Abstract

In several emerging fields of study such as encryption in optical communications, determination of the number of photons in an optical pulse is of great importance. Typically, such photon-number-resolving sensors require operation at very low temperature (e.g., 4 K for superconducting-based detectors) and are limited to low pixel count (e.g., hundreds). In this paper, a CMOS-based photon-counting image sensor is presented with photon-number-resolving capability that operates at room temperature with resolution of 1 megapixel. Termed a quanta image sensor, the device is implemented in a commercial stacked (3D) backside-illuminated CMOS image sensor process. Without the use of avalanche multiplication, the 1.1 μm pixel-pitch device achieves 0.21e  rms average read noise with average dark count rate per pixel less than 0.2e/s, and 1040 fps readout rate. This novel platform technology fits the needs of high-speed, high-resolution, and accurate photon-counting imaging for scientific, space, security, and low-light imaging as well as a broader range of other applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Application of the Quanta image sensor concept to linear polarization imaging—a theoretical study

Leo Anzagira and Eric R. Fossum
J. Opt. Soc. Am. A 33(6) 1147-1154 (2016)

Optical detection of rapidly moving objects in space

William Priedhorsky and Jeffrey J. Bloch
Appl. Opt. 44(3) 423-433 (2005)

A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device

Myung-Jae Lee, Pengfei Sun, and Edoardo Charbon
Opt. Express 23(10) 13200-13209 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).
  2. N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.
  3. E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
    [Crossref]
  4. E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel,” in International Image Sensor Workshop (2007).
  5. N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
    [Crossref]
  6. J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
    [Crossref]
  7. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
    [Crossref]
  8. C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.
  9. M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
    [Crossref]
  10. E. R. Fossum, “Image sensor using single photon jots and processor to create pixels,” U.S. patent8,648,287 B1 (May26, 2006).
  11. E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.
  12. E. R. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE1.
  13. E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
    [Crossref]
  14. N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
    [Crossref]
  15. E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
    [Crossref]
  16. E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
    [Crossref]
  17. D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
    [Crossref]
  18. D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
    [Crossref]
  19. J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.
  20. J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
    [Crossref]
  21. J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
    [Crossref]
  22. J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
    [Crossref]
  23. J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
    [Crossref]
  24. R. M. Guidash, “Solid state image sensor with fast reset,” U.S. patent5,338,946 A (January8, 1993).
  25. R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).
  26. M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
    [Crossref]
  27. M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.
  28. E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).
  29. J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
    [Crossref]
  30. S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
    [Crossref]
  31. S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
    [Crossref]
  32. S. M. Sze, Semiconductor Sensors (Wiley, 1994), Vol. 55.
  33. N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
    [Crossref]
  34. N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.
  35. E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
    [Crossref]
  36. B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).
  37. S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.
  38. J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.
  39. S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.
  40. S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
    [Crossref]

2017 (1)

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

2016 (8)

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

2015 (5)

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

2014 (2)

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

2013 (1)

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

2012 (1)

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

2009 (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

2008 (1)

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

2003 (1)

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

2002 (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

2001 (1)

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

Ahn, J.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Akahori, T.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

Anzagira, L.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

Arai, K.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

Aull, B. F.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Chan, S. H.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

Charbon, E.

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel,” in International Image Sensor Workshop (2007).

Cunningham, T.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Dutton, N. A. W.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

Elgendy, O. A.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Fleetwood, D. M.

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

Fossum, E. R.

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

E. R. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE1.

E. R. Fossum, “Image sensor using single photon jots and processor to create pixels,” U.S. patent8,648,287 B1 (May26, 2006).

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

Guidash, R. M.

R. M. Guidash, “Solid state image sensor with fast reset,” U.S. patent5,338,946 A (January8, 1993).

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).

Gyongy, I.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

Hadwen, B. J.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

Hancock, B.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Henderson, R. K.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

Hoenk, M.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Holmes, A. J.

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

Hondongwa, D.

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

Hondongwa, D. B.

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

Hseih, B. C.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Hsiao, R. S.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Hsu, T. H.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Hynecek, J.

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

Ishihara, Y.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

Jones, T.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Jun, S.-W.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

Kagawa, K.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

Kawahito, S.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

Kim, B.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Kim, Y.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Kohono, A.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

Kosman, S.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Lee, K.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Lee, P. P.

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).

Lee, W.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Lim, M.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Lin, R. J.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Lu, Y. M.

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

Ma, J.

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

Masoodian, S.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

Moon, C.-R.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Moon, K.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Nelson, E.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

Nikzad, S.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Oda, E.

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

Odame, K.

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

Pain, B.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Park, H.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Parks, C.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

Rao, A.

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

Robbins, M. S.

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

Roberts, N.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

Seo, M.-W.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

Starkey, D.

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

Starkey, D. A.

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

Sze, S. M.

S. M. Sze, Semiconductor Sensors (Wiley, 1994), Vol. 55.

Takahashi, S.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Teranishi, N.

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

Tsai, C. S.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Tseng, C. H.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Tu, Y. L.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Wang, C. C.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Wang, T.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

Wang, X.

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

Wrigley, C.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

Wuu, S. G.

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

Yaniga, S.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

Yasutomi, K.

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

Yoo, J.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Zizza, R.

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

Electron. Lett. (1)

S. Masoodian, K. Odame, and E. R. Fossum, “Low-power readout circuit for quanta image sensors,” Electron. Lett. 50, 589–591 (2014).
[Crossref]

IEEE Electron Device Lett. (2)

J. Ma and E. R. Fossum, “Quanta image sensor jot with sub 0.3e−  r.m.s. read noise and photon counting capability,” IEEE Electron Device Lett. 36, 926–928 (2015).
[Crossref]

M.-W. Seo, S. Kawahito, K. Kagawa, and K. Yasutomi, “A 0.27e−  rms read noise 220-uV/e-conversion gain reset-gate-less CMOS image sensor with 0.11-μm CIS process,” IEEE Electron Device Lett. 36, 997–1000 (2015).
[Crossref]

IEEE J. Electron Devices Soc. (8)

D. A. Starkey and E. R. Fossum, “Determining conversion gain and read noise using a photon-counting histogram method for deep sub-electron read noise image sensors,” IEEE J. Electron Devices Soc. 4, 129–135 (2016).
[Crossref]

J. Ma, D. Starkey, A. Rao, K. Odame, and E. R. Fossum, “Characterization of quanta image sensor pump-gate jots with deep sub-electron read noise,” IEEE J. Electron Devices Soc. 3, 472–480 (2015).
[Crossref]

J. Ma, L. Anzagira, and E. R. Fossum, “A 1  μm-pitch quanta image sensor jot device with shared readout,” IEEE J. Electron Devices Soc. 4, 83–89 (2016).
[Crossref]

J. Ma and E. R. Fossum, “A pump-gate jot device with high conversion gain for a quanta image sensor,” IEEE J. Electron Devices Soc. 3, 73–77 (2015).
[Crossref]

J. Ma and E. R. Fossum, “Analytical modeling and TCAD simulation of a quanta image sensor jot device with a JFET source-follower for deep sub-electron read noise,” IEEE J. Electron Devices Soc. 5, 69–78 (2017).
[Crossref]

E. R. Fossum and D. B. Hondongwa, “A review of the pinned photodiode for CCD and CMOS image sensors,” IEEE J. Electron Devices Soc. 2, 33–43 (2014).
[Crossref]

E. R. Fossum, “Modeling the performance of single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 1, 166–174 (2013).
[Crossref]

E. R. Fossum, “Photon counting error rates in single-bit and multi-bit quanta image sensors,” IEEE J. Electron Devices Soc. 4, 136–143 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21, 1020–1022 (2009).
[Crossref]

IEEE Trans. Electron Devices (5)

J. Hynecek, “Impactron-a new solid state image intensifier,” IEEE Trans. Electron Devices 48, 2238–2241 (2001).
[Crossref]

N. Teranishi, “Required conditions for photon-counting image sensors,” IEEE Trans. Electron Devices 59, 2199–2205 (2012).
[Crossref]

M. S. Robbins and B. J. Hadwen, “The noise performance of electron multiplying charge-coupled devices,” IEEE Trans. Electron Devices 50, 1227–1232 (2003).
[Crossref]

S. Masoodian, A. Rao, J. Ma, K. Odame, and E. R. Fossum, “A 2.5  pJ/b binary image sensor as a pathfinder for quanta image sensors,” IEEE Trans. Electron Devices 63, 100–105 (2016).
[Crossref]

N. Teranishi, “Effect and limitation of pinned photodiode,” IEEE Trans. Electron Devices 63, 10–15 (2016).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

D. M. Fleetwood, “1/f noise and defects in microelectronic materials and devices,” IEEE Trans. Nucl. Sci. 62, 1462–1486 (2015).
[Crossref]

J. Phys. D (1)

E. Charbon, “Towards large scale CMOS single-photon detector arrays for lab-on-chip applications,” J. Phys. D 41, 094010 (2008).
[Crossref]

Lincoln Lab. J. (1)

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335–349 (2002).

Sensors (3)

N. A. W. Dutton, I. Gyongy, L. Parmesan, and R. K. Henderson, “Single photon counting performance and noise analysis of CMOS SPAD-based image sensors,” Sensors 16, 1122 (2016).
[Crossref]

E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The quanta image sensor: every photon counts,” Sensors 16, 1260 (2016).
[Crossref]

S. H. Chan, O. A. Elgendy, and X. Wang, “Images from bits: non-iterative image reconstruction for quanta image sensors,” Sensors 16, 1961 (2016).
[Crossref]

Other (17)

N. Teranishi, A. Kohono, Y. Ishihara, E. Oda, and K. Arai, “No image lag photodiode structure in the interline CCD image sensor,” in International Electron Devices Meeting (IEEE, 1982), pp. 324–327.

E. R. Fossum, “Image sensor using single photon jots and processor to create pixels,” U.S. patent8,648,287 B1 (May26, 2006).

E. R. Fossum, “What to do with sub-diffraction-limit (SDL) pixels? A proposal for a gigapixel digital film sensor (DFS),” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2005), pp. 214–217.

E. R. Fossum, “The quanta image sensor (QIS): concepts and challenges,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), paper JTuE1.

C. Parks, S. Kosman, E. Nelson, N. Roberts, and S. Yaniga, “A 30  Fps 1920 × 1080 pixel electron multiplying CCD image sensor with per-pixel switchable gain,” in International Image Sensor Workshop (IISW), Vaals, The Netherlands, June8-11,2015, pp. 8–11.

N. A. W. Dutton, L. Parmesan, A. J. Holmes, L. A. Grant, and R. K. Henderson, “320 × 240 oversampled digital single photon counting image sensor,” in Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014), pp. 1–2.

E. Charbon, “Will avalanche photodiode arrays ever reach 1 megapixel,” in International Image Sensor Workshop (2007).

S. M. Sze, Semiconductor Sensors (Wiley, 1994), Vol. 55.

B. Pain, T. Cunningham, S. Nikzad, M. Hoenk, T. Jones, C. Wrigley, and B. Hancock, “A back-illuminated megapixel CMOS image sensor,” in IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (NASA, 2005).

S. G. Wuu, C. C. Wang, B. C. Hseih, Y. L. Tu, C. H. Tseng, T. H. Hsu, R. S. Hsiao, S. Takahashi, R. J. Lin, and C. S. Tsai, “A leading-edge 0.9  μm pixel CMOS image sensor technology with backside illumination: future challenges for pixel scaling,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2010), pp. 14.1.1–14.1.4.

J. Ahn, C.-R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, and J. Yoo, “Advanced image sensor technology for pixel scaling down toward 1.0  μm,” in IEEE International Electron Devices Meeting (IEDM) (IEEE, 2008), pp. 1–4.

S. H. Chan and Y. M. Lu, “Efficient image reconstruction for gigapixel quantum image sensors,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP) (IEEE, 2014), pp. 312–316.

R. M. Guidash, “Solid state image sensor with fast reset,” U.S. patent5,338,946 A (January8, 1993).

R. M. Guidash and P. P. Lee, “Active pixel sensor with punch-through reset and cross-talk suppression,” U.S. patent5,872,371 A (February27, 1997).

J. Ma, D. Hondongwa, and E. R. Fossum, “Jot devices and the quanta image sensor,” in IEEE International Electron Devices Meeting (IEEE, 2014), pp. 10.1.1–10.1.4.

M.-W. Seo, T. Wang, S.-W. Jun, T. Akahori, and S. Kawahito, “A 0.44e−  rms read-noise 32  fps 0.5Mpixel high-sensitivity RG-less-pixel CMOS image sensor using bootstrapping reset,” in IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, 2017), pp. 80–81.

E. R. Fossum and J. Ma, “Gateless reset for image sensor pixels,” U.S. patentProv. App. 62/128, 983 (May3, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Theoretical modeling of photoelectron counting. (a) Probability distribution of the photoelectron voltage signal corrupted with read noise. (b) Illustration of counting error during thresholding to binary output in single-bit QIS. (c) The bit error rate (BER) in single-bit QIS as a function of read noise and quanta exposure H.

Fig. 2.
Fig. 2.

Introduction of the technologies used for read noise reduction. (a) Schematic of two-way shared readout pump-gate jots with conventional reset mechanism or punch-through reset. (b) Simplified layout of a pump-gate jot with punch-through reset. (c) Cross-section doping profile of the pump-gate jot from 3D TCAD simulation.

Fig. 3.
Fig. 3.

Illustrations of the architecture of the QIS prototype chip. (a) Simplified architecture of one 1Mjot array with high-speed single-bit digital outputs. (b) Schematic of one digital cluster. (c) Simplified architecture of one 1Mjot array with analog output. (d) Schematic of one analog cluster.

Fig. 4.
Fig. 4.

Experimental demonstration of photoelectron counting. Photon-counting histograms of one single PTR jot under four different illumination levels (H). Read noise of 0.17e  rms is shown from the VPM. 20,000 readouts were used to create each PCH.

Fig. 5.
Fig. 5.

Histograms of (a) read noise and (b) conversion gain of the TPG and PTR jots.

Fig. 6.
Fig. 6.

(a) Scatter plot of the voltage-referred read noise versus conversion gain of TPG and PTR jots. (b) Plot of the bit density versus the quanta exposure H. The experimental data from a group of 16k jots and one single jot are compared with the theoretical model with different read noise.

Fig. 7.
Fig. 7.

Dark-current-related results from experiments and simulations. (a) Probability density distribution of the dark current rate for 16k TPG jots at room temperature (23°C) and 60°C. (b) Simulated 3D potential profile of a TPG jot during the integration period. (c) PCH of thermally generated electrons in darkness for 256×64 TPG jots. The quantization of dark electrons can be observed.

Fig. 8.
Fig. 8.

(a) Experimental and simulated quantum efficiency results for the visible wavelength range. (b) Simulated distribution of incident photons going into a TPG jot.

Fig. 9.
Fig. 9.

Illustration of the image-formation process with the sample image from the 1Mjot QIS prototype chip operating at 1040 fps. (a) Magnified area in one field of binary single-photon data (1024×1024) grabbed from the 1Mjot QIS. (b) Same area in the binary field data with lower magnification. (c) Raw binary QIS output images, including eight continuous frames. (d) Gray-scale image processed with 8×8×8 jot cubicles using Purdue de-noising algorithm [39,40] for 128×128 resolution.

Tables (1)

Tables Icon

Table 1. Characterization Results of the Prototype 1Mjot QIS

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V=QeCFD,
P(U)=k=0{12πun2p[(Uk)22un2]eHHkk!},