Abstract

Superresolution fluorescence microscopy is becoming a widely available, standard tool in biophysical research. The leading deterministic approach, stimulated emission depletion (STED), can enhance the capabilities of various fluorescence techniques, including fluorescence correlation spectroscopy (FCS). Until now, STED-FCS has been successfully applied to diffusion studies in 2D systems such as membranes. Severe deficiencies, including overestimation of the detected number of probes as well as underestimation of their diffusion coefficients (both parameters differing from the expected values by up to an order of magnitude) impeded STED-FCS studies in solutions. Here, we introduce a realistic 3D model of the detection volume for STED-FCS and use it to resolve the apparent inconsistencies. To validate the model, we show a range of STED-FCS experimental data on free diffusion of probes in solutions, covering a broad range of diffusion coefficients and STED power levels. We define the limitations of STED-FCS in 3D and provide simple guidelines for experiment design and data analysis. The proposed approach should prove useful for particle mobility and reaction kinetics studies in polymer solutions as well as in bulk biomimetic and biological systems, especially when reactant concentrations exceeding 100 nM are required.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

16 August 2017: A typographical correction was made to the abstract.


OSA Recommended Articles
Fluorescence correlation spectroscopy with a doughnut-shaped excitation profile as a characterization tool in STED microscopy

Charmaine Tressler, Michael Stolle, and Cécile Fradin
Opt. Express 22(25) 31154-31166 (2014)

Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS)

Marcel Leutenegger, Christian Ringemann, Theo Lasser, Stefan W. Hell, and Christian Eggeling
Opt. Express 20(5) 5243-5263 (2012)

Adaptive optics for fluorescence correlation spectroscopy

Charles-Edouard Leroux, Irène Wang, Jacques Derouard, and Antoine Delon
Opt. Express 19(27) 26839-26849 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058 (2010).
    [Crossref]
  2. V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
    [Crossref]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  4. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  5. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
    [Crossref]
  6. F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
    [Crossref]
  7. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
    [Crossref]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref]
  9. T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
    [Crossref]
  10. T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
    [Crossref]
  11. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
    [Crossref]
  12. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
    [Crossref]
  13. M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
    [Crossref]
  14. G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
    [Crossref]
  15. M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
    [Crossref]
  16. C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
    [Crossref]
  17. L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
    [Crossref]
  18. T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
    [Crossref]
  19. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
    [Crossref]
  20. J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  21. Due to the symmetry of the system, we use throughout the whole article cylindrical coordinates with the origin at the intersection of the optical axis and the focal plane, so that r=(r,z).
  22. P. Kapusta, M. Wahl, and R. Erdmann, Advanced Photon Counting, Vol. 15 of Springer Series on Fluorescence (Springer, 2015).
  23. We denote by “radius” the distance between the center of a Gaussian and the point where its normalized intensity drops to 1/e2.
  24. D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974).
    [Crossref]
  25. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
    [Crossref]
  26. P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.
  27. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
    [Crossref]
  28. M. Reuss, J. Engelhardt, and S. W. Hell, “Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation,” Opt. Express 18, 1049–1058 (2010).
    [Crossref]
  29. M. Reuss, “Simpler STED Setups,” Ph.D. thesis (Ruperto-Carola University of Heidelberg, 2010).
  30. T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
    [Crossref]
  31. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
    [Crossref]
  32. J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19, 4242–4254 (2011).
    [Crossref]
  33. G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
    [Crossref]
  34. M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
    [Crossref]
  35. P. Torok and P. Munro, “The use of Gauss–Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004).
    [Crossref]
  36. C. Tressler, M. Stolle, and C. Fradin, “Fluorescence correlation spectroscopy with a doughnut-shaped excitation profile as a characterization tool in STED microscopy,” Opt. Express 22, 31154–31166 (2014).
    [Crossref]
  37. D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
    [Crossref]
  38. X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
    [Crossref]
  39. C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
    [Crossref]
  40. T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
    [Crossref]
  41. J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
    [Crossref]

2017 (2)

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

2016 (4)

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

2015 (3)

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

2014 (2)

2013 (4)

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
[Crossref]

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

2012 (1)

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
[Crossref]

2011 (2)

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

J. R. Moffitt, C. Osseforth, and J. Michaelis, “Time-gating improves the spatial resolution of STED microscopy,” Opt. Express 19, 4242–4254 (2011).
[Crossref]

2010 (2)

2009 (3)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

2008 (1)

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

2005 (3)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
[Crossref]

2004 (1)

2002 (2)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]

1999 (1)

1994 (1)

1974 (1)

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974).
[Crossref]

Babcock, H.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058 (2010).
[Crossref]

Banks, D. S.

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

Barrantes, F. J.

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Belov, V. N.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Berning, S.

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

Bianchini, P.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Bizzarri, R.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]

Cardarelli, F.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Clausen, M. P.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

Cole, M.

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Cordes, V. C.

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

de la Serna, J. B.

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

Di Bona, M.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Diaspro, A.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

Dowler, R.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Dyba, M.

M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
[Crossref]

Eckhardt, T.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Eggeling, C.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Enderlein, J.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Engelhardt, J.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

M. Reuss, J. Engelhardt, and S. W. Hell, “Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation,” Opt. Express 18, 1049–1058 (2010).
[Crossref]

Erdmann, R.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

P. Kapusta, M. Wahl, and R. Erdmann, Advanced Photon Counting, Vol. 15 of Springer Series on Fluorescence (Springer, 2015).

Fradin, C.

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

C. Tressler, M. Stolle, and C. Fradin, “Fluorescence correlation spectroscopy with a doughnut-shaped excitation profile as a characterization tool in STED microscopy,” Opt. Express 22, 31154–31166 (2014).
[Crossref]

Galiani, S.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

Gall, K.

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Gao, P.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Girirajan, T. P.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Göttfert, F.

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

Granick, S.

J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
[Crossref]

Gregor, I.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Han, K. Y.

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

Harke, B.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref]

Hartel, R.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Hein, B.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Hell, S.

M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
[Crossref]

Hell, S. W.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

M. Reuss, J. Engelhardt, and S. W. Hell, “Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation,” Opt. Express 18, 1049–1058 (2010).
[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

T. A. Klar and S. W. Hell, “Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24, 954–956 (1999).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]

Hofling, F.

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

Holyst, R.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Honigmann, A.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

Hou, S.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Huang, B.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058 (2010).
[Crossref]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

Jelinska, A.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Kalwarczyk, T.

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Kapusta, P.

P. Kapusta, M. Wahl, and R. Erdmann, Advanced Photon Counting, Vol. 15 of Springer Series on Fluorescence (Springer, 2015).

Kask, P.

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

Keller, J.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref]

M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
[Crossref]

King, J. T.

J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
[Crossref]

Klar, T. A.

Klemme, D.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Koberling, F.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Koenig, M.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Koppel, D. E.

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974).
[Crossref]

Kraegeloh, A.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
[Crossref]

Kraemer, B.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Kramer, B.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]

Lagerholm, B. C.

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

Lakowicz, J.

J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Lanzano, L.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Lauritsen, K.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Leutenegger, M.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

Loschberger, A.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Medda, R.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Mets, U.

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Michaelis, J.

Moffitt, J. R.

Moneron, G.

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

Mueller, V.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

Müller, T.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
[Crossref]

Munro, P.

Niehorster, T.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Nienhaus, G. U.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Nienhaus, K.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Ochab-Marcinek, A.

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Osseforth, C.

Palo, K.

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Patting, M.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Peters, R. D.

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

Polyakova, S.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Poniewierski, A.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Prunsche, B.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Rahn, H.-J.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Reisch, P.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Reuss, M.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

M. Reuss, J. Engelhardt, and S. W. Hell, “Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation,” Opt. Express 18, 1049–1058 (2010).
[Crossref]

M. Reuss, “Simpler STED Setups,” Ph.D. thesis (Ruperto-Carola University of Heidelberg, 2010).

Ringemann, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Sandhoff, K.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Sauer, M.

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Schonau, T.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Schonle, A.

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref]

Schumann, C.

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
[Crossref]

Schwarzmann, G.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

Scipioni, L.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Sezgin, E.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

Siebert, T.

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

Sozanski, K.

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Stolle, M.

Szymanski, J.

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Ta, H.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

Tabaka, M.

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Tannert, S.

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Torok, P.

Tressler, C.

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

C. Tressler, M. Stolle, and C. Fradin, “Fluorescence correlation spectroscopy with a doughnut-shaped excitation profile as a characterization tool in STED microscopy,” Opt. Express 22, 31154–31166 (2014).
[Crossref]

Ullal, C. K.

Vicidomini, G.

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

von Middendorff, C.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

Wagner, R.

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

Wahl, M.

P. Kapusta, M. Wahl, and R. Erdmann, Advanced Photon Counting, Vol. 15 of Springer Series on Fluorescence (Springer, 2015).

Waithe, D.

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

Webb, W. W.

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]

Westphal, V.

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schonle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[Crossref]

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

Wichmann, J.

Willig, K. I.

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
[Crossref]

Wilson, W. L.

J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
[Crossref]

Wisniewska, A.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Wurm, C. A.

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

Yu, C.

J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
[Crossref]

Zagozdzon, A.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Zhang, X.

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Zhou, L.

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

Zhuang, X.

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058 (2010).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

ACS Nano (1)

J. T. King, C. Yu, W. L. Wilson, and S. Granick, “Super-resolution study of polymer mobility fluctuations near c*,” ACS Nano 8, 8802–8809 (2014).
[Crossref]

Adv. Colloid Interface Sci. (1)

T. Kalwarczyk, K. Sozanski, A. Ochab-Marcinek, J. Szymanski, M. Tabaka, S. Hou, and R. Holyst, “Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model,” Adv. Colloid Interface Sci. 223, 55–63 (2015).
[Crossref]

Biophys. J. (3)

S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

F. Göttfert, C. A. Wurm, V. Mueller, S. Berning, V. C. Cordes, A. Honigmann, and S. W. Hell, “Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20  nm resolution,” Biophys. J. 105, L01–L03 (2013).
[Crossref]

Cell (1)

B. Huang, H. Babcock, and X. Zhuang, “Breaking the diffraction barrier: super-resolution imaging of cells,” Cell 143, 1047–1058 (2010).
[Crossref]

Chem. Phys. Chem. (1)

T. Müller, C. Schumann, and A. Kraegeloh, “STED microscopy and its applications: new insights into cellular processes on the nanoscale,” Chem. Phys. Chem. 13, 1986–2000 (2012).
[Crossref]

J. Neurochem. (1)

C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells-new frontiers in membrane and neurobiology,” J. Neurochem. 126, 203–212 (2013).
[Crossref]

Methods (1)

M. P. Clausen, E. Sezgin, J. B. de la Serna, D. Waithe, B. C. Lagerholm, and C. Eggeling, “A straightforward approach for gated STED-FCS to investigate lipid membrane dynamics,” Methods 88, 67–75 (2015).
[Crossref]

Nano Lett. (1)

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, and S. W. Hell, “STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15, 5912–5918 (2015).
[Crossref]

Nat. Commun. (1)

L. Lanzano, L. Scipioni, M. Di Bona, P. Bianchini, R. Bizzarri, F. Cardarelli, A. Diaspro, and G. Vicidomini, “Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS,” Nat. Commun. 8, 65 (2017).
[Crossref]

Nat. Methods (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8, 571–573 (2011).
[Crossref]

T. Niehorster, A. Loschberger, I. Gregor, B. Kramer, H.-J. Rahn, M. Patting, F. Koberling, J. Enderlein, and M. Sauer, “Multi-target spectrally resolved fluorescence lifetime imaging microscopy,” Nat. Methods 13, 257–262 (2016).
[Crossref]

Nat. Photonics (2)

P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11, 163–169 (2017).
[Crossref]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photonics 3, 144–147 (2009).
[Crossref]

Nature (1)

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schonle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159–1162 (2009).
[Crossref]

New J. Phys. (2)

C. Ringemann, B. Harke, C. Von Middendorff, R. Medda, A. Honigmann, R. Wagner, M. Leutenegger, A. Schonle, S. W. Hell, and C. Eggeling, “Exploring single-molecule dynamics with fluorescence nanoscopy,” New J. Phys. 11(10), 103054 (2009).
[Crossref]

M. Dyba, J. Keller, and S. Hell, “Phase filter enhanced STED-4pi fluorescence microscopy: theory and experiment,” New J. Phys. 7(1), 134 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

D. E. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A 10, 1938–1945 (1974).
[Crossref]

Phys. Rev. Lett. (2)

V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94, 143903 (2005).
[Crossref]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94, 178104 (2005).
[Crossref]

PLoS ONE (1)

G. Vicidomini, A. Schonle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, “STED nanoscopy with time-gated detection: theoretical and experimental aspects,” PLoS ONE 8, e54421 (2013).
[Crossref]

Proc. SPIE (2)

T. Schonau, T. Siebert, R. Hartel, T. Eckhardt, D. Klemme, K. Lauritsen, and R. Erdmann, “Pulsed picosecond 766  nm laser source operating between 1–80  MHz with automatic pump power management,” Proc. SPIE 8604, 860409 (2013).
[Crossref]

M. Koenig, P. Reisch, R. Dowler, B. Kraemer, S. Tannert, M. Patting, M. P. Clausen, S. Galiani, C. Eggeling, F. Koberling, and R. Erdmann, “ns-time resolution for multispecies STED-FLIM and artifact free STED-FCS,” Proc. SPIE 9712, 97120T (2016).
[Crossref]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[Crossref]

Soft Matter (2)

D. S. Banks, C. Tressler, R. D. Peters, F. Hofling, and C. Fradin, “Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy,” Soft Matter 12, 4190–4203 (2016).
[Crossref]

X. Zhang, A. Poniewierski, A. Jelinska, A. Zagozdzon, A. Wisniewska, S. Hou, and R. Holyst, “Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis,” Soft Matter 12, 8186–8194 (2016).
[Crossref]

Other (6)

J. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Due to the symmetry of the system, we use throughout the whole article cylindrical coordinates with the origin at the intersection of the optical axis and the focal plane, so that r=(r,z).

P. Kapusta, M. Wahl, and R. Erdmann, Advanced Photon Counting, Vol. 15 of Springer Series on Fluorescence (Springer, 2015).

We denote by “radius” the distance between the center of a Gaussian and the point where its normalized intensity drops to 1/e2.

M. Reuss, “Simpler STED Setups,” Ph.D. thesis (Ruperto-Carola University of Heidelberg, 2010).

P. Kask, C. Eggeling, K. Palo, U. Mets, M. Cole, and K. Gall, “Fluorescence intensity distribution analysis (FIDA) and related fluorescence fluctuation techniques: theory and practice,” in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, R. Kraayenhof, A. J. Visser, and H. Gerritsen, eds. (Springer, 2002), Chap. 9, pp. 152–181.

Supplementary Material (1)

NameDescription
» Supplement 1       The document contains additional details on the models and data analysis methods used, description of experimental details, illumination and detection profile visualizations, as well as supplementary experimental results.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) STED depletion pattern p STED according to Eq. (5): vertical and horizontal sections (at the focal plane and 1 μm away from it). (b) STED-FCS detection profiles p eff for P STED = 0 , 0.1 , 0.5 , 1,5 , 10 P sat (left to right) according to Eq. (6), normalized to the maximum of the P STED = 0 case. Decrease in p eff ( 0,0 ) with increasing STED is due to nonperfect zero in the depletion pattern [29]; for details, see Section S5 of Supplement 1.

Fig. 2.
Fig. 2.

Decrease of snr with increasing P STED according to the proposed model. The inset shows changes in the apparent number N of BSA molecules in the detection volume upon increasing STED power (experimental data, scaled by N conf corresponding to P STED = 0 ). Squares represent data obtained directly from autocorrelation fitting, circles are the same data corrected for snr via Eq. (2), and triangles are values calculated on the basis of the expected detection volume decrease.

Fig. 3.
Fig. 3.

Intensity of fluorescence originating from different horizontal sections of the detection volume at various STED intensities according to the proposed model. Due to the most effective depletion in the vicinity of the focal plane, the brightest regions of the detection volume are located in the off-focus lobes rather than at z = 0 . The plotted datapoints were calculated as integrals of p STED ( r ) over r for a given z coordinate and normalized to the non-STED maximum value.

Fig. 4.
Fig. 4.

Dependence of the ratio of the apparent STED-FCS detection radius ω app (i.e., ω eff of the brightest z section) to ω eff at the focal plane on the STED power, calculated according to the proposed detection profile description. The higher the STED intensity, the greater the discrepancy between the apparent radius of the 3D detection volume and its radius at the beam waist (in the focus plane).

Fig. 5.
Fig. 5.

Exemplary experimental autocorrelation curves for (a) Atto 647N in PBS and (b) BSA in 20% PEG. In both cases, representative data for an intermediate STED power and confocal (non-STED) reference are plotted. Blue curves represent fits according to Eq. (7). Both plots are normalized to the fitted amplitude of the confocal FCS case.

Fig. 6.
Fig. 6.

Diffusion times τ D (scaled by the non-STED values τ conf ) measured for various probes and environments. STED power P STED is scaled by the saturation power P sat , established individually for each sample. The empty squares and solid line correspond to the model presented hereby (no fitted parameters). Since in all cases only normal free diffusion is expected, it is assumed that D is independent from the length scale of observation. The dashed line represents the simplistic approach of Eq. (4). For comparison, in the shaded inset, the same data are plotted directly against P STED values, along with Eq. (4) including P sat = 3.0    mW from bead scanning (standard calibration procedure) and disregarding the changes in the axial profile of the detection volume upon STED.

Fig. 7.
Fig. 7.

Results of FCS simulations: apparent number of molecules N scaled by N conf (i.e., number of molecules in a diffraction-limited detection volume radius of ω conf = 0.25    μm ) calculated on the basis of various parameters obtained from single simulation runs. (a) No added background. (b) Random background counts added to the raw time trace. Legend refers to both panels.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ D = ω 2 / 4 D ,
N = 1 ( 1 + 1 / SNR ) 2 1 G ( 0 ) .
w ( z ) = w 0 1 + ( z z R ) 2 ,
ω eff = ω conf 1 + P STED / P sat .
p STED ( r ) = 1 1 + z z R ( r w STED ( z ) ) 2 exp ( 2 r 2 w STED 2 ( z ) ) .
p eff ( r ) = p conf ( r ) exp ( a p STED ( r ) ) ,
G ( τ ) = G ( 0 ) ( 1 + τ τ D ) 1 .