Abstract

Mode-division multiplexing technology using the high-order modes of multimode waveguides enables high-bandwidth data transmission. High-speed mode channel switching is a pivotal function for these optical networks. Here, we propose a modal switching scheme on a silicon-on-insulator platform and demonstrate a high-speed two-mode switch that exploits a Y-junction and multimode interference structure. The design allows for simultaneous switching of two optical modes. A PN-doped junction-based phase shifter in one branch of a Y-junction enables dynamic switching in 2.5 ns. The measured switching extinction ratio is 12.5 dB or better with an open eye diagram for a 10 Gb/s on–off key optical payload signal. The optical power penalty is within 0.5 dB for the two-mode switching at a bit error rate of 109. This two-mode switch could enable on-chip mode-based switching network topology for greater aggregated throughput capacity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip switch for reconfigurable mode-multiplexing optical network

Chunlei Sun, Yu Yu, Guanyu Chen, and Xinliang Zhang
Opt. Express 24(19) 21722-21728 (2016)

Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip

Hao Jia, Ting Zhou, Lei Zhang, Jianfeng Ding, Xin Fu, and Lin Yang
Opt. Express 25(17) 20698-20707 (2017)

A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel

Jeffrey B. Driscoll, Christine P. Chen, Richard R. Grote, Brian Souhan, Jerry I. Dadap, Aaron Stein, Ming Lu, Keren Bergman, and Richard M. Osgood
Opt. Express 22(15) 18543-18555 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. N. Ye and Y. Xiong, “Review of silicon photonics: history and recent advances,” J. Mod. Opt. 60, 1299–1320 (2013).
    [Crossref]
  2. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
    [Crossref]
  3. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17, 4815–4823 (2009).
    [Crossref]
  4. Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22, 17458–17465 (2014).
    [Crossref]
  5. B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.
  6. Y. Li, C. Li, C. Li, B. Cheng, and C. Xue, “Compact two-mode (de)multiplexer based on symmetric Y-junction and multimode interference waveguides,” Opt. Express 22, 5781–5786 (2014).
    [Crossref]
  7. F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
    [Crossref]
  8. Y. Sun, Y. Xiong, and W. N. Ye, “Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler,” Opt. Lett. 41, 3743–3746 (2016).
    [Crossref]
  9. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51, 2778–2783 (2012).
    [Crossref]
  10. X. Guan, Y. Ding, and L. H. Frandsen, “Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics,” Opt. Lett. 40, 3893–3896 (2015).
    [Crossref]
  11. D. Dai, “Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects,” Opt. Express 22, 27524–27534 (2014).
    [Crossref]
  12. Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
    [Crossref]
  13. B. Stern, X. Zhu, C. Chen, L. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2, 530–535 (2015).
    [Crossref]
  14. C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41, 3257–3260 (2016).
    [Crossref]
  15. R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
    [Crossref]
  16. H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
    [Crossref]
  17. D. Melati, A. Alippi, and A. Melloni, “Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission,” Opt. Express 24, 12625–12634 (2016).
    [Crossref]
  18. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  19. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
    [Crossref]
  20. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergman, “Scaling silicon photonic switch fabrics for data center interconnection networks,” Opt. Express 23, 1159–1175 (2015).
    [Crossref]
  21. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [Crossref]
  22. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
    [Crossref]

2016 (7)

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

D. Melati, A. Alippi, and A. Melloni, “Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission,” Opt. Express 24, 12625–12634 (2016).
[Crossref]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41, 3257–3260 (2016).
[Crossref]

Y. Sun, Y. Xiong, and W. N. Ye, “Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler,” Opt. Lett. 41, 3743–3746 (2016).
[Crossref]

2015 (3)

2014 (3)

2013 (2)

2012 (1)

2010 (3)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2009 (1)

2003 (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Alippi, A.

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Bergman, K.

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
[Crossref]

Calhoun, D.

Cardenas, J.

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
[Crossref]

Chattin, B.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Cheben, P.

Chen, C.

Chen, G.

Cheng, B.

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Da Ros, F.

Dai, D.

Dama, B.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Deng, L.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Ding, J.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Ding, Y.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Frandsen, L. H.

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Guan, X.

Guo, F.

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Guo, X.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Hamamoto, K.

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Hendry, R.

Himbele, L.

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Huang, B.

Imansyah, R.

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Janz, S.

Ji, C.

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Jiang, H.

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
[Crossref]

Li, C.

Li, Q.

Li, Y.

Liao, L.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Lipson, M.

Liu, A.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Liu, G.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Liu, S.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Liu, Z.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Love, J. D.

Lu, D.

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Luo, Y.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Melati, D.

Melloni, A.

Meng, Y.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Metz, P.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Milivojevic, B.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Nguyen, H.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Nikolova, D.

Ou, H.

Paniccia, M.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Peucheret, C.

Raabe, C.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Riesen, N.

Rubin, D.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

Rumley, S.

Samadi, P.

Schmid, J. H.

Shastri, A.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Shastri, K.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Stern, B.

Sun, C.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41, 3257–3260 (2016).
[Crossref]

Sun, Y.

Sunder, S.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Tanaka, T.

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tian, Y.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Tzuang, L.

Wang, H.

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Webster, M.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Wiese, S.

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Xiao, H.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Xie, C.

Xiong, Y.

Xu, D. X.

Xu, J.

Xue, C.

Ye, M.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Ye, W. N.

Yu, Y.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41, 3257–3260 (2016).
[Crossref]

Zhang, R.

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

Zhang, X.

C. Sun, Y. Yu, G. Chen, and X. Zhang, “Integrated switchable mode exchange for reconfigurable mode-multiplexing optical networks,” Opt. Lett. 41, 3257–3260 (2016).
[Crossref]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Zhao, G.

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Zhu, X.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (2)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010).
[Crossref]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-performance modulators and switches for silicon photonic networks-on-chip,” IEEE J. Sel. Top. Quantum Electron. 16, 6–22 (2010).
[Crossref]

IEEE Photon. J. (1)

F. Guo, D. Lu, R. Zhang, H. Wang, and C. Ji, “A two-mode (de)multiplexer based on multimode interferometer coupler and Y-junction on InP substrate,” IEEE Photon. J. 8, 2700608 (2016).
[Crossref]

J. Mod. Opt. (1)

W. N. Ye and Y. Xiong, “Review of silicon photonics: history and recent advances,” J. Mod. Opt. 60, 1299–1320 (2013).
[Crossref]

J. Opt. (1)

H. Xiao, L. Deng, G. Zhao, Z. Liu, Y. Meng, X. Guo, G. Liu, S. Liu, J. Ding, and Y. Tian, “Optical mode switch based on multimode interference couplers,” J. Opt. 19, 025802 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Imansyah, T. Tanaka, L. Himbele, H. Jiang, and K. Hamamoto, “Electrically controlled optical-mode switch for fundamental mode and first order mode,” Jpn. J. Appl. Phys. 55, 08RB06 (2016).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Optica (1)

Proc. SPIE (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003).
[Crossref]

Sci. Rep. (1)

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Other (1)

B. Milivojevic, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. Wiese, B. Dama, and K. Shastri, “112  Gb/s DP-QPSK transmission over 2427  km SSMF using small size silicon photonics IQ modulator and low power CMOS driver,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (2013), paper OTh1D.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic of the optical two-mode switch using a Y-junction, a phase shifter, and a 2×2 MMI structure. (b) Top view of the switch. (c) Cross-sectional view of the Y-junction-doped branch with a lateral PN junction. (d) Block diagram of the optical two-mode switch.

Fig. 2.
Fig. 2.

(a) Block diagrams and (b) simulated mode evolutions of TE0 and TE1 mode inputs along the two-mode switch in bar and cross states. Insets are mode distributions at input (stem of Y-junction) and output (Arm A or B of MMI structure) ports. Simulated transmission spectra of the two-mode switch in (c) the bar state and (d) the cross state.

Fig. 3.
Fig. 3.

Schematic of the multiplexer design based on a tapered directional coupler. Here, W4 and W5 are widths of the input tapered waveguide, while W6 is the width of the bus waveguide. LDC and Dgap are the length and the gap of the coupling region.

Fig. 4.
Fig. 4.

Microscopic view of the fabricated optical two-mode switch.

Fig. 5.
Fig. 5.

Measured normalized transmission as a function of applied forward bias voltage (Vb) for (a) the TE0 mode input and (b) the TE1 mode input. Measured normalized transmission spectra of the two-mode switch in (c) the bar state (Vb=0.98  V) and (d) the cross state (Vb=1.22  V).

Fig. 6.
Fig. 6.

Simulated (a) bar state extinction ratio and (b) crosstalk in the cross state as functions of wavelength for different phase shifter insertion losses (0 dB, 3 dB, and 6 dB) in one branch of the Y-junction for the optical two-mode switch.

Fig. 7.
Fig. 7.

Experimental setup for validation of the optical two-mode switch. Black arrows and red lines represent electrical and optical signals, respectively. CW, continuous wave; PC, polarization controller; EDFA, erbium-doped fiber amplifier; OBPF, optical bandpass filter; PD, photodetector; VOA, variable optical attenuator; PM, power meter; DCA, digital communication analyzer.

Fig. 8.
Fig. 8.

Optical payload signal switched by the optical two-mode switch.

Fig. 9.
Fig. 9.

Measured 10 Gb/s 2311 PRBS on–off key optical data signal switched by the optical two-mode switch for (a) the TE0TE0A routing path and (b) the TE1TE0A routing path.