Abstract

The field of near-eye see-through devices has recently received significant media attention and financial investments. However, devices demonstrated to date suffer from significant practical limitations resulting from the conventional optics on which they are based. Potential manufacturers seek to surpass these limitations using novel optical schemes. In this paper, we propose such a potentially disruptive optical technology that may be used for this application. Conceptually, our optical scheme is situated at the interface of geometric incoherent refractive imaging and radiative coherent diffractive imaging. The generation of an image occurs as a result of data transmission through a two-dimensional network of optical waveguides that addresses a distribution of switchable holographic elements. The device acts as a wavefront generator, and the eye is the only optical system in which the image is formed. In the following we describe the device concept and characteristics, as well as the results of initial simulations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design and prototype of an augmented reality display with per-pixel mutual occlusion capability

Austin Wilson and Hong Hua
Opt. Express 25(24) 30539-30549 (2017)

Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]

Changwon Jang, Chang-Kun Lee, Jinsoo Jeong, Gang Li, Seungjae Lee, Jiwoon Yeom, Keehoon Hong, and Byoungho Lee
Appl. Opt. 55(3) A71-A85 (2016)

Optical see-through Maxwellian near-to-eye display with an enlarged eyebox

Seong-Bok Kim and Jae-Hyeung Park
Opt. Lett. 43(4) 767-770 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Martinez, “Image projection device,” U.S. patent2015/0370073 A1 (December24, 2015).
  2. C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.
  3. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
    [Crossref]
  4. J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
    [Crossref]
  5. S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
    [Crossref]
  6. M. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
    [Crossref]
  7. M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).
  8. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, “Space-bandwidth product of optical signals and systems,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [Crossref]
  9. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
    [Crossref]
  10. T. Buß, C. L. C. Smith, and A. Kristensen, “Electrically modulated transparent liquid crystal-optical grating projection,” Opt. Express 21, 1820–1829 (2013).
    [Crossref]
  11. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    [Crossref]
  12. G. Wetzstein, “Light field, focus-tunable, and monovision near-eye displays,” SID Symp. Dig. Tech. Pap. 47, 358–360 (2016).
    [Crossref]
  13. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [Crossref]
  14. H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging, Advanced Techniques in Analogue and Digital Colour Holography (CRC Press, 2013).
  15. C. Martinez, V. Krotov, and D. Fowler, “Holographic recording setup for integrated see-through near-eye display evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.36.
  16. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
    [Crossref]
  17. B. A. Wandell, Foundations of Vision (Sinaur Associates, 1995), p. 54.
  18. V. Krotov, C. Martinez, and O. Haeberlé, “Imaging performance analysis of a lens-free near to eye display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.5.
  19. R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).
  20. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24, 1250–1265 (2007).
    [Crossref]
  21. F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
    [Crossref]

2017 (1)

M. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
[Crossref]

2016 (2)

G. Wetzstein, “Light field, focus-tunable, and monovision near-eye displays,” SID Symp. Dig. Tech. Pap. 47, 358–360 (2016).
[Crossref]

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

2014 (1)

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

2013 (3)

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

T. Buß, C. L. C. Smith, and A. Kristensen, “Electrically modulated transparent liquid crystal-optical grating projection,” Opt. Express 21, 1820–1829 (2013).
[Crossref]

2007 (1)

2006 (1)

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

1996 (2)

1966 (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Aventurier, B.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Baets, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Barbastathis, G.

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Berger, F.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Bjelkhagen, H.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging, Advanced Techniques in Analogue and Digital Colour Holography (CRC Press, 2013).

Born, M.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

Brotherton-Ratcliffe, D.

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging, Advanced Techniques in Analogue and Digital Colour Holography (CRC Press, 2013).

Buß, T.

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Carroll, A.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

Catelain, T.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Delori, F. C.

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dorsch, R. G.

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dupont, B.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Dupré, L.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Ferreira, C.

Fowler, D.

C. Martinez, V. Krotov, and D. Fowler, “Holographic recording setup for integrated see-through near-eye display evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.36.

C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.

Freeman, D. M.

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Gamarra, P.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Haeberle, O.

C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.

Haeberlé, O.

V. Krotov, C. Martinez, and O. Haeberlé, “Imaging performance analysis of a lens-free near to eye display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.5.

Heck, M.

M. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Hesselink, L.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Hong, S. S.

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

Horn, B. K.

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Kristensen, A.

Krotov, V.

C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.

C. Martinez, V. Krotov, and D. Fowler, “Holographic recording setup for integrated see-through near-eye display evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.36.

V. Krotov, C. Martinez, and O. Haeberlé, “Imaging performance analysis of a lens-free near to eye display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.5.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Levene, M.

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

LiKamWa, R.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

Lin, F. X.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

Lohmann, A. W.

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Maimone, A.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Marion, F.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Marra, M.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Martinez, C.

V. Krotov, C. Martinez, and O. Haeberlé, “Imaging performance analysis of a lens-free near to eye display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.5.

C. Martinez, V. Krotov, and D. Fowler, “Holographic recording setup for integrated see-through near-eye display evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.36.

C. Martinez, “Image projection device,” U.S. patent2015/0370073 A1 (December24, 2015).

C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.

Mathieu, L.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Mendlovic, D.

Mermelstein, M. S.

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Olivier, F.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

Peyskens, F.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Psaltis, D.

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Sarrasin, D.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Shah Hosseini, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Sliney, D. H.

Smith, C. L. C.

Subramanian, A. Z.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Templier, F.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Tirano, S.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Verney, V.

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Wandell, B. A.

B. A. Wandell, Foundations of Vision (Sinaur Associates, 1995), p. 54.

Wang, Z.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Webb, R. H.

Wetzstein, G.

G. Wetzstein, “Light field, focus-tunable, and monovision near-eye displays,” SID Symp. Dig. Tech. Pap. 47, 358–360 (2016).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Zalevsky, Z.

Zhong, L.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

ACM Trans. Graph. (1)

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33, 89 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. S. Hong, B. K. Horn, D. M. Freeman, and M. S. Mermelstein, “Lensless focusing with subwavelength resolution by direct synthesis of the angular spectrum,” Appl. Phys. Lett. 88, 261107 (2006).
[Crossref]

IEEE Photon. J. (1)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532–900  nm wavelength window fabricated within a CMOS pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
[Crossref]

Nanophotonics (1)

M. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6, 93–107 (2017).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. Shah Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493, 195–199 (2013).
[Crossref]

Opt. Express (1)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[Crossref]

SID Symp. Dig. Tech. Pap. (2)

G. Wetzstein, “Light field, focus-tunable, and monovision near-eye displays,” SID Symp. Dig. Tech. Pap. 47, 358–360 (2016).
[Crossref]

F. Templier, L. Dupré, S. Tirano, M. Marra, V. Verney, F. Olivier, B. Aventurier, D. Sarrasin, F. Marion, T. Catelain, F. Berger, L. Mathieu, B. Dupont, and P. Gamarra, “75-1: Invited paper: GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems,” SID Symp. Dig. Tech. Pap. 47, 1013–1016 (2016).
[Crossref]

Other (8)

H. Bjelkhagen and D. Brotherton-Ratcliffe, Ultra-Realistic Imaging, Advanced Techniques in Analogue and Digital Colour Holography (CRC Press, 2013).

C. Martinez, V. Krotov, and D. Fowler, “Holographic recording setup for integrated see-through near-eye display evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.36.

B. A. Wandell, Foundations of Vision (Sinaur Associates, 1995), p. 54.

V. Krotov, C. Martinez, and O. Haeberlé, “Imaging performance analysis of a lens-free near to eye display,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2017), paper JTu5A.5.

R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong, “Draining our glass: an energy and heat characterization of Google Glass,” in 5th Asia-Pacific Workshop on Systems (APSYS) (2014).

M. Born and E. Wolf, Principle of Optics, 7th ed. (Cambridge University, 1999).

C. Martinez, “Image projection device,” U.S. patent2015/0370073 A1 (December24, 2015).

C. Martinez, V. Krotov, D. Fowler, and O. Haeberle, “Lens-free near-eye intraocular projection display, concept and first evaluation,” in Imaging and Applied Optics, OSA Technical Digest (Optical Society of America, 2016), paper CW1C.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Imaging into the eye: (a) imaging of a point at infinity, (b) near-eye display, (c) near-eye display with a single optical system, (d) near-eye display with multiple lens/pinholes aperture, (e) near-eye display based on a phased array, and (f) near to eye display according to the CEA concept.
Fig. 2.
Fig. 2. Artist’s view of the see-through display device with a zoom on one emissive point element.
Fig. 3.
Fig. 3. Principle of the device operation. (a) Exploded view of the device concept, (b) description of the imaging process, and (c) the three steps necessary to project the 3×3 pixels image from an array of three laser sources and three electrodes.
Fig. 4.
Fig. 4. (a) Principle of the Gaussian beams interferences from the display plane to the retina plane, (b) EPD on the display plane, and (c) the retinal plane.
Fig. 5.
Fig. 5. Simple 2D geometrical representation for the calculation of the interphase function.
Fig. 6.
Fig. 6. Results of the self-focusing intensity signal for various EPD configurations. Figures on the left show the EPD in periodic (red dots) and randomly periodic (green dots) cases. Figures in the center and on the right give the intensity distributions for periodic and randomly periodic EPDs. (a) Λ1=400  μm, (b) Λ1=200  μm, (c) Λ1=100  μm, and (d) Λ1=50  μm.
Fig. 7.
Fig. 7. Comparison between intensity cross section of the self-focusing signal in the random case of Fig. 6(d) (green curve) and the Airy function (dashed blue curve).
Fig. 8.
Fig. 8. Results of SNR simulations for six randomly periodic sequences of EPDs (green dots) and for a periodic EPD (red dots, extended by 10 in the abscissa axis). The minimum, mean, and maximum curves of the random sequences are presented by the solid line. The Airy diffraction-limited SNR is also given for comparison.
Fig. 9.
Fig. 9. Principle of signal extraction from the guided mode to free-space propagation.
Fig. 10.
Fig. 10. Cross section of the device showing the wire waveguide and hoel design.
Fig. 11.
Fig. 11. (a) Lateral section of the device showing the coupling between the waveguide and the hoel. (b) The same figure during the recording process.
Fig. 12.
Fig. 12. Recording setup for the hoel distribution manufacturing.
Fig. 13.
Fig. 13. (a) Simulation of an image projection according to our concept. The image on top shows an external view that covers a 100° wide FOV. The red square presents a projection zone of 15°×15° with a resolution of 300×300 pixels. Over is a zoom on a section of the projected image, with an angular resolution of the text and the GPS pictogram of 3 arcmin and 4.5 arcmin, respectively, (b) detail of the text projected in a dots distribution, (c) detail of the same text resolution projected in an adjacent pixel distribution.
Fig. 14.
Fig. 14. Description of the etendue and eye box distribution in the intraretinal projection process.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Z2=f+f2×σσ2+π2w14λ2,
Eu,v(r)=E0×ei(ku,v.r+ϕu,v),
I(r)=[u,vMu,vΠEu,v(r)]×[u,vMu,vΠEu,v(r)]*.
I(r)=u,vMu,vΠu,vMu,vΠE02[cos(Δϕu,v,u,v(r))],
Δϕu,v,u,v(r)=(ku,vku,v)·r+ϕu,vϕu,v.
ϕu,vϕu,v=(ku,vku,v)·ri,j  u,v,u,v.
I(r)=u,vMu,vΠu,vMu,vΠE02[cos((ku,vku,v)·(rri,j))].
ku=2πλ|sin(αu)cos(αu).
ϕu=yu×sin(γi).
Δϕu,u(y)=2πλ[(sin(αu)sin(αu))×y+(cos(αu)cos(αu))×f(yuyu)×sin(γi)].
Δϕu,u(y)=2πλf[(yuyu)×(yyi)].
y=yi+mλfΛ1,
E0(x,y,Z1)=2P0πw12×e(x2+y2w12).
w2=1nfλπw1,
IS(x,y,f)=2P0πw22×e2(x2+y2w22)×I(x,y,f)I(0,0,f).
xu,v=(u+rnd)×Λ1,yu,v=(v+rnd)×Λ1,
δw=1.22λfDP.
SNR=10log(IS(0)max(Is(r))r>δw).
SNRAiry=10log[(2J1(5.136)5.136)2]=17.57  dB.
NEP=πDp24dedg.
nEP=πDp24Λ12.
Npix=NEPnEP=Λ12dedg.
ϕe=B×π2×Dp24×(sin(β))2.
De=2×Z1×sin(β).
ϕe_tot=(DEBDe)2×ϕe.
ϕlasers=ϕeηd.
Epix=4ϕeNpix×π×Dp2×(0.25  s).

Metrics