Abstract

Polarization is one of the three fundamental properties of light, along with color and intensity, yet most vertebrate species, including humans, are blind with respect to this light modality. In contrast, many invertebrates, including insects, spiders, cephalopods, and stomatopods, have evolved to detect polarization information with high-dynamic-range photosensitive cells and utilize this information in visually guided behavior. In this paper, we present a high-dynamic-range polarization imaging sensor inspired by the visual system of the mantis shrimp. Our bioinspired imager achieves 140 dB dynamic range and 61 dB maximum signal-to-noise ratio across 384×288 pixels equipped with logarithmic photodiodes. Contrary to state-of-the-art active pixel sensors, where photodiodes in individual pixels operate in reverse bias mode and yield up to 60  dB dynamic range, our pixel has a logarithmic response by operating individual photodiodes in forward bias mode. This novel pixel circuitry is monolithically integrated with pixelated polarization filters composed of 250-nm-tall × 75-nm-wide aluminum nanowires to enable snapshot polarization imaging at 30 frames per second. This sensor can enable many automotive and remote sensing applications, where high-dynamic-range imaging augmented with polarization information can provide critical information during hazy or rainy conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bio-inspired color-polarization imager for real-time in situ imaging

Missael Garcia, Christopher Edmiston, Radoslav Marinov, Alexander Vail, and Viktor Gruev
Optica 4(10) 1263-1271 (2017)

CCD polarization imaging sensor with aluminum nanowire optical filters

Viktor Gruev, Rob Perkins, and Timothy York
Opt. Express 18(18) 19087-19094 (2010)

Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters

Meenal Kulkarni and Viktor Gruev
Opt. Express 20(21) 22997-23012 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2010).
  2. T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).
  3. G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
    [Crossref]
  4. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [Crossref]
  5. T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
    [Crossref]
  6. M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4, 1263–1271 (2017).
    [Crossref]
  7. D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
    [Crossref]
  8. M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
    [Crossref]
  9. R. Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems (1999), pp. 685–691.
  10. D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
    [Crossref]
  11. D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
    [Crossref]
  12. J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.
  13. M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
    [Crossref]
  14. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref]
  15. G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
    [Crossref]
  16. J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
    [Crossref]
  17. M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
    [Crossref]
  18. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
    [Crossref]
  19. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
    [Crossref]
  20. M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
    [Crossref]
  21. Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
    [Crossref]
  22. T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25, 23738–23754 (2017).
    [Crossref]
  23. G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
    [Crossref]
  24. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
    [Crossref]
  25. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
    [Crossref]
  26. H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23, 7209–7216 (2015).
    [Crossref]
  27. N. M. Garcia, I. de Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23, 14391–14406 (2015).
    [Crossref]
  28. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
    [Crossref]
  29. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1984–1991.
  30. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511–525 (2003).
    [Crossref]
  31. J. Tyo, M. Rowe, E. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
    [Crossref]
  32. S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47, 123201 (2008).
    [Crossref]
  33. E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
    [Crossref]
  34. T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
    [Crossref]
  35. B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
    [Crossref]
  36. S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
    [Crossref]
  37. V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
    [Crossref]
  38. Y. Ni, Y. Zhu, and B. Arion, “A 768 × 576 logarithmic image sensor with photodiode in solar cell mode,” in International Image Sensor Workshop (2011).
  39. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51, 5392–5400 (2012).
    [Crossref]
  40. J. S. Tyo and H. Wei, “Optimizing imaging polarimeters constructed with imperfect optics,” Appl. Opt. 45, 5497–5503 (2006).
    [Crossref]
  41. “PolarCam,” 4D Technology, 2018, https://www.4dtechnology.com/products/polarimeters/polarcam/# .
  42. D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
    [Crossref]
  43. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
    [Crossref]
  44. S. B. Powell and V. Gruev, “Calibration methods for division-of-focal-plane polarimeters,” Opt. Express 21, 21039–21055 (2013).
    [Crossref]

2018 (4)

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
[Crossref]

M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
[Crossref]

2017 (3)

2016 (1)

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

2015 (3)

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23, 7209–7216 (2015).
[Crossref]

N. M. Garcia, I. de Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23, 14391–14406 (2015).
[Crossref]

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

2014 (5)

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

2013 (3)

2012 (2)

2011 (3)

2010 (1)

2009 (3)

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

2008 (1)

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47, 123201 (2008).
[Crossref]

2006 (3)

2003 (1)

2002 (1)

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

2000 (2)

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

1996 (1)

Achilefu, S.

M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Akers, W. J.

M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Ando, K.

Arakawa, S.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Arion, B.

Y. Ni, Y. Zhu, and B. Arion, “A 768 × 576 logarithmic image sensor with photodiode in solar cell mode,” in International Image Sensor Workshop (2011).

Bello, D. S. S.

M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
[Crossref]

Bermak, A.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

Bloch, S.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Boussaid, F.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

Brady, P. C.

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

Brock, N.

D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
[Crossref]

G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
[Crossref]

Bußmann, A.

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

Calabrese, G. M.

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

Chang, J.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Charanya, T.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Chen, W.

J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.

Chenault, D. B.

Chigrinov, V. G.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

Chipman, R. A.

Chu, J.

J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.

Cronin, T. W.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).

Crozier, K. B.

Cui, N.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

Cummings, M. E.

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

Dalla Betta, G.-F.

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

de Erausquin, I.

Dong, F.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

Doronin, A.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Eccles, M.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Edmiston, C.

Engheta, N.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

J. Tyo, M. Rowe, E. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
[Crossref]

Etienne-Cummings, R.

R. Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems (1999), pp. 685–691.

Fukuda, N.

Gao, S.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[Crossref]

Garcia, M.

Garcia, N. M.

Garnett, R.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

Ghani, M. A.

R. Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems (1999), pp. 685–691.

Goldstein, D.

D. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2010).

Goldstein, D. L.

Gonzo, L.

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

Gorria, P.

Gottardi, M.

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

Gruev, V.

M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
[Crossref]

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

M. Garcia, C. Edmiston, R. Marinov, A. Vail, and V. Gruev, “Bio-inspired color-polarization imager for real-time in situ imaging,” Optica 4, 1263–1271 (2017).
[Crossref]

N. M. Garcia, I. de Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23, 14391–14406 (2015).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

S. B. Powell and V. Gruev, “Calibration methods for division-of-focal-plane polarimeters,” Opt. Express 21, 21039–21055 (2013).
[Crossref]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51, 5392–5400 (2012).
[Crossref]

V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
[Crossref]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[Crossref]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[Crossref]

R. Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems (1999), pp. 685–691.

Han, G.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

He, C.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

He, H.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

He, X.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

Hirasawa, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Hosticka, B. J.

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

Hsu, W.-L.

Hu, X.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

Huang, Y.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Jacques, S.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Johnsen, S.

T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).

Kahan, L.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

Kakiuchi, K.

Kimachi, A.

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47, 123201 (2008).
[Crossref]

Komori, K.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Kunnen, B.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Labhart, T.

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

LaCasse, C.

Lambrinos, D.

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

Li, R.

J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.

Li, X.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Lian, J.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

Liang, H.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

Liang, K.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Liang, R.

Liao, R.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Liu, S.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Ma, H.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Macdonald, C.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Margenthaler, J.

Marinov, R.

Marshall, J.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).

Maruyama, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Matoba, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Matsuoka, H.

Meglinski, I.

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Meriaudeau, F.

Miura, K.

Möller, R.

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

Mondal, S.

Morel, O.

Myhre, G.

Nakamura, M.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Namer, E.

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1984–1991.

Narasimhan, S. G.

Nayar, S. K.

Neel, V.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[Crossref]

Ni, Y.

Y. Ni, Y. Zhu, and B. Arion, “A 768 × 576 logarithmic image sensor with photodiode in solar cell mode,” in International Image Sensor Workshop (2011).

Ninkov, Z.

D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
[Crossref]

Nitta, C.

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

Noda, T.

Ohba, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Ohfuchi, T.

Ohta, J.

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
[Crossref]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

Park, H.

Pau, S.

Peinado, A.

Pepino, M. Y.

Perkins, R.

Pfeifer, R.

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

Powell, S. B.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

S. B. Powell and V. Gruev, “Calibration methods for division-of-focal-plane polarimeters,” Opt. Express 21, 21039–21055 (2013).
[Crossref]

Pugh, E.

Rizk, C.

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

Roberts, N. W.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

Rowe, M.

Rubin, D.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Saha, D.

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

Sakakura, M.

Salomatina-Motts, E.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[Crossref]

Sarkar, M.

M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
[Crossref]

Sasagawa, K.

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
[Crossref]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

Schanz, M.

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

Schechner, Y. Y.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511–525 (2003).
[Crossref]

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1984–1991.

Shaw, J. A.

Shimotsuma, Y.

Shishido, S.

Shwartz, S.

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1984–1991.

Simoni, A.

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

Stolz, C.

Stoppa, D.

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

Sudlow, G.

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

Sudlow, G. P.

Takiya, T.

Terada, T.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Theuwissen, A. J.

M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
[Crossref]

Tokuda, T.

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
[Crossref]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

Tominaga, S.

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47, 123201 (2008).
[Crossref]

Tyo, J.

Tyo, J. S.

Uesaka, Y.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Vail, A.

Van der Spiegel, J.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

van Hoof, C.

M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
[Crossref]

Vorobiev, D. V.

D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
[Crossref]

Wang, D.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

Wang, H.

J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.

Wang, Y.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Warrant, E.

T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).

Wehner, R.

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

Wei, H.

Wertheimer, R. K.

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

Wu, X.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

Yamada, H.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

Yamada, Y.

Yamazaki, T.

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

Yaroslavskaya, A.

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[Crossref]

York, T.

M. Garcia, C. Edmiston, T. York, R. Marinov, S. Mondal, N. Zhu, G. P. Sudlow, W. J. Akers, J. Margenthaler, S. Achilefu, R. Liang, M. A. Zayed, M. Y. Pepino, and V. Gruev, “Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery,” Optica 5, 413–422 (2018).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51, 5392–5400 (2012).
[Crossref]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[Crossref]

Zayed, M. A.

Zeng, N.

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

Zhang, L.

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

Zhang, M.

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

Zhang, S.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

Zhao, X.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

Zhu, H.

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

Zhu, N.

Zhu, Y.

Y. Ni, Y. Zhu, and B. Arion, “A 768 × 576 logarithmic image sensor with photodiode in solar cell mode,” in International Image Sensor Workshop (2011).

Appl. Opt. (6)

Electron. Lett. (1)

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polariser,” Electron. Lett. 45, 228–230 (2009).
[Crossref]

IEEE J. Solid-State Circuits (2)

D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “Novel CMOS image sensor with a 132-dB dynamic range,” IEEE J. Solid-State Circuits 37, 1846–1852 (2002).
[Crossref]

M. Schanz, C. Nitta, A. Bußmann, B. J. Hosticka, and R. K. Wertheimer, “A high-dynamic-range CMOS image sensor for automotive applications,” IEEE J. Solid-State Circuits 35, 932–938 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009).
[Crossref]

IEEE Sens. J. (1)

M. Sarkar, D. S. S. Bello, C. van Hoof, and A. J. Theuwissen, “Biologically inspired CMOS image sensor for fast motion and polarization detection,” IEEE Sens. J. 13, 1065–1073 (2013).
[Crossref]

IEEE Trans. Electron Dev. (1)

Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, and Y. Hirasawa, “3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels,” IEEE Trans. Electron Dev. 65, 2544–2551 (2018).
[Crossref]

J. Biomed. Opt. (2)

T. Charanya, T. York, S. Bloch, G. Sudlow, K. Liang, M. Garcia, W. J. Akers, D. Rubin, V. Gruev, and S. Achilefu, “Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer,” J. Biomed. Opt. 19, 126002 (2014).
[Crossref]

J. Chang, H. He, Y. Wang, Y. Huang, X. Li, C. He, R. Liao, N. Zeng, S. Liu, and H. Ma, “Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues,” J. Biomed. Opt. 21, 056002 (2016).
[Crossref]

J. Biophoton. (1)

B. Kunnen, C. Macdonald, A. Doronin, S. Jacques, M. Eccles, and I. Meglinski, “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” J. Biophoton. 8, 317–323 (2015).
[Crossref]

Opt. Eng. (1)

S. Tominaga and A. Kimachi, “Polarization imaging for material classification,” Opt. Eng. 47, 123201 (2008).
[Crossref]

Opt. Express (10)

T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25, 23738–23754 (2017).
[Crossref]

H. Park and K. B. Crozier, “Elliptical silicon nanowire photodetectors for polarization-resolved imaging,” Opt. Express 23, 7209–7216 (2015).
[Crossref]

N. M. Garcia, I. de Erausquin, C. Edmiston, and V. Gruev, “Surface normal reconstruction using circularly polarized light,” Opt. Express 23, 14391–14406 (2015).
[Crossref]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011).
[Crossref]

K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, and J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013).
[Crossref]

G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
[Crossref]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
[Crossref]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express 19, 26161–26173 (2011).
[Crossref]

S. B. Powell and V. Gruev, “Calibration methods for division-of-focal-plane polarimeters,” Opt. Express 21, 21039–21055 (2013).
[Crossref]

V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
[Crossref]

Opt. Spectrosc. (1)

E. Salomatina-Motts, V. Neel, and A. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107, 884–890 (2009).
[Crossref]

Optica (2)

Proc. IEEE (2)

M. Zhang, X. Wu, N. Cui, N. Engheta, and J. Van der Spiegel, “Bioinspired focal-plane polarization image sensor design: from application to implementation,” Proc. IEEE 102, 1435–1449 (2014).
[Crossref]

T. York, S. B. Powell, S. Gao, L. Kahan, T. Charanya, D. Saha, N. W. Roberts, T. W. Cronin, J. Marshall, S. Achilefu, and V. Gruev, “Bioinspired polarization imaging sensors: from circuits and optics to signal processing algorithms and biomedical applications,” Proc. IEEE 102, 1450–1469 (2014).
[Crossref]

Proc. Natl. Acad. Sci. (1)

G. M. Calabrese, P. C. Brady, V. Gruev, and M. E. Cummings, “Polarization signaling in swordtails alters female mate preference,” Proc. Natl. Acad. Sci. 111, 13397–13402 (2014).
[Crossref]

Publ. Astron. Soc. Pac. (1)

D. V. Vorobiev, Z. Ninkov, and N. Brock, “Astronomical polarimetry with the RIT polarization imaging camera,” Publ. Astron. Soc. Pac. 130, 064501 (2018).
[Crossref]

Robot. Auton. Syst. (1)

D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot employing insect strategies for navigation,” Robot. Auton. Syst. 30, 39–64 (2000).
[Crossref]

Sci. Adv. (1)

S. B. Powell, R. Garnett, J. Marshall, C. Rizk, and V. Gruev, “Bioinspired polarization vision enables underwater geolocalization,” Sci. Adv. 4, eaao6841 (2018).
[Crossref]

Sensors (2)

G. Han, X. Hu, J. Lian, X. He, L. Zhang, Y. Wang, and F. Dong, “Design and calibration of a novel bio-inspired pixelated polarized light compass,” Sensors 17, 2623 (2017).
[Crossref]

D. Wang, H. Liang, H. Zhu, and S. Zhang, “A bionic camera-based polarization navigation sensor,” Sensors 14, 13006–13023 (2014).
[Crossref]

Other (7)

J. Chu, H. Wang, W. Chen, and R. Li, “Application of a novel polarization sensor to mobile robot navigation,” in International Conference on Mechatronics and Automation (IEEE, 2009), pp. 3763–3768.

R. Etienne-Cummings, V. Gruev, and M. A. Ghani, “VLSI implementation of motion centroid localization for autonomous navigation,” in Advances in Neural Information Processing Systems (1999), pp. 685–691.

D. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2010).

T. W. Cronin, S. Johnsen, J. Marshall, and E. Warrant, Visual Ecology (Princton University, 2014).

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1984–1991.

Y. Ni, Y. Zhu, and B. Arion, “A 768 × 576 logarithmic image sensor with photodiode in solar cell mode,” in International Image Sensor Workshop (2011).

“PolarCam,” 4D Technology, 2018, https://www.4dtechnology.com/products/polarimeters/polarcam/# .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Diagrammatic comparison of our bioinspired high-dynamic-range polarization camera with its biological counterpart, the mantis shrimp ommatidium. (a) The compound eye of the mantis shrimp is divided into three morphological parts: two hemispheres and a midband section. The rhabdoms in the peripheral hemispheres are sensitive to two orthogonal orientations of linearly polarized light via alternating stacks of bidirectional microvilli. The microvilli are rotated 45° between the two hemispheres for the analysis of four e-vector orientations of polarized light. (b) Block diagram of our logarithmic polarization imager. The imager consists of a 384×288  pixel array where each photodiode is covered entirely by a nanowire polarization filter. (c) Schematic of the logarithmic active pixel. The photodiode is forward biased to achieve a high dynamic range by logarithmically compressing the photodiode current at the output voltage. (d) Scanning electron micrograph of a nanowire polarization filter. The nanowires that constitute each pixelated filter are 250 nm tall and 75 nm wide, with a 50% duty cycle. Scale bar is 20 μm.
Fig. 2.
Fig. 2. Cross-sectional diagram of our pixel.
Fig. 3.
Fig. 3. (a) Raw intensity digital values versus photon flux, showing the logarithmic response of our imager, (b) SNR measurements across different photon fluxes, achieving a maximum 61.2 dB SNR, (c) noise expressed in digital values across different photon fluxes.
Fig. 4.
Fig. 4. Polarization measurements of our logarithmic polarization imaging system. (a) Sinusoidal response of the nanowire polarization filters to Malus’s law, with FPN histograms for data points with an AoP input light matching the filters’ orientation (i.e., maximum filter transmittance); (b), (c) AoP (b) and DoLP (c) error as a function of the fully polarized light’s AoP; (d) DoLP error as a function of the partially polarized input light’s DoLP.
Fig. 5.
Fig. 5. Sample image captured by our logarithmic polarization camera showing its high-dynamic-range and polarization capabilities. The scene includes a polarization target, a conical silicon ingot, a black plastic horse, and a high-power LED flashlight. (a) Intensity image, with a 94.3 dB dynamic range achieved mostly by the difference in illumination between the black plastic horse and the LED flashlight; (b) scene’s DoLP in a linear false-color map, where red and blue areas indicate fully polarized and unpolarized light, respectively; (c) scene’s AoP in a circular false-color map, where red and blue areas indicate horizontally and vertically polarized light, respectively. (b) and (c) show polarization properties on the silicon ingot and the black plastic horse that are in agreement with their shape.

Tables (1)

Tables Icon

Table 1. Summary and Comparison of Polarization Sensorsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Vphotodiode=kTqln(IphI0+1),