Abstract

When imaging through layered media such as walls, the contents and thickness of the wall layers are generally not known a priori. Furthermore, compensating for their effects can be computationally intensive, as this generally requires modelling the transmission and reflection of complex fields through layered media. We propose a blind deconvolution method that does not require knowledge of the wall layers by directly estimating a circularly symmetric Green’s function that models the transmission through the wall layers, simultaneously addressing both problems. We experimentally demonstrate this technique by measuring the reflection through a multilayered structure of building materials at the K-band microwave frequencies, and using the blind deconvolution method to find the image of a reflective object behind the layers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data

Erik F. Y. Hom, Franck Marchis, Timothy K. Lee, Sebastian Haase, David A. Agard, and John W. Sedat
J. Opt. Soc. Am. A 24(6) 1580-1600 (2007)

Through-wall electromagnetic scattering by N conducting cylinders

Fabrizio Frezza, Lara Pajewski, Cristina Ponti, and Giuseppe Schettini
J. Opt. Soc. Am. A 30(8) 1632-1639 (2013)

Blind deconvolution in optical diffusion tomography

Stuart M. Jefferies, Kathy J. Schulze, Charles L. Matson, Kurt Stoltenberg, and E. Keith Hege
Opt. Express 10(1) 46-53 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
    [Crossref]
  2. W. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1990).
  3. Z. Knittl, Optics of Thin Films (Wiley, 1976).
  4. H. Mansour and U. S. Kamilov, “Multipath removal by online blind deconvolution in through-the-wall-imaging,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 3106–3110.
  5. H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.
  6. A. Beeri and R. Daisy, “High-resolution through-wall imaging,” Proc. SPIE 6201, 62010J (2006).
  7. F. Aryanfar and K. Sarabandi, “Through wall imaging at microwave frequencies using space-time focusing,” in IEEE Antennas and Propagation Society Symposium (2004), Vol. 3, pp. 3063–3066.
  8. F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
    [Crossref]
  9. L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
    [Crossref]
  10. Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
    [Crossref]
  11. V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12, 528–531 (2005).
    [Crossref]
  12. H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
    [Crossref]
  13. Y. Yang and A. E. Fathy, “See-through-wall imaging using ultra wideband short-pulse radar system,” in IEEE Antennas and Propagation Society International Symposium (2005), Vol. 3B, pp. 334–337.
  14. G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54, 4015–4025 (2006).
    [Crossref]
  15. P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
    [Crossref]
  16. T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE International Symposium on Phased Array Systems and Technology (2010), pp. 551–558.
  17. F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
    [Crossref]
  18. S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
    [Crossref]
  19. F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
    [Crossref]
  20. C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
    [Crossref]
  21. M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging [lecture notes],” IEEE Signal Process. Mag. 25, 110–113 (2008).
    [Crossref]
  22. S. S. Ram and H. Ling, “Through-wall tracking of human movers using joint doppler and array processing,” IEEE Geosci. Remote Sens. Lett. 5, 537–541 (2008).
    [Crossref]
  23. P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
    [Crossref]
  24. M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
    [Crossref]
  25. E. Ertin and R. L. Moses, “Through-the-wall SAR attributed scattering center feature estimation,” IEEE T. Geosci. Remote Sens. 47, 1338–1348 (2009).
    [Crossref]
  26. P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
    [Crossref]
  27. D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240.
  28. S. Choudhary and U. Mitra, “Sparse blind deconvolution: what cannot be done,” in IEEE International Symposium on Information Theory,” (2014), pp. 3002–3006.
  29. J. M. Fadili and J.-L. Starck, “Sparse representation-based image deconvolution by iterative thresholding,” in Astronomical Data Analysis (ADA), Marseille, France (2006).
  30. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
    [Crossref]
  31. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
    [Crossref]
  32. T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,” J. Fourier Anal. Appl. 14, 629–654 (2008).
    [Crossref]

2011 (2)

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
[Crossref]

2010 (3)

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
[Crossref]

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
[Crossref]

2009 (5)

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
[Crossref]

E. Ertin and R. L. Moses, “Through-the-wall SAR attributed scattering center feature estimation,” IEEE T. Geosci. Remote Sens. 47, 1338–1348 (2009).
[Crossref]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
[Crossref]

H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
[Crossref]

2008 (5)

M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging [lecture notes],” IEEE Signal Process. Mag. 25, 110–113 (2008).
[Crossref]

S. S. Ram and H. Ling, “Through-wall tracking of human movers using joint doppler and array processing,” IEEE Geosci. Remote Sens. Lett. 5, 537–541 (2008).
[Crossref]

S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
[Crossref]

F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
[Crossref]

T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,” J. Fourier Anal. Appl. 14, 629–654 (2008).
[Crossref]

2007 (1)

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[Crossref]

2006 (2)

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54, 4015–4025 (2006).
[Crossref]

A. Beeri and R. Daisy, “High-resolution through-wall imaging,” Proc. SPIE 6201, 62010J (2006).

2005 (2)

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12, 528–531 (2005).
[Crossref]

2001 (1)

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[Crossref]

1995 (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
[Crossref]

Ahmad, F.

M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging [lecture notes],” IEEE Signal Process. Mag. 25, 110–113 (2008).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

Amin, M. G.

C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
[Crossref]

M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging [lecture notes],” IEEE Signal Process. Mag. 25, 110–113 (2008).
[Crossref]

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54, 4015–4025 (2006).
[Crossref]

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

Aryanfar, F.

F. Aryanfar and K. Sarabandi, “Through wall imaging at microwave frequencies using space-time focusing,” in IEEE Antennas and Propagation Society Symposium (2004), Vol. 3, pp. 3063–3066.

Bayram, Y.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

Beeri, A.

A. Beeri and R. Daisy, “High-resolution through-wall imaging,” Proc. SPIE 6201, 62010J (2006).

Blumensath, T.

T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,” J. Fourier Anal. Appl. 14, 629–654 (2008).
[Crossref]

Boufounos, P.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Burkholder, R. J.

P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
[Crossref]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

Chang, P. C.

P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
[Crossref]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

Charvat, G. L.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE International Symposium on Phased Array Systems and Technology (2010), pp. 551–558.

Chen, S. S.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[Crossref]

Chew, W.

W. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1990).

Choudhary, S.

S. Choudhary and U. Mitra, “Sparse blind deconvolution: what cannot be done,” in IEEE International Symposium on Information Theory,” (2014), pp. 3002–3006.

Daisy, R.

A. Beeri and R. Daisy, “High-resolution through-wall imaging,” Proc. SPIE 6201, 62010J (2006).

Davies, M. E.

T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,” J. Fourier Anal. Appl. 14, 629–654 (2008).
[Crossref]

Debes, C.

C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
[Crossref]

Dehmollaian, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
[Crossref]

Diskus, C. G.

S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
[Crossref]

Donoho, D. L.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[Crossref]

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
[Crossref]

Durand, F.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

Ertin, E.

E. Ertin and R. L. Moses, “Through-the-wall SAR attributed scattering center feature estimation,” IEEE T. Geosci. Remote Sens. 47, 1338–1348 (2009).
[Crossref]

Fadili, J. M.

J. M. Fadili and J.-L. Starck, “Sparse representation-based image deconvolution by iterative thresholding,” in Astronomical Data Analysis (ADA), Marseille, France (2006).

Fang, G.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Fathy, A. E.

Y. Yang and A. E. Fathy, “See-through-wall imaging using ultra wideband short-pulse radar system,” in IEEE Antennas and Propagation Society International Symposium (2005), Vol. 3B, pp. 334–337.

Fergus, R.

D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240.

Freeman, W. T.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

Hantscher, S.

S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
[Crossref]

Huang, Q.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Kamilov, U.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Kamilov, U. S.

H. Mansour and U. S. Kamilov, “Multipath removal by online blind deconvolution in through-the-wall-imaging,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 3106–3110.

Kassam, S. A.

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, 1976).

Krishnan, D.

D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240.

Leung, H.

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12, 528–531 (2005).
[Crossref]

Levin, A.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

Li, F.

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
[Crossref]

Li, L.

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
[Crossref]

Ling, H.

S. S. Ram and H. Ling, “Through-wall tracking of human movers using joint doppler and array processing,” IEEE Geosci. Remote Sens. Lett. 5, 537–541 (2008).
[Crossref]

Liu, D.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Machac, J.

P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
[Crossref]

Mansour, H.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

H. Mansour and U. S. Kamilov, “Multipath removal by online blind deconvolution in through-the-wall-imaging,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 3106–3110.

Marhefka, R. J.

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

Mitra, U.

S. Choudhary and U. Mitra, “Sparse blind deconvolution: what cannot be done,” in IEEE International Symposium on Information Theory,” (2014), pp. 3002–3006.

Moses, R. L.

E. Ertin and R. L. Moses, “Through-the-wall SAR attributed scattering center feature estimation,” IEEE T. Geosci. Remote Sens. 47, 1338–1348 (2009).
[Crossref]

Mrkvica, J.

P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
[Crossref]

Narayanan, R. M.

H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
[Crossref]

Orlik, P.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Parsons, K.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Peabody, J. E.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE International Symposium on Phased Array Systems and Technology (2010), pp. 551–558.

Prisco, G.

F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
[Crossref]

Protiva, P.

P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
[Crossref]

Qu, L.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Ralston, T. S.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE International Symposium on Phased Array Systems and Technology (2010), pp. 551–558.

Ram, S. S.

S. S. Ram and H. Ling, “Through-wall tracking of human movers using joint doppler and array processing,” IEEE Geosci. Remote Sens. Lett. 5, 537–541 (2008).
[Crossref]

Reisenzahn, A.

S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
[Crossref]

Sarabandi, K.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
[Crossref]

F. Aryanfar and K. Sarabandi, “Through wall imaging at microwave frequencies using space-time focusing,” in IEEE Antennas and Propagation Society Symposium (2004), Vol. 3, pp. 3063–3066.

Saunders, M. A.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[Crossref]

Soldovieri, F.

F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
[Crossref]

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[Crossref]

Solimene, R.

F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
[Crossref]

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[Crossref]

Starck, J.-L.

J. M. Fadili and J.-L. Starck, “Sparse representation-based image deconvolution by iterative thresholding,” in Astronomical Data Analysis (ADA), Marseille, France (2006).

Tay, T.

D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240.

Thiel, M.

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
[Crossref]

Venkatasubramanian, V.

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12, 528–531 (2005).
[Crossref]

Vetro, A.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Volakis, J. L.

P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
[Crossref]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

Wang, G.

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54, 4015–4025 (2006).
[Crossref]

Wang, H.

H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
[Crossref]

Weiss, Y.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

Wu, B.

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

Yang, Y.

Y. Yang and A. E. Fathy, “See-through-wall imaging using ultra wideband short-pulse radar system,” in IEEE Antennas and Propagation Society International Symposium (2005), Vol. 3B, pp. 334–337.

Zhang, W.

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
[Crossref]

Zhou, Z. O.

H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
[Crossref]

Zoubir, A. M.

C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
[Crossref]

IEEE Antennas Propag. Lett. (1)

H. Wang, R. M. Narayanan, and Z. O. Zhou, “Through-wall imaging of moving targets using UWB random noise radar,” IEEE Antennas Propag. Lett. 8, 802–805 (2009).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (2)

F. Soldovieri and R. Solimene, “Through-wall imaging via a linear inverse scattering algorithm,” IEEE Geosci. Remote Sens. Lett. 4, 513–517 (2007).
[Crossref]

S. S. Ram and H. Ling, “Through-wall tracking of human movers using joint doppler and array processing,” IEEE Geosci. Remote Sens. Lett. 5, 537–541 (2008).
[Crossref]

IEEE Signal Process. Lett. (2)

S. Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett. 15, 269–272 (2008).
[Crossref]

V. Venkatasubramanian and H. Leung, “A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging,” IEEE Signal Process. Lett. 12, 528–531 (2005).
[Crossref]

IEEE Signal Process. Mag. (1)

M. G. Amin and F. Ahmad, “Wideband synthetic aperture beamforming for through-the-wall imaging [lecture notes],” IEEE Signal Process. Mag. 25, 110–113 (2008).
[Crossref]

IEEE T. Geosci. Remote Sens. (3)

E. Ertin and R. L. Moses, “Through-the-wall SAR attributed scattering center feature estimation,” IEEE T. Geosci. Remote Sens. 47, 1338–1348 (2009).
[Crossref]

F. Soldovieri, R. Solimene, and G. Prisco, “A multiarray tomographic approach for through-wall imaging,” IEEE T. Geosci. Remote Sens. 46, 1192–1199 (2008).
[Crossref]

C. Debes, M. G. Amin, and A. M. Zoubir, “Target detection in single- and multiple-view through-the-wall radar imaging,” IEEE T. Geosci. Remote Sens. 47, 1349–1361 (2009).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aperture beamformer for imaging through a dielectric wall,” IEEE Trans. Aerosp. Electron. Syst. 41, 271–283 (2005).
[Crossref]

IEEE Trans. Antennas Propag. (2)

P. C. Chang, R. J. Burkholder, and J. L. Volakis, “Adaptive clean with target refocusing for through-wall image improvement,” IEEE Trans. Antennas Propag. 58, 155–162 (2010).
[Crossref]

P. Protiva, J. Mrkvica, and J. Machac, “Estimation of wall parameters from time-delay-only through-wall radar measurements,” IEEE Trans. Antennas Propag. 59, 4268–4278 (2011).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (4)

M. Dehmollaian, M. Thiel, and K. Sarabandi, “Through-the-wall imaging using differential SAR,” IEEE Trans. Geosci. Remote Sens. 47, 1289–1296 (2009).
[Crossref]

P. C. Chang, R. J. Burkholder, J. L. Volakis, R. J. Marhefka, and Y. Bayram, “High-frequency EM characterization of through-wall building imaging,” IEEE Trans. Geosci. Remote Sens. 47, 1375–1387 (2009).
[Crossref]

L. Li, W. Zhang, and F. Li, “A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics,” IEEE Trans. Geosci. Remote Sens. 48, 423–431 (2010).
[Crossref]

Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens. 48, 1408–1415 (2010).
[Crossref]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2354–2367 (2011).
[Crossref]

IEEE Trans. Signal Process. (1)

G. Wang and M. G. Amin, “Imaging through unknown walls using different standoff distances,” IEEE Trans. Signal Process. 54, 4015–4025 (2006).
[Crossref]

J. Fourier Anal. Appl. (1)

T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approximations,” J. Fourier Anal. Appl. 14, 629–654 (2008).
[Crossref]

Proc. SPIE (1)

A. Beeri and R. Daisy, “High-resolution through-wall imaging,” Proc. SPIE 6201, 62010J (2006).

SIAM Rev. (1)

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[Crossref]

Other (10)

D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolution using a normalized sparsity measure,” in Computer Vision and Pattern Recognition (CVPR) (2011), pp. 233–240.

S. Choudhary and U. Mitra, “Sparse blind deconvolution: what cannot be done,” in IEEE International Symposium on Information Theory,” (2014), pp. 3002–3006.

J. M. Fadili and J.-L. Starck, “Sparse representation-based image deconvolution by iterative thresholding,” in Astronomical Data Analysis (ADA), Marseille, France (2006).

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” in IEEE International Symposium on Phased Array Systems and Technology (2010), pp. 551–558.

F. Aryanfar and K. Sarabandi, “Through wall imaging at microwave frequencies using space-time focusing,” in IEEE Antennas and Propagation Society Symposium (2004), Vol. 3, pp. 3063–3066.

W. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1990).

Z. Knittl, Optics of Thin Films (Wiley, 1976).

H. Mansour and U. S. Kamilov, “Multipath removal by online blind deconvolution in through-the-wall-imaging,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 3106–3110.

H. Mansour, U. Kamilov, D. Liu, P. Orlik, P. Boufounos, K. Parsons, and A. Vetro, “Online blind deconvolution for sequential through-the-wall-radar-imaging,” in 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) (2016), pp. 61–65.

Y. Yang and A. E. Fathy, “See-through-wall imaging using ultra wideband short-pulse radar system,” in IEEE Antennas and Propagation Society International Symposium (2005), Vol. 3B, pp. 334–337.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup, which consists of transmit and receive dipole antennas translated by a two-axis translation stage. A vector network analyzer generates the radio frequency signal and samples the backscattered signal from the wall being scanned. The Green’s function due to the wall layers is nearly circularly symmetric.

Fig. 2.
Fig. 2.

Flowchart of the described blind deconvolution algorithm.

Fig. 3.
Fig. 3.

Simulated reconstruction of a target. The decibel scale is such that 0 dB is black and 30  dB is white; (a) is the true PSF; (b) is the true MTF; (c) is the estimated PSF; (d) is the estimated MTF; (e) is the magnitude of the synthetic data; and (f) is the reconstruction of the data.

Fig. 4.
Fig. 4.

Wall phantom with electrical ductwork intended to be similar to that used in residential construction. Photograph (a) shows the electrical conduit, junction box, two-by-four pine stud, and a Romex wire. Photograph (b) shows the phantom scanned by the antennas, which are on a plastic disc moved by a translation stage.

Fig. 5.
Fig. 5.

Reconstruction of electrical components behind gypsum plasterboard. (a) is the magnitude of the sampled data; (b) is the magnitude of the reconstruction, showing the electrical junction box, conduit, wire, and the pine stud; (c) is the estimated PSF; and (d) is the estimated MTF. The decibel scale is such that black is 0 dB and white is 30  dB.

Fig. 6.
Fig. 6.

Phantom consisting of the letters “DUKE” behind six layers of plywood totaling 20 cm in thickness. Photograph (a) shows the object. Photograph (b) shows the phantom being scanned through the plywood wall. Photograph (c) shows the six plies of the plywood wall.

Fig. 7.
Fig. 7.

Reconstruction of the letters “DUKE” behind six layers of plywood. (a) is the magnitude of the sampled data; (b) is the magnitude of the reconstruction; (c) is the estimated PSF; and (d) is the estimated MTF. The decibel scale is such that black is 0 dB and white is 30  dB.

Fig. 8.
Fig. 8.

Reconstruction of a cross-shaped target. (a) is the magnitude of the sampled data; (b) is the magnitude of the reconstruction; (c) is the estimated PSF; and (d) is the estimated MTF. The decibel scale is such that black is 0 dB and white is 30  dB.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Einc(x,y)=iE02πk0dkxdkykzexp[i(kxx+kyy)](ε+ε)kz=k02kx2ky2ε=(εxky2εykxky)x^+(εykx2εxkxky)y^kx2+ky2ε=(εxkx2+εykxky)kz2x^+(εxkxky+εyky2)kz2y^(εxkx+εyky)kz(kx2+ky2)z^(kxkz)2+(kykz)2+(kx2+ky2)2,
Etrans(x,y)=iE02πk0dkxdkykzexp[i(kxx+kyy)](τ(kx,ky,k0)ε+τ(kx,ky,k0)ε).
[T11T12T21T22]=n=1NZn+Zn+12Zn+1[exp(ikndn)Γnexp(ikndn)Γnexp(ikndn)exp(ikndn)]Γn=(Zn+1Zn)/(Zn+1+Zn),ΓN=0kn=k02εnkx2ky2.
W(x,y)=i2π2η0kP(xx,yy)χ(x,y)dxdywith  P(x,y)=Etrans(x,y)TEtrans(x,y),
χ1=|χ(x,y)|dxdy.
χT(x,y)=χ(x,y)|χ(x,y)|[|χ(x,y)|α]+||χ(x,y)|α|2,
|P(x,y)|2dxdy=1.
χ˜T(n)(kx,ky)=χT(n)(x,y)exp[i(kxx+kyy)]dxdy.
P˜(n)(kx,ky)=W˜(kx,ky)χ˜T(n)(kx,ky)*|χ˜T(n)(kx,ky)|2+λχ˜T(n)(kx,ky)22χ˜T(n)(kx,ky)22=|χ˜T(n)(kx,ky)|2dkxdky.
P(n)(x,y)=P(n)(x,y)P(n)2.
PM(n)(r)=[12πππ|P(n)(rcosθ,rsinθ)|1/2dθ]2Pϕ(n)(r)=12πππP(n)(rcosθ,rsinθ)dθPA(n)(r)=PM(n)(r)Pϕ(n)(r)|Pϕ(n)(r)|.
χ˜(n+1)(kx,ky)=W˜(kx,ky)P˜A(n)(kx,ky)*|P˜A(n)(kx,ky)|2+λ.
χ(n+1)(x,y)=1(2π)2χ˜(n+1)(kx,ky)exp[i(kxx+kyy)]dkxdky.
W˜(kx,ky)=W(x,y)exp[i(kxx+kyy)]dxdyW˜H(kx,ky)=W˜(kx,ky)[1exp(h22[kx2+ky2])]WH(x,y)=1(2π)2W˜H(x,y)exp[i(kxx+kyy)]dkxdky,
WT(x,y)=WH(x,y)cos(πxLX)cos(πyLY).