Abstract

High-quality (Q)-factor silicon microdisks are promising platforms for revolutionizing bio-sensing, medical diagnoses, and frequency combs. Nevertheless, their practical applications are hindered by the regular waveguide–resonator coupling configuration, which relies on sophisticated and high-cost nanofabrication. Here, we demonstrate a simple, cost-effective, and counterintuitive mechanism to couple light into a high-Q silicon microdisk. In contrast to the evanescent coupling, the incident light is injected into silicon microdisks through the waveguides directly connected to them. The end-fire injection coefficients and Q factors of waveguide-connected microdisks are around 57% and 2×1057×105, comparable to conventional microdisks. Importantly, the end-fire injection configuration is quite robust to fabrication deviations and can be simply realized without using electron-beam lithography. Meanwhile, their applications in monitoring nanoparticles and tiny ambient changes have also been explored. This research will route a new way to on-chip biosensors and integrated photonic circuits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct laser writing for active and passive high-Q polymer microdisks on silicon

Tobias Grossmann, Simone Schleede, Mario Hauser, Torsten Beck, Michael Thiel, Georg von Freymann, Timo Mappes, and Heinz Kalt
Opt. Express 19(12) 11451-11456 (2011)

Ultra-compact, high-Q silicon microdisk reflectors

Wei Shi, Han Yun, Wen Zhang, Charlie Lin, Ting Kai Chang, Yun Wang, Nicolas A. F. Jaeger, and Lukas Chrostowski
Opt. Express 20(20) 21840-21846 (2012)

Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment

Matthew Borselli, Thomas J. Johnson, and Oskar Painter
Opt. Express 13(5) 1515-1530 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
    [Crossref]
  2. J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
    [Crossref]
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
    [Crossref]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref]
  5. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods. 5, 591–596 (2008).
    [Crossref]
  7. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  8. W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
    [Crossref]
  9. Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
    [Crossref]
  10. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
    [Crossref]
  11. W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
    [Crossref]
  12. N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
    [Crossref]
  13. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  14. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref]
  15. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref]
  16. Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
    [Crossref]
  17. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
    [Crossref]
  18. J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
    [Crossref]
  19. Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
    [Crossref]
  20. Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170–2172 (2008).
    [Crossref]
  21. S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
    [Crossref]
  22. S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
    [Crossref]
  23. H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
    [Crossref]
  24. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
    [Crossref]
  25. Y. D. Yang, S.-J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17, 23010–23015 (2009).
    [Crossref]
  26. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref]
  27. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref]
  28. C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
    [Crossref]
  29. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  30. J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
    [Crossref]
  31. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref]
  32. N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
    [Crossref]

2018 (1)

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

2017 (6)

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

2016 (1)

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

2015 (3)

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

2014 (2)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

2013 (2)

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

2012 (2)

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

2011 (1)

2010 (3)

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2009 (4)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref]

Y. D. Yang, S.-J. Wang, and Y. Z. Huang, “Investigation of mode coupling in a microdisk resonator for realizing directional emission,” Opt. Express 17, 23010–23015 (2009).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

2008 (2)

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170–2172 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods. 5, 591–596 (2008).
[Crossref]

2007 (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

2005 (1)

2003 (1)

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
[Crossref]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods. 5, 591–596 (2008).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Bahl, G.

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Bailey, R. C.

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref]

Borselli, M.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Cao, H.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Che, K.-J.

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, W.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Clements, W. R.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Cui, J.-M.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Dong, C.-H.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Du, Y.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170–2172 (2008).
[Crossref]

Duan, Z.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Fan, Z.-C.

Fang, W.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Foster, M. A.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Gaeta, A. L.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Ge, L.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Gondarenko, A.

Gong, Q.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Gu, X.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

Gu, Z.

Gubala, V.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

Gunn, L. C.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref]

Guo, G.-C.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Han, K.

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Han, Z.-F.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Harris, L. F.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Huang, C.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Huang, Y. Z.

Huang, Y.-Z.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170–2172 (2008).
[Crossref]

Jiang, W. C.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Jiang, X.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Jiang, X.-F.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Jiang, Z.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

Johnson, T. J.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Kim, J. H.

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kindt, J. T.

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Kuzucu, O.

Kuzyk, M. C.

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Lee, S.-H.

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

Levy, J. S.

Li, B.-B.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Lin, Q.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Liotta, L. A.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
[Crossref]

Lipson, M.

Liu, S.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

Loncar, M.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Lu, T.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Luchansky, M. S.

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

Lyu, Q.

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

Ma, X.-W.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Özdemir, S. K.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Painter, O.

Peng, B.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Petricoin, E. F.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
[Crossref]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Qavi, A. J.

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

Redding, B.

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Ricco, A. J.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

Saha, K.

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Shim, J.-B.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Solomon, G. S.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Song, Q.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

Song, Q. H.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Stone, A. D.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Sun, W.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Tan, M. X.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Unterhinninghofen, J.

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods. 5, 591–596 (2008).
[Crossref]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

Wang, H.

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Wang, K.

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

Wang, L.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Wang, S.

Wang, S.-J.

Wang, W.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Wang, Y.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

Washburn, A. L.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref]

Weng, H.-Z.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Wiersig, J.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Williams, D. E.

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

Wulfkuhle, J. D.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
[Crossref]

Xiao, J.-L.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Xiao, M.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Xiao, S.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

Xiao, Y.-F.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Xu, K.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Yang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, Y. D.

Yang, Y.-D.

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Y.-Z. Huang, K.-J. Che, Y.-D. Yang, S.-J. Wang, Y. Du, and Z.-C. Fan, “Directional emission InP/GaInAsP square-resonator microlasers,” Opt. Lett. 33, 2170–2172 (2008).
[Crossref]

Yi, N.

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

Yi, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Yu, W.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Yu, X. C.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Yu, X.-C.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Zhang, N.

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151–1156 (2017).
[Crossref]

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, Q. Lyu, K. Xu, S. Xiao, and Q. Song, “Deformed microdisk-based end-fire injection and collection resonant device,” J. Lightwave Technol. 33, 3698–3703 (2015).
[Crossref]

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Zhao, G.

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Zhi, Y.

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zou, C.-L.

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Adv. Mater. (2)

Y. Zhi, X. C. Yu, Q. Gong, L. Yang, and Y.-F. Xiao, “Single nanoparticle detection using optical microcavities,” Adv. Mater. 29, 1604920 (2017).
[Crossref]

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25, 5616–5620 (2013).
[Crossref]

Adv. Mater. Technol. (1)

Y. Wang, N. Zhang, Z. Jiang, L. Wang, Y.-F. Xiao, W. Sun, N. Yi, S. Liu, X. Gu, S. Xiao, and Q. Song, “Chip-scale mass manufacturable high-Q silicon microdisks,” Adv. Mater. Technol. 2, 1600299 (2017).
[Crossref]

Anal. Chem. (3)

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81, 9499–9506 (2009).
[Crossref]

J. T. Kindt, M. S. Luchansky, A. J. Qavi, S.-H. Lee, and R. C. Bailey, “Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy,” Anal. Chem. 85, 10653–10657 (2013).
[Crossref]

V. Gubala, L. F. Harris, A. J. Ricco, M. X. Tan, and D. E. Williams, “Point of care diagnostics: status and future,” Anal. Chem. 84, 487–515 (2012).
[Crossref]

Appl. Phys. B (1)

S. Liu, Z. Gu, N. Zhang, K. Wang, S. Xiao, Q. Lyu, and Q. Song, “End-fire injection of guided light into optical microcavity,” Appl. Phys. B 120, 255–260 (2015).
[Crossref]

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. B (1)

C.-H. Dong, C.-L. Zou, Y.-F. Xiao, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Modified transmission spectrum induced by two-mode interference in a single silica microsphere,” J. Phys. B 42, 215401 (2009).
[Crossref]

Nanoscale (1)

N. Zhang, Y. Wang, W. Sun, S. Liu, C. Huang, X. Jiang, M. Xiao, S. Xiao, and Q. Song, “High-Q and highly reproducible microdisks and microlasers,” Nanoscale 10, 2045–2051 (2018).
[Crossref]

Nat. Commun. (2)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is-and what is not-electromagnetically-induced-transparency in whispering-gallery-microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, “Cavity optomechanical spring sensing of single molecules,” Nat. Commun. 7, 12311 (2016).
[Crossref]

Nat. Methods. (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods. 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref]

Nat. Photonics (2)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Nat. Phys. (1)

J. H. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Nat. Rev. Cancer (1)

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
[Crossref]

Nature (1)

W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang, “Exceptional points enhance sensing in an optical microcavity,” Nature 548, 192–196 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (1)

H.-Z. Weng, Y.-Z. Huang, Y.-D. Yang, X.-W. Ma, J.-L. Xiao, and Y. Du, “Mode Q factor and lasing spectrum controls for deformed square resonator microlasers with circular sides,” Phys. Rev. A 95, 013833 (2017).
[Crossref]

Phys. Rev. Lett. (3)

Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref]

Q. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012).
[Crossref]

Science (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Design for end-fire injection. (a) Schematic picture of the WCM configuration. (b) Unidirectional emission along the channeling waveguide (see inset) and the dependence of collection efficiency on waveguide width (w). (c) Reflection spectrum at channeling waveguide. The inset is the numerically calculated field pattern, which is a WG-like resonance with minimal field distribution at the waveguide–disk joint position. (d) Input coupling and reflection coefficients as a function of waveguide width w and tilt angle θ [the mode marked as red circle in (c)]. 1° equals 87.3-nm position shift. Compared with the evanescent coupling, this new configuration is robust to the waveguide width and thus is independent of the highly precise nanofabrication technologies.
Fig. 2.
Fig. 2. Experimental results of WCM. (a) and (b) are the low- and high-resolution top-view SEM images of the WCM. A Y-splitter has been employed to record the reflection spectrum, and the radius of the microdisk is 5 μm. (c) Experimentally measured reflection spectrum. (d) Magnified view of the resonant mode of WCM with 15 μm in radius, giving a Q factor around 2×105. The inset in (d) is the top-view SEM image of the large WCM.
Fig. 3.
Fig. 3. Robustness of end-fire injection. (a) and (b) show the dependence of coupling efficiency as a function of waveguide width w and tilt angle θ of the channeling waveguide.
Fig. 4.
Fig. 4. EIT in WCM. (a) Top-view SEM image of the silicon WCM. (b) High-resolution reflection spectrum of one resonant dip. A Q factor around 7×105 can be calculated.
Fig. 5.
Fig. 5. WCM-based optical sensors. (a) Resonant spectrum as a function of ambient temperature. (b) Dependence of resonant wavelength on the ambient temperature. (c) Resonant spectrum of a WCM without (solid line) and with (dashed line) a nanoparticle. Inset shows the high-resolution SEM image of the nanoparticle on the microdisk. (d) Shift of resonant wavelength as a function of nanoparticle number. Here, the radius of the microdisk and width of the waveguide are kept at r=15  μm and w=550  nm, respectively. Inset is the SEM image of the WCM with attached nanoparticles.

Metrics