Abstract

Although ultraviolet (UV) light is important in many areas of science and technology, there are very few if any lasers capable of delivering wavelength-tunable ultrashort UV pulses at high repetition rates. Here we report the generation of deep UV laser pulses at megahertz repetition rates and microjoule energies by means of dispersive wave (DW) emission from self-compressed solitons in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF). Pulses from an ytterbium fiber laser (300  fs) are first compressed to <25  fs in a SR-PCF-based nonlinear compression stage and subsequently used to pump a second SR-PCF stage for broadband DW generation in the deep UV. The UV wavelength is tunable by selecting the gas species and the pressure. Through rigorous optimization of the system, in particular employing a large-core fiber filled with light noble gases, we achieve 1 μJ pulse energies in the deep UV, which is more than 10 times higher, at average powers more than four orders of magnitude greater (reaching 1 W) than previously demonstrated, with only 20 μJ pulses from the pump laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuously wavelength-tunable high harmonic generation via soliton dynamics

Francesco Tani, Michael H. Frosz, John C. Travers, and Philip St.J. Russell
Opt. Lett. 42(9) 1768-1771 (2017)

Combined soliton pulse compression and plasma-related frequency upconversion in gas-filled photonic crystal fiber

W. Chang, P. Hölzer, J. C. Travers, and P. St. J. Russell
Opt. Lett. 38(16) 2984-2987 (2013)

High average power and single-cycle pulses from a mid-IR optical parametric chirped pulse amplifier

Ugaitz Elu, Matthias Baudisch, Hugo Pires, Francesco Tani, Michael H. Frosz, Felix Köttig, Alexey Ermolov, Philip St.J. Russell, and Jens Biegert
Optica 4(9) 1024-1029 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
    [Crossref]
  2. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  3. P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
    [Crossref]
  4. E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34, 1660–1662 (2009).
    [Crossref]
  5. J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
    [Crossref]
  6. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
    [Crossref]
  7. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
    [Crossref]
  8. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1  kW 1  mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
    [Crossref]
  9. J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41, 3567–3570 (2016).
    [Crossref]
  10. S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
    [Crossref]
  11. F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator,” Optica 2, 980–984 (2015).
    [Crossref]
  12. O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
    [Crossref]
  13. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216  W average power,” Opt. Lett. 41, 4332–4335 (2016).
    [Crossref]
  14. K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
    [Crossref]
  15. T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
    [Crossref]
  16. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref]
  17. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
    [Crossref]
  18. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref]
  19. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref]
  20. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
    [Crossref]
  21. F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.
  22. A. Ermolov, H. Valtna-Lukner, J. Travers, and P. St.J. Russell, “Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG,” Opt. Lett. 41, 5535–5538 (2016).
    [Crossref]
  23. U. Graf, M. Fieß, M. Schultze, R. Kienberger, F. Krausz, and E. Goulielmakis, “Intense few-cycle light pulses in the deep ultraviolet,” Opt. Express 16, 18956–18963 (2008).
    [Crossref]
  24. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
    [Crossref]
  25. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollowcore PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
    [Crossref]
  26. P. Uebel, S. T. Bauerschmidt, and P. St.J. Russell, “Broadband light source device and method of creating broadband light pulses,” European patentPCT/EP2017/000023.
  27. F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  28. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
    [Crossref]
  29. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).
  30. Y.-H. Cheng, J. K. Wahlstrand, N. Jhajj, and H. M. Milchberg, “The effect of long timescale gas dynamics on femtosecond filamentation,” Opt. Express 21, 4740–4751 (2013).
    [Crossref]
  31. F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
    [Crossref]

2017 (2)

2016 (5)

2015 (5)

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

F. Emaury, A. Diebold, C. J. Saraceno, and U. Keller, “Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator,” Optica 2, 980–984 (2015).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

2014 (2)

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

2013 (2)

2012 (1)

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

2011 (2)

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

2009 (1)

2008 (1)

2004 (1)

1999 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

1993 (1)

1985 (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

1982 (1)

K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
[Crossref]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).

Abdolvand, A.

Ahmed, G.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Amsanpally, A.

Apolonski, A.

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Backus, S.

Balciunas, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Baltuska, A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Bauer, D.

Bauerschmidt, S. T.

P. Uebel, S. T. Bauerschmidt, and P. St.J. Russell, “Broadband light source device and method of creating broadband light pulses,” European patentPCT/EP2017/000023.

Baum, P.

Baz, A.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Bisgaard, C. Z.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Blondy, J. M.

Brons, J.

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41, 3567–3570 (2016).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Chafer, M.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Cheng, Y.-H.

Clarkin, O. J.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Cormier, E.

Coutts, D. W.

Debord, B.

Diebold, A.

Drozdy, A.

Dudley, J. M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Durfee, C. G.

Edavalath, N. N.

Eidam, T.

Emaury, F.

Erkintalo, M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Ermolov, A.

A. Ermolov, H. Valtna-Lukner, J. Travers, and P. St.J. Russell, “Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG,” Opt. Lett. 41, 5535–5538 (2016).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

Fan, G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Fedulova, E.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Fieß, M.

Fourcade-Dutin, C.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Frosz, M. H.

Genty, G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Gerome, F.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Gérôme, F.

Gottschall, T.

Goulielmakis, E.

Graf, U.

Granados, E.

Günendi, M. C.

Hädrich, S.

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216  W average power,” Opt. Lett. 41, 4332–4335 (2016).
[Crossref]

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Hockett, P.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Hoffmann, A.

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Hölzer, P.

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Hugonnot, E.

Jain, K.

K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
[Crossref]

Jhajj, N.

Jójárt, P.

Joly, N. Y.

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Kapteyn, H. C.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Keller, U.

Kienberger, R.

Kienel, M.

Kittelmann, O.

Klas, R.

Klenke, A.

Korn, G.

Köttig, F.

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

Krausz, F.

Krebs, M.

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Lehmeier, H. J.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Leupacher, W.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Limpert, J.

Lin, B. J.

K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
[Crossref]

Lochbrunner, S.

Lücking, F.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Mak, K. F.

Maurel, M.

Ménard, J.-M.

Milchberg, H. M.

Müller, M.

Murdoch, S. G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Murnane, M. M.

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Noack, F.

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Osvay, K.

Paulus, G. G.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Penzkofer, A.

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).

Pervak, V.

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41, 3567–3570 (2016).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Plötner, M.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).

Pronin, O.

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41, 3567–3570 (2016).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Riedle, E.

Ringling, J.

Rothhardt, J.

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216  W average power,” Opt. Lett. 41, 4332–4335 (2016).
[Crossref]

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Russell, P. St.J.

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollowcore PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

A. Ermolov, H. Valtna-Lukner, J. Travers, and P. St.J. Russell, “Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG,” Opt. Lett. 41, 5535–5538 (2016).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

P. Uebel, S. T. Bauerschmidt, and P. St.J. Russell, “Broadband light source device and method of creating broadband light pulses,” European patentPCT/EP2017/000023.

Saraceno, C. J.

Schultze, M.

Scol, F.

Seidel, M.

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Shestaev, E.

Spence, D. J.

Squier, J.

Stolow, A.

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Sutter, D.

Tani, F.

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).

Travers, J.

Travers, J. C.

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

F. Tani, J. C. Travers, and P. St.J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. St.J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

Trubetskov, M.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Tünnermann, A.

Udem, T.

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Uebel, P.

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollowcore PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

P. Uebel, S. T. Bauerschmidt, and P. St.J. Russell, “Broadband light source device and method of creating broadband light pulses,” European patentPCT/EP2017/000023.

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

Valtna-Lukner, H.

Várallyay, Z.

Vincetti, L.

Voronin, A. A.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Wahlstrand, J. K.

Willson, C. G.

K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
[Crossref]

Witting, T.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Xu, Y. Q.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Zheltikov, A. M.

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

IEEE Electron Dev. Lett. (1)

K. Jain, C. G. Willson, and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers,” IEEE Electron Dev. Lett. 3, 53–55 (1982).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (2)

T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, and F. Benabid, “A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre,” Nat. Commun. 6, 6117–6123 (2015).
[Crossref]

O. Pronin, M. Seidel, F. Lücking, J. Brons, E. Fedulova, M. Trubetskov, V. Pervak, A. Apolonski, T. Udem, and F. Krausz, “High-power multi-megahertz source of waveform-stabilized few-cycle light,” Nat. Commun. 6, 6988–6993 (2015).
[Crossref]

Nat. Photonics (1)

S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann, “High photon flux table-top coherent extreme-ultraviolet source,” Nat. Photonics 8, 779–783 (2014).
[Crossref]

Nat. Phys. (1)

P. Hockett, C. Z. Bisgaard, O. J. Clarkin, and A. Stolow, “Time-resolved imaging of purely valence-electron dynamics during a chemical reaction,” Nat. Phys. 7, 612–615 (2011).
[Crossref]

Opt. Commun. (1)

H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985).
[Crossref]

Opt. Express (3)

Opt. Lett. (11)

S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, “Energetic sub-2-cycle laser with 216  W average power,” Opt. Lett. 41, 4332–4335 (2016).
[Crossref]

K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, and P. St.J. Russell, “Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages,” Opt. Lett. 40, 1238–1241 (2015).
[Crossref]

E. Granados, D. W. Coutts, and D. J. Spence, “Mode-locked deep ultraviolet Ce:LiCAF laser,” Opt. Lett. 34, 1660–1662 (2009).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[Crossref]

M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, “1  kW 1  mJ eight-channel ultrafast fiber laser,” Opt. Lett. 41, 3439–3442 (2016).
[Crossref]

J. Brons, V. Pervak, D. Bauer, D. Sutter, O. Pronin, and F. Krausz, “Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator,” Opt. Lett. 41, 3567–3570 (2016).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, “Broadband robustly single-mode hollowcore PCF by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016).
[Crossref]

F. Tani, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Continuously wavelength-tunable high harmonic generation via soliton dynamics,” Opt. Lett. 42, 1768–1771 (2017).
[Crossref]

A. Ermolov, H. Valtna-Lukner, J. Travers, and P. St.J. Russell, “Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG,” Opt. Lett. 41, 5535–5538 (2016).
[Crossref]

Optica (2)

Phys. Rev. A (2)

A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. St.J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015).
[Crossref]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref]

Phys. Rev. Lett. (2)

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St.J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Sov. Phys. J. Exp. Theor. Phys. (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. J. Exp. Theor. Phys. 23, 924–934 (1966).

Other (3)

P. Uebel, S. T. Bauerschmidt, and P. St.J. Russell, “Broadband light source device and method of creating broadband light pulses,” European patentPCT/EP2017/000023.

F. Köttig, F. Tani, P. Uebel, P. St.J. Russell, and J. C. Travers, “High average-power and energy deep-ultraviolet femtosecond pulse source driven by 10  MHz fibre-laser,” in European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (2015), paper PD_A_7.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental setup. TFP, thin-film polarizer; CM, negatively chirped mirror. (b) Temporal pulse shape at the input of the second fiber at a 100 kHz repetition rate. The pulses were measured after the nonlinear compression stage via second-harmonic generation FROG. The dispersion of subsequent optical elements was added numerically. (c) Measured (top) and retrieved (bottom) FROG trace. The colorscale covers 30 dB. (d) Scanning electron micrograph of the single-ring PCF.

Fig. 2.
Fig. 2.

Simulated (a) temporal and (b) spectral pulse propagation in a SR-PCF with 53 μm core diameter filled with 53 bar He. Input pulses as measured experimentally [Fig. 1(b)] at 17 μJ input energy. The spectral energy density S is shown per unit wavelength, normalized to its peak value. The zero-dispersion wavelength (dashed line) is at 576 nm. N and A denote regions of normal and anomalous dispersion, respectively. The input pulse self-compresses to a duration of 1.1 fs FWHM before emitting a DW at 200  nm, with 2 μJ energy and up to 0.3 GW peak power. The DW is emitted with a duration <10  fs and broadens to 21 fs at the fiber output (this can be avoided by optimizing the fiber length).

Fig. 3.
Fig. 3.

Phase-matching to DWs for a fiber with 53 μm core diameter and a pump at 1030 nm with 1 GW peak power. (a) Dephasing rate ϑ for a fiber filled with 53 bar He. Phase-matching occurs at 211 nm (circle). The shallow dispersion of the gas-filled fiber yields long coherence lengths for broadband DW emission (here the coherence length exceeds 3 cm for a bandwidth of 15 nm/103 THz, corresponding to a relative bandwidth of 7.3%). (b) Phase-matching wavelength λDW as a function of pressure for He and Ne.

Fig. 4.
Fig. 4.

(a) Measured (blue) and simulated (undershaded in gray) spectra from the second fiber when filled with He and pumped with 17 μJ pulses at a 100 kHz repetition rate. The measured pulse energy in the UV was 1.05 μJ (105 mW average power). (b) Measured (red) and simulated (gray) spectra for a fiber filled with Ne and pumped with 9 μJ pulses at 1.92 MHz. In this case, the measured pulse energy in the UV was 0.54 μJ (1.03 W average power).

Fig. 5.
Fig. 5.

(a) Power in the UV and (b) wavelength (spectral centroid) of the DWs as function of the repetition rate when the fiber was filled with He and Ne. Wavelength of the DWs as function of the input energy for the (c) He-filled and (d) Ne-filled fiber for 100 kHz (dots) and 1.92 MHz (squares) repetition rates. Gray triangles are simulated points.

Fig. 6.
Fig. 6.

UV pulse energy, (a) measured at a 100 kHz repetition rate and (b) simulated. For each gas, the pressure was adjusted so that DWs were emitted at 200220  nm. In the simulations, the loss due to ionization is up to 4.7 μJ in Kr, 3.1 μJ in Ar, 0.13 μJ in Ne, and 16 nJ in He.