Abstract

Quantum control of levitated dielectric particles is an emerging subject in quantum optomechanics. A major challenge is to efficiently measure and manipulate the particle’s motion at the Heisenberg uncertainty limit. Here we present a nanophotonic interface suited to address this problem. By optically trapping a 150 nm silica particle and placing it in the near field of a photonic crystal cavity, we achieve tunable single-photon optomechanical coupling of up to g0/2π=9  kHz, three orders of magnitude larger than previously reported for levitated cavity optomechanical systems. Efficient collection and guiding of light through the nanophotonic structure results in a per-photon displacement sensitivity that is increased by two orders of magnitude compared to conventional far-field detection. The demonstrated performance shows a promising route for room temperature quantum optomechanics.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantum model of cooling and force sensing with an optically trapped nanoparticle

B. Rodenburg, L. P. Neukirch, A. N. Vamivakas, and M. Bhattacharya
Optica 3(3) 318-323 (2016)

Optical trapping of nanoparticles by full solid-angle focusing

Vsevolod Salakhutdinov, Markus Sondermann, Luigi Carbone, Elisabeth Giacobino, Alberto Bramati, and Gerd Leuchs
Optica 3(11) 1181-1186 (2016)

Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap

Jamie Vovrosh, Muddassar Rashid, David Hempston, James Bateman, Mauro Paternostro, and Hendrik Ulbricht
J. Opt. Soc. Am. B 34(7) 1421-1428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
    [Crossref]
  2. J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
    [Crossref]
  3. R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
    [Crossref]
  4. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
    [Crossref]
  5. L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
    [Crossref]
  6. F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
    [Crossref]
  7. G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
    [Crossref]
  8. D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
    [Crossref]
  9. A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
    [Crossref]
  10. D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
    [Crossref]
  11. O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
    [Crossref]
  12. R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
    [Crossref]
  13. N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
    [Crossref]
  14. P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
    [Crossref]
  15. J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
    [Crossref]
  16. S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
    [Crossref]
  17. T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
    [Crossref]
  18. J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
    [Crossref]
  19. V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
    [Crossref]
  20. J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
    [Crossref]
  21. A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
    [Crossref]
  22. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [Crossref]
  23. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  24. M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
    [Crossref]
  25. J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
    [Crossref]
  26. A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
    [Crossref]
  27. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [Crossref]
  28. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
    [Crossref]
  29. Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Lončar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
    [Crossref]
  30. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
    [Crossref]
  31. We note that in our experiment, most particles are generated without residual charges. This contrasts other experimental reports where tens of positive charges are observed after trapping [44], and is subject to further investigation.
  32. R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
    [Crossref]
  33. A. C. Hryciw, M. Wu, B. Khanaliloo, and P. E. Barclay, “Tuning of nanocavity optomechanical coupling using a near-field fiber probe,” Optica 2, 491–496 (2015).
    [Crossref]
  34. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
    [Crossref]
  35. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
    [Crossref]
  36. D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
    [Crossref]
  37. M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
    [Crossref]
  38. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  39. T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
    [Crossref]
  40. K. Debnath, M. Clementi, T. D. Bucio, A. Z. Khokhar, M. Sotto, K. M. Grabska, D. Bajoni, M. Galli, S. Saito, and F. Y. Gardes, “Ultrahigh-Q photonic crystal cavities in silicon rich nitride,” Opt. Express 25, 27334–27340 (2017).
    [Crossref]
  41. M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
    [Crossref]
  42. R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
    [Crossref]
  43. L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
    [Crossref]
  44. M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
    [Crossref]

2018 (2)

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

2017 (11)

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

T. Asano, Y. Ochi, Y. Takahashi, K. Kishimoto, and S. Noda, “Photonic crystal nanocavity with a Q factor exceeding eleven million,” Opt. Express 25, 1769–1777 (2017).
[Crossref]

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

K. Debnath, M. Clementi, T. D. Bucio, A. Z. Khokhar, M. Sotto, K. M. Grabska, D. Bajoni, M. Galli, S. Saito, and F. Y. Gardes, “Ultrahigh-Q photonic crystal cavities in silicon rich nitride,” Opt. Express 25, 27334–27340 (2017).
[Crossref]

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

2016 (2)

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

2015 (5)

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

A. C. Hryciw, M. Wu, B. Khanaliloo, and P. E. Barclay, “Tuning of nanocavity optomechanical coupling using a near-field fiber probe,” Optica 2, 491–496 (2015).
[Crossref]

2014 (3)

D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

2013 (7)

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Lončar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

2012 (2)

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

2011 (3)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

2010 (3)

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

2009 (1)

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

2008 (1)

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

2005 (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

2003 (1)

A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
[Crossref]

1997 (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Akimov, A. V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Arcizet, O.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Arndt, M.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

Asano, T.

Asenbaum, P.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Bajoni, D.

Barclay, P. E.

Barker, P. F.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

Bateman, J.

Bhaskar, M. K.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Bielejec, E.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Blaser, F.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Bowman, R. W.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Brukner, Ä.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Bucio, T. D.

Burek, M. J.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Burgess, I. B.

Casey, K.

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Chang, D. E.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

Chen, J.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

Chu, Y.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Cirac, J. I.

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

Clementi, M.

Clerk, A. A.

A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
[Crossref]

Cole, G. D.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Cunningham, M.

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

de Leon, N. P.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Debnath, K.

Delic, U.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

Dellago, C.

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Deotare, P. B.

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Deutsch, B.

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Di Leonardo, R.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Diehl, R.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Evans, R.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Evans, R. E.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Feist, J.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Ferreiro, S.

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

Floyd, D. L.

Fonseca, P. Z. G.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

Frank, I. W.

Freisem, L.

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Frimmer, M.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

Galli, M.

Gardes, F. Y.

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Genes, C.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Geraci, A. A.

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Ghadimi, A.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Gibson, G. M.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Gieseler, J.

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Gigan, S.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Girvin, S. M.

A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
[Crossref]

Goban, A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Grabska, K. M.

Grass, D.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

Gratta, G.

D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
[Crossref]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Gullans, M.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Hammerer, K.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Hausmann, B. J. M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Hebestreit, E.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

Hechenblaikner, G.

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

Hempston, D.

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hood, J. D.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Houdré, R.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Hryciw, A. C.

Hung, C.-L.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Ilic, R.

Jain, V.

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Jiao, J.

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

Johann, U.

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

Juan, M. L.

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

Kaltenbaek, R.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

Khanaliloo, B.

Kheifets, S.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Khokhar, A. Z.

Kiesel, N.

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

Kim, M. S.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Kimble, H. J.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Kippenberg, T. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Kishimoto, K.

Kitching, J.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Kotthaus, J. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Kuhn, S.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

Kuipers, L.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

La Gala, G. R.

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Leijssen, R.

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Li, T.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Loncar, M.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Lončar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Lukin, M. D.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Luszcz, K.

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

Ma, L.

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

Machielse, B.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Markham, M.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Mason, D.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

Mavrogordatos, T.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

Medellin, D.

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Meesala, S.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Meuwly, C.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Milburn, G. J.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Millen, J.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

Monteiro, T. S.

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

Moore, D. C.

D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
[Crossref]

Moritz, C.

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Muhonen, J. T.

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Muniz, J. A.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Neumeier, L.

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

Nguyen, C. T.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Nimmrichter, S.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

Noda, S.

Novotny, L.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

Ochi, Y.

Pacheco, J. L.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Padgett, M. J.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Painter, O.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Papp, S. B.

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

Park, H.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Paternostro, M.

Pikovski, I.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Piro, N.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Quan, Q.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Q. Quan, D. L. Floyd, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Ilic, and M. Lončar, “Single particle detection in CMOS compatible photonic crystal nanobeam cavities,” Opt. Express 21, 32225–32233 (2013).
[Crossref]

Quidant, R.

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

Raizen, M. G.

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

Ranjit, G.

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

Rashid, M.

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

Rebane, A. A.

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

Reimann, R.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

Rica, R. A.

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

Ricci, F.

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

Rider, A. D.

D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
[Crossref]

Rivière, R.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Romero-Isart, O.

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

Rondin, L.

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

Rossi, M.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

Rotenberg, N.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Saglimbeni, F.

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

Saito, S.

Schalko, J.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Schilling, R.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Schliesser, A.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Schmid, U.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Schneider, M.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Schwab, K. C.

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

Sezer, U.

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

Shields, B. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Sipahigil, A.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Sotto, M.

Spasenovic, M.

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

Stone, A. D.

A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
[Crossref]

Sudhir, V.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Sukachev, D. D.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Takahashi, Y.

Tang, S. K. Y.

Tebbenjohanns, F.

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

Thompson, J. D.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Tiecke, T. G.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Tombesi, P.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Toroš, M.

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

Trupke, M.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Tsaturyan, Y.

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

Twitchen, D. J.

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Ulbricht, H.

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

Unterreithmeier, Q. P.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Vanner, M. R.

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Verhagen, E.

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Vitali, D.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Vovrosh, J.

J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M. Paternostro, and H. Ulbricht, “Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap,” J. Opt. Soc. Am. B 34, 1421–1428 (2017).
[Crossref]

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Vuletic, V.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Wachter, G.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Weig, E. M.

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Wieser, F.-F.

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Wilson, D. J.

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

Winstone, G.

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

Wu, M.

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Yu, S.-P.

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

Zhang, Y.

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Appl. Phys. Lett. (2)

D. Hempston, J. Vovrosh, M. Toroš, G. Winstone, M. Rashid, and H. Ulbricht, “Force sensing with an optically levitated charged nanoparticle,” Appl. Phys. Lett. 111, 133111 (2017).
[Crossref]

S. Kuhn, G. Wachter, F.-F. Wieser, J. Millen, M. Schneider, J. Schalko, U. Schmid, M. Trupke, and M. Arndt, “Nanoparticle detection in an open-access silicon microcavity,” Appl. Phys. Lett. 111, 253107 (2017).
[Crossref]

Biophys. J. (1)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[Crossref]

Exp. Astron. (1)

R. Kaltenbaek, G. Hechenblaikner, N. Kiesel, O. Romero-Isart, K. C. Schwab, U. Johann, and M. Aspelmeyer, “Macroscopic quantum resonators (MAQRO),” Exp. Astron. 34, 123–164 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Methods Mol. Biol. (1)

J. Jiao, A. A. Rebane, L. Ma, and Y. Zhang, “Single-molecule protein folding experiments using high-precision optical tweezers,” Methods Mol. Biol. 1486, 357–390 (2017).
[Crossref]

Nano Lett. (1)

B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lončar, “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 5791–5796 (2013).
[Crossref]

Nat. Commun. (3)

P. Asenbaum, S. Kuhn, S. Nimmrichter, U. Sezer, and M. Arndt, “Cavity cooling of free silicon nanoparticles in high vacuum,” Nat. Commun. 4, 2743 (2013).
[Crossref]

F. Ricci, R. A. Rica, M. Spasenovic, J. Gieseler, L. Rondin, L. Novotny, and R. Quidant, “Optically levitated nanoparticle as a model system for stochastic bistable dynamics,” Nat. Commun. 8, 15141 (2017).
[Crossref]

R. Leijssen, G. R. La Gala, L. Freisem, J. T. Muhonen, and E. Verhagen, “Nonlinear cavity optomechanics with nanomechanical thermal fluctuations,” Nat. Commun. 8, 16024 (2017).
[Crossref]

Nat. Nanotechnol. (1)

L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, and L. Novotny, “Direct measurement of Kramers turnover with a levitated nanoparticle,” Nat. Nanotechnol. 12, 1130–1133 (2017).
[Crossref]

Nat. Photonics (1)

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8, 919–926 (2014).
[Crossref]

Nat. Phys. (2)

T. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Nature (3)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

D. J. Wilson, V. Sudhir, N. Piro, R. Schilling, A. Ghadimi, and T. J. Kippenberg, “Measurement-based control of a mechanical oscillator at its thermal decoherence rate,” Nature 524, 325–329 (2015).
[Crossref]

M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum control of mechanical motion,” Nature 563, 53–58 (2018).
[Crossref]

New J. Phys. (2)

L. Neumeier, R. Quidant, and D. E. Chang, “Self-induced back-action optical trapping in nanophotonic systems,” New J. Phys. 17, 123008 (2015).
[Crossref]

O. Romero-Isart, M. L. Juan, R. Quidant, and J. I. Cirac, “Toward quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010).
[Crossref]

Opt. Express (3)

Optica (1)

Phys. Rev. A (4)

R. Diehl, E. Hebestreit, R. Reimann, F. Tebbenjohanns, M. Frimmer, and L. Novotny, “Optical levitation and feedback cooling of a nanoparticle at subwavelength distances from a membrane,” Phys. Rev. A 98, 013851 (2018).
[Crossref]

G. Ranjit, M. Cunningham, K. Casey, and A. A. Geraci, “Zeptonewton force sensing with nanospheres in an optical lattice,” Phys. Rev. A 93, 053801 (2016).
[Crossref]

M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny, “Controlling the net charge on a nanoparticle optically levitated in vacuum,” Phys. Rev. A 95, 061801 (2017).
[Crossref]

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008).
[Crossref]

Phys. Rev. Appl. (1)

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Appl. 8, 024026 (2017).
[Crossref]

Phys. Rev. B (1)

A. A. Clerk, S. M. Girvin, and A. D. Stone, “Quantum-limited measurement and information in mesoscopic detectors,” Phys. Rev. B 67, 165324 (2003).
[Crossref]

Phys. Rev. Lett. (9)

J. Millen, P. Z. G. Fonseca, T. Mavrogordatos, T. S. Monteiro, and P. F. Barker, “Cavity cooling a single charged levitated nanosphere,” Phys. Rev. Lett. 114, 123602 (2015).
[Crossref]

A. Goban, C.-L. Hung, J. D. Hood, S.-P. Yu, J. A. Muniz, O. Painter, and H. J. Kimble, “Superradiance for atoms trapped along a photonic crystal waveguide,” Phys. Rev. Lett. 115, 063601 (2015).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

A. A. Geraci, S. B. Papp, and J. Kitching, “Short-range force detection using optically cooled levitated microspheres,” Phys. Rev. Lett. 105, 101101 (2010).
[Crossref]

D. C. Moore, A. D. Rider, and G. Gratta, “Search for millicharged particles using optically levitated microspheres,” Phys. Rev. Lett. 113, 251801 (2014).
[Crossref]

R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and R. Di Leonardo, “Optical trapping at gigapascal pressures,” Phys. Rev. Lett. 110, 095902 (2013).
[Crossref]

J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, “Subkelvin parametric feedback cooling of a laser-trapped nanoparticle,” Phys. Rev. Lett. 109, 103603 (2012).
[Crossref]

V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and L. Novotny, “Direct measurement of photon recoil from a levitated nanoparticle,” Phys. Rev. Lett. 116, 243601 (2016).
[Crossref]

Proc. Natl. Acad. Sci. USA (2)

N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, “Cavity cooling of an optically levitated submicron particle,” Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013).
[Crossref]

M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Ä. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Science (2)

T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673–1675 (2010).
[Crossref]

J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, “Coupling a single trapped atom to a nanoscale optical cavity,” Science 340, 1202–1205 (2013).
[Crossref]

Other (1)

We note that in our experiment, most particles are generated without residual charges. This contrasts other experimental reports where tens of positive charges are observed after trapping [44], and is subject to further investigation.

Supplementary Material (1)

NameDescription
» Supplement 1       Additional details of the experimental procedures and relevant theoretical background of the works presented in the main article.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Nanophotonic interface. (a) Sketch of the setup: a dielectric nanoparticle is trapped inside the high intensity lobe formed by the reflection of the optical tweezer light (λtrap=1064  nm) from the surface of the nanophotonic cavity, at a distance of about 310 nm. A laser light resonant with the cavity (λcav=1538.72  nm) is sent into a variable beam splitter (VBS), which splits it into a weak (260 nW) beam pumping the cavity and a strong (1 mW) local oscillator. The cavity output is redirected by a circulator (CIR) towards a symmetric beam splitter (BS), at which it interferes with the local oscillator. The light in the two output ports is measured using a balanced photo-detector (PD). While the low frequency component of the signal is used to stabilize the interferometer via a fiber stretcher (FS), the high frequency part is directed to a signal analyzer. (b) The measured frequency power spectral density exhibits three mechanical peaks at Ωy/2π=228.3  kHz (blue), Ωx/2π=280.3  kHz (green), and Ωz/2π=444.9  kHz (red). The significantly higher frequency along z, which is the direction of the tweezer beam propagation, is caused by the standing wave confinement, and for the radial directions x and y, the degeneracy is broken due to the use of polarized light together with tight focusing. Nonlinearities in the trap potential as well as in the optomechanical couplings result in peaks at twice the mechanical frequencies (highlighted in purple). The mechanical vibration of the cavity/fiber assembly at around the frequency Ωcav/2π600  kHz also induces additional peaks in the spectrum. The inset shows the cavity resonance measured by monitoring the light reflection from the cavity while scanning the pump laser wavelength. The slight asymmetry of the response arises form thermo-optic effects, as we are pumping the cavity at the limit of thermal stability (see Supplement 1). (c) False-colored scanning electron microscope image of the photonic crystal cavity (blue) attached to the tapered fiber (green).
Fig. 2.
Fig. 2. Optomechanical coupling. (a) Measured (left) and simulated (right) intensity map of the single-photon optomechanical coupling rates g0 for the three spatial modes. Because of heating from the tweezer light (see Supplement 1), at every position the cavity is reset on resonance before recording the interferometric signal. (b) Position scan of the single-photon optomechanical coupling rates along the y direction and close to the cavity center for the modes along x (green circles), y (blue crosses), and z (red diamonds). Solid lines are fits based on our cavity field model (see Supplement 1). As the scan was performed slightly off the cavity center, the coupling to the z mode is non-vanishing while we can suppress the x and y couplings. The main contribution to the error bars is given by the uncertainty in the shot-noise level determined by the integration time of 3  s.
Fig. 3.
Fig. 3. Position locking. (a) Sketch of the nanoparticle (blue dot), trapped in the standing wave potential (orange) formed by the reflection of the focused tweezer light (red) by the photonic crystal cavity (blue rectangle). The data is taken by moving the photonic crystal along the direction of propagation of the tweezer beam (z). While the particle’s distance to the cavity remains locked, the divergence of the tweezer causes a reduction of the trapping potential. (b) Position power spectral density for the z mode Szz(Ω) (blue) measured as cavity-focus increases (in direction of the arrow). The variance of the motion given by the peak integral (red dots Szz(Ω)dΩ) changes with the mechanical frequency as stated by the equipartition theorem (pink solid line 1/Ωz2). Deviation from the expected Lorentzian peak is given by the fluctuations during the integration time, which effectively reduce the peak height. (c) Frequency shift per displacement G plotted as a function of the cavity distance to the focal plane, for the z mode (red diamonds), y mode (blue crosses), and x mode (green circles). (d) Mechanical frequencies for the three modes as a function of the cavity distance to the focal plane.
Fig. 4.
Fig. 4. Loading of the particle into the lattice. (a) The particle is initially trapped in the closest of the cavity trap sites (I). We steer the tweezer away from the cavity (II) and subsequently change the cavity position (III). Finally the particle is steered back in front of the cavity (IV). Depending on the cavity-to-focus distance, the particle will slide into different sites. (b) Frequency power spectral densities measured in the case of the particle being in the first trapping site (red, I) or in the second (blue, IV). The small unlabeled peak in the blue spectrum is an electronic noise peak common to all measurements. (c) Optomechanical coupling (purple dots) and mechanical frequency (green diamonds) for the z mode as a function of the initial cavity-to-focus distance.

Metrics