Abstract

To probe biological questions with significant biophysical, biochemical, and molecular components, an imaging solution compatible with both endogenous and molecular 3D imaging may be necessary. In this work, we show that structured illumination (SI) microscopy, popularly associated with 3D fluorescent super-resolution, can allow 3D refractive index (RI) reconstructions when operated in the coherent realm. We introduce a novel reinterpretation of coherent SI, which mathematically equates it to a superposition of angled illuminations. Raw acquisitions for standard SI-enhanced quantitative-phase images can be processed into electric field maps of the sample under angled illuminations. Standard diffraction tomography (DT) computation can then be used to reconstruct the sample’s 3D RI distribution at sub-diffraction resolutions. We demonstrate this concept by using SI to computationally reconstruct 3D RI distributions of human breast (MCF-7) and colorectal (HT-29) adenocarcinoma cells. Our experimental setup generates SI patterns using broadband illumination with a spatial light modulator and detects angle-dependent sample diffraction through a common-path, off-axis interferometer with no moving components. This technique may easily pair with SI fluorescence microscopy and important future extensions may include multimodal, sub-diffraction resolution, 3D RI, and fluorescent visualizations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy

Shwetadwip Chowdhury, Will J. Eldridge, Adam Wax, and Joseph A. Izatt
Biomed. Opt. Express 8(5) 2496-2518 (2017)

Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging

Kyoohyun Kim, Wei Sun Park, Sangchan Na, Sangbum Kim, Taehong Kim, Won Do Heo, and YongKeun Park
Biomed. Opt. Express 8(12) 5688-5697 (2017)

Label-free characterization of white blood cells by measuring 3D refractive index maps

Jonghee Yoon, Kyoohyun Kim, HyunJoo Park, Chulhee Choi, Seongsoo Jang, and YongKeun Park
Biomed. Opt. Express 6(10) 3865-3875 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007).
    [Crossref]
  2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Vol. 22.
  3. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
    [Crossref]
  4. R. Fiolka, K. Wicker, R. Heintzmann, and A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17, 12407–12417 (2009).
    [Crossref]
  5. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
    [Crossref]
  6. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [Crossref]
  7. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
    [Crossref]
  8. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
    [Crossref]
  9. S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-resolution 3-D refractive index tomography and 2-D synthetic aperture imaging of live phytoplankton,” J. Opt. Soc. Korea 18, 691–697 (2014).
    [Crossref]
  10. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
    [Crossref]
  11. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
    [Crossref]
  12. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24, 2006–2012 (2016).
    [Crossref]
  13. M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
    [Crossref]
  14. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
    [Crossref]
  15. A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
    [Crossref]
  16. R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).
  17. S. Chowdhury and J. Izatt, “Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging,” Biomed. Opt. Express 4, 1795–1805 (2013).
    [Crossref]
  18. S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
    [Crossref]
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).
  21. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [Crossref]
  22. A. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981).
    [Crossref]
  23. B. Chen and J. J. Stamnes, “Validity of diffraction tomography based on the first Born and the first Rytov approximations,” Appl. Opt. 37, 2996–3006 (1998).
    [Crossref]
  24. F. Lin and M. Fiddy, “The Born–Rytov controversy: I. Comparing analytical and approximate expressions for the one-dimensional deterministic case,” J. Opt. Soc. Am. A 9, 1102–1110 (1992).
    [Crossref]
  25. T. C. Wedberg and J. J. Stamnes, “Experimental examination of the quantitative imaging properties of optical diffraction tomography,” J. Opt. Soc. Am. A 12, 493–500 (1995).
    [Crossref]
  26. D. Li and E. Betzig, “Response to comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352, 527 (2016).
    [Crossref]
  27. J. Lim, K. Lee, K. H. Jin, S. Shin, S. Lee, Y. Park, and J. C. Ye, “Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography,” Opt. Express 23, 16933–16948 (2015).
    [Crossref]
  28. N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
    [Crossref]
  29. M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumors: an update,” Breast Cancer Res. Treatment 83, 249–289 (2004).
    [Crossref]
  30. A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
    [Crossref]
  31. M. D. Huber and L. Gerace, “The size-wise nucleus: nuclear volume control in eukaryotes,” J. Cell Biol. 179, 583–584 (2007).
    [Crossref]
  32. J. G. Umen, “The elusive sizer,” Curr. Opin. Cell Biol. 17, 435–441 (2005).
    [Crossref]
  33. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
    [Crossref]
  34. A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
    [Crossref]
  35. F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
    [Crossref]
  36. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42, 999–1002 (2017).
    [Crossref]
  37. P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752–19762 (2015).
    [Crossref]
  38. S. Chowdhury, A.-H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3, 1841–1854 (2012).
    [Crossref]
  39. P. Gao, G. Pedrini, and W. Osten, “Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy,” Opt. Lett. 38, 1328–1330 (2013).
    [Crossref]
  40. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
    [Crossref]

2017 (1)

2016 (4)

J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24, 2006–2012 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

D. Li and E. Betzig, “Response to comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352, 527 (2016).
[Crossref]

2015 (3)

2014 (5)

S. Chowdhury and J. Izatt, “Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging,” Opt. Lett. 39, 1015–1018 (2014).
[Crossref]

S. Lee, K. Kim, A. Mubarok, A. Panduwirawan, K. Lee, S. Lee, H. Park, and Y. Park, “High-resolution 3-D refractive index tomography and 2-D synthetic aperture imaging of live phytoplankton,” J. Opt. Soc. Korea 18, 691–697 (2014).
[Crossref]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

2013 (3)

2012 (3)

S. Chowdhury, A.-H. Dhalla, and J. Izatt, “Structured oblique illumination microscopy for enhanced resolution imaging of non-fluorescent, coherently scattering samples,” Biomed. Opt. Express 3, 1841–1854 (2012).
[Crossref]

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

2011 (1)

2009 (3)

2008 (1)

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

2007 (2)

M. D. Huber and L. Gerace, “The size-wise nucleus: nuclear volume control in eukaryotes,” J. Cell Biol. 179, 583–584 (2007).
[Crossref]

S. S. Kou and C. J. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007).
[Crossref]

2006 (1)

2005 (1)

J. G. Umen, “The elusive sizer,” Curr. Opin. Cell Biol. 17, 435–441 (2005).
[Crossref]

2004 (2)

M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumors: an update,” Breast Cancer Res. Treatment 83, 249–289 (2004).
[Crossref]

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

2002 (2)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

1998 (1)

1995 (1)

1992 (1)

1981 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Agard, D. A.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Babacan, S. D.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Badizadegan, K.

Bard, F.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Beard, M. R.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Betzig, E.

D. Li and E. Betzig, “Response to comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352, 527 (2016).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Burke, B.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Cardoso, M. C.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Carlton, P. M.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Carney, P. S.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Chaumet, A.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Chen, B.

Chen, B.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Chenouard, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Choi, W.

Choi, Y.

Chowdhury, S.

Chung, J.

Dallongeville, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011).
[Crossref]

Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266–277 (2009).
[Crossref]

Davidson, M. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

De Chaumont, F.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Devaney, A.

Dhalla, A.-H.

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Fang-Yen, C.

Feld, M. S.

Fiddy, M.

Fiolka, R.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

R. Fiolka, K. Wicker, R. Heintzmann, and A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17, 12407–12417 (2009).
[Crossref]

Gao, P.

García, J.

García-Martínez, P.

Gerace, L.

M. D. Huber and L. Gerace, “The size-wise nucleus: nuclear volume control in eukaryotes,” J. Cell Biol. 179, 583–584 (2007).
[Crossref]

Gerdes, H.-H.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

Goddard, L. L.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Gounko, N. V.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Gustafsson, M. G.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Haase, S.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Hammer, J. A.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Heintzmann, R.

Hervé, N.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Hosseini, P.

Huber, M. D.

M. D. Huber and L. Gerace, “The size-wise nucleus: nuclear volume control in eukaryotes,” J. Cell Biol. 179, 583–584 (2007).
[Crossref]

Izatt, J.

Janetopoulos, C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Jin, K. H.

Jung, J.

Kasarova, S.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
[Crossref]

Kim, G.

Kim, K.

Kim, M.

Kim, T.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Kner, P.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Kou, S. S.

Lacroix, M.

M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumors: an update,” Breast Cancer Res. Treatment 83, 249–289 (2004).
[Crossref]

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

Le Montagner, Y.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Leclercq, G.

M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumors: an update,” Breast Cancer Res. Treatment 83, 249–289 (2004).
[Crossref]

Lecomte, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Lee, K.

Lee, S.

Legant, W. R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Lemon, S. M.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Li, D.

D. Li and E. Betzig, “Response to comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352, 527 (2016).
[Crossref]

Li, K.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Lim, J.

Lin, F.

Liu, Z.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Lue, N.

Markovic, I.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

Mathur, P.

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

Meas-Yedid, V.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Mico, V.

Milkie, D. E.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Mir, M.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Mubarok, A.

Nikolov, I.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
[Crossref]

Okuda, M.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Osten, W.

Ou, X.

Panduwirawan, A.

Pankajakshan, P.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Park, H.

Park, Y.

Pedrini, G.

Pop, S.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Popescu, G.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Provoost, T.

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Rego, E. H.

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

Rustom, A.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

Saffrich, R.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

Saini, A. K.

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Vol. 22.

Schermelleh, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Scholle, F.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Seet, S. H.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Shaikh, M. M.

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

Shao, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Sharma, V.

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

Sheppard, C. J.

Shin, S.

Showalter, L. A.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

So, P.

Stamnes, J. J.

Stemmer, A.

Sultanova, N.

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
[Crossref]

Sung, Y.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Vol. 22.

Tham, K. M.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Umen, J. G.

J. G. Umen, “The elusive sizer,” Curr. Opin. Cell Biol. 17, 435–441 (2005).
[Crossref]

Walther, P.

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

Wang, K.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Wedberg, T. C.

Weinman, S. A.

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

Wicker, K.

Winoto, L.

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Wright, G. D.

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Wu, X. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

Yang, C.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Yaqoob, Z.

Ye, J. C.

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

Yoon, J.

Zalevsky, Z.

Zheng, G.

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3, 827–835 (2016).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

Zhou, R.

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Acta Phys. Pol. A (1)

N. Sultanova, S. Kasarova, and I. Nikolov, “Dispersion properties of optical polymers,” Acta Phys. Pol. A 116, 585–587 (2009).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Breast Cancer Res. Treatment (1)

M. Lacroix and G. Leclercq, “Relevance of breast cancer cell lines as models for breast tumors: an update,” Breast Cancer Res. Treatment 83, 249–289 (2004).
[Crossref]

Curr. Opin. Cell Biol. (1)

J. G. Umen, “The elusive sizer,” Curr. Opin. Cell Biol. 17, 435–441 (2005).
[Crossref]

Gastroenterology (1)

M. Okuda, K. Li, M. R. Beard, L. A. Showalter, F. Scholle, S. M. Lemon, and S. A. Weinman, “Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein,” Gastroenterology 122, 366–375 (2002).
[Crossref]

J. Biomed. Opt. (1)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19, 011005 (2014).
[Crossref]

J. Cell Biol. (1)

M. D. Huber and L. Gerace, “The size-wise nucleus: nuclear volume control in eukaryotes,” J. Cell Biol. 179, 583–584 (2007).
[Crossref]

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205, 165–176 (2002).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Korea (1)

Nat. Commun. (1)

A. Chaumet, G. D. Wright, S. H. Seet, K. M. Tham, N. V. Gounko, and F. Bard, “Nuclear envelope-associated endosomes deliver surface proteins to the nucleus,” Nat. Commun. 6, 8218 (2015).
[Crossref]

Nat. Methods (1)

F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, and Y. Le Montagner, “Icy: an open bioimage informatics platform for extended reproducible research,” Nat. Methods 9, 690–696 (2012).
[Crossref]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7, 739–745 (2013).
[Crossref]

T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction tomography of unlabelled live cells,” Nat. Photonics 8, 256–263 (2014).
[Crossref]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Optica (1)

Proc. Natl. Acad. Sci. USA (1)

R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

Sci. Rep. (1)

A. K. Saini, V. Sharma, P. Mathur, and M. M. Shaikh, “The development of fluorescence turn-on probe for Al (III) sensing and live cell nucleus-nucleoli staining,” Sci. Rep. 6, 34807 (2016).
[Crossref]

Science (4)

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, and Z. Liu, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346, 1257998 (2014).
[Crossref]

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H.-H. Gerdes, “Nanotubular highways for intercellular organelle transport,” Science 303, 1007–1010 (2004).
[Crossref]

D. Li and E. Betzig, “Response to comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”,” Science 352, 527 (2016).
[Crossref]

L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, and M. G. Gustafsson, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008).
[Crossref]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), Vol. 22.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 2000).

Supplementary Material (4)

NameDescription
» Visualization 1: MP4 (33057 KB)      Raw acquisition procedure
» Visualization 2: AVI (24234 KB)      Axial fly-through of a MCF-7 cell
» Visualization 3: AVI (24155 KB)      Axial fly-through of two conjoined HT-29 cells
» Visualization 4: AVI (39583 KB)      3D tomographic visualization of HT-29 cell

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illumination/detection schemes and corresponding 3D regions of object spatial frequencies imaged at the detector are shown for (a) orthogonal, [(b), (c)] tilted, and (d) SI. Note the subsection of the object’s diffraction, which passes through the system aperture under orthogonal illumination [shown in red in (a)] tilts based on illumination angle.

Fig. 2.
Fig. 2.

Illustrating the concept of SI-enabled DT. (a) Widefield coherent imaging samples a spherical shell of an object’s spectrum. (b) SI allows sampling of pairs of shells from regions of the object’s spectrum. (c) As the spatial frequency of the SI changes, the regions of imaged content trace Ewald’s sphere of possible illumination wavevectors. (d) With sufficiently small increments of SI spatial frequency, the 3D region of object’s frequency space is filled.

Fig. 3.
Fig. 3.

(a) Raw interferogram with SI and (b) associated frequency spectrum (amplitude) are shown. (c) The image plane frequency spectrum is digitally filtered. [(d)–(f)] Frequency spectra of individual plane-wave components, corresponding to downshifted, upshifted, and DC-centered regions of the object’s frequency spectrum, are analytically solved and shown alongside associated spatial electric field QP maps.

Fig. 4.
Fig. 4.

(a) Examples of reconstructed electric fields and associated Fourier spectra from SI data set are shown. The 2D Rytov-approximated scattered wave is mapped to a 3D Ewald surface through F ( k ) for (b) orthogonal and (c) tilted illumination.

Fig. 5.
Fig. 5.

(a) Optical schematic incorporating an SLM into an SI-DPM setup. (b) Periodic patterns programmed into the SLM result in multiple-beam interference at the sample. (c) The mask in the plane of PH achieves common-path, off-axis interference with broadband illumination by spatially filtering the undispersed central component of the 0th diffraction order from RG, regardless of WF or SI illumination.

Fig. 6.
Fig. 6.

Panels (a) and (b) show QP and RI lateral visualizations, respectively, of 7.3 μm polystyrene microspheres. Panels (c) and (d) show QP and RI axial cross sections, respectively, across a single microsphere. Panels (e) and (f) show lateral and axial views, respectively, of the detected regions of the sample’s scattering potential along with associated (g) 3D visualization. Panels (h) and (i) show quantitative profiles comparing measured QP and RI values with theoretical values, along the cuts shown in panels (a) and (b), respectively.

Fig. 7.
Fig. 7.

Axial slices are shown from an MCF-7 cell after [(a)–(d)] 3D RI reconstruction via SI and [(e)–(h)] a Fresnel propagating a QP image. The RI visualization shows clear image contrast, resolution, and optical sectioning enhancement over QP.

Fig. 8.
Fig. 8.

Axial slices are shown from two conjoined HT-29 cells after [(a)–(d)] 3D RI reconstruction via SI. The globular structures of the HT-29 cells are clearly visualized with the cells’ circular cross sections enlarging and then shrinking as the focus plane is translated upwards. Furthermore, distinct intracellular morphologies are 3D-resolved via endogenous RI contrast. Of note are the cells’ nucleoli and nuclear periphery, which demonstrate high RI values. [(e)–(f)] Tomograms show 3D false-colored RI distributions visualized with different RI-thresholded opacity constraints to emphasize different intracellular features. The 3D visualizations were rendered using Icy, a freely available platform for biological image analysis [35].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

y ( r T ) = h ( r T ) [ x ( r T ) · i ( r T ) ] ,
Y ( k T ) = H ( k T ) · [ X ( k T ) I ( k T ) ] ,
Y SI ( k T ) = H ( k T ) · [ X ( k T ) + m 2 X ( k T + k c , T ) e j ϕ n + m 2 X ( k T k c , T ) e j ϕ n ] .
f ( r ) = k λ 2 ( n ( r ) 2 n m 2 ) ,
u ( r ) = u i ( r ) + u s ( r ) .
u s ( r ) = g ( | r r | ) f ( r ) u i ( r ) d r ,
F ( k k 0 ) = j k z π U s ( k T ; z = 0 ) ,
F ( k ) = j ( k z + k 0 , z ) π U s ( k T + k 0 , T ; z = 0 ) .

Metrics