but only for normal incidence; the profile for angular incidence is still distorted. By placing the two lenses a distance d apart (b), the Schmidt plate correctly projects its correction onto the focusing lens, resulting in a corrected profile for both normal and angled incidence.
Fig. 7.
Fig. 7. Metalenses with color corrections. (a) Single-layer achromatic metalens made of TiO2 nanofins to achieve achromatic imaging with a bandwidth of 200 nm. (b) Multilayer metalens to correct chromatic aberration at three specific wavelengths: 1180, 1440, and 1680 nm: (a) with permission from [86], and (b) with permission from [87].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δφ=k0(nmetanback)h,
NA=nbacksinθ,
a<λ2NA.
φhyp(r)=k0nback(f2+r2f),
φoptim(r)=k0nback(f2+r2f)+n=15an(rR)2n,
φsph(r)=k0nbackρf(ρρ2r2),
φ(r,ω)=φ(r,ωd)+φ(r,ω)ω|ω=ωd(ωωd)+2φ(r,ω)2ω2|ω=ωd(ωωd)2+.
ΔΦ=(φ(r,ω)ω|maxφ(r,ω)ω|min)Δω,
ΔωΔΦcRmax(1NA1NA21).