Abstract

Multispectral imaging plays an important role in many applications, from astronomical imaging and earth observation to biomedical imaging. However, current technologies are complex with multiple alignment-sensitive components and spatial and spectral parameters predetermined by manufacturers. Here, we demonstrate a single-shot multispectral imaging technique that gives flexibility to end users with a very simple optical setup, thanks to spatial correlation and spectral decorrelation of speckle patterns. These seemingly random speckle patterns are point spread functions (PSFs) generated by light from point sources propagating through a strongly scattering medium. The spatial correlation of PSFs allows image recovery with deconvolution techniques, while the spectral decorrelation allows them to play the role of tunable spectral filters in the deconvolution process. Our demonstrations utilizing optical physics of strongly scattering media and computational imaging present a cost-effective approach for multispectral imaging with many advantages.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter

Pedro Latorre-Carmona, Emilio Sánchez-Ortiga, Xiao Xiao, Filiberto Pla, Manuel Martínez-Corral, Héctor Navarro, Genaro Saavedra, and Bahram Javidi
Opt. Express 20(23) 25960-25969 (2012)

RGB-NIR multispectral camera

Zhenyue Chen, Xia Wang, and Rongguang Liang
Opt. Express 22(5) 4985-4994 (2014)

Compact camera for multispectral and conventional imaging based on patterned filters

Torbjørn Skauli, Hans Erling Torkildsen, Stephane Nicolas, Thomas Opsahl, Trym Haavardsholm, Ingebjørg Kåsen, and Atle Rognmo
Appl. Opt. 53(13) C64-C71 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
    [Crossref]
  2. J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
    [Crossref]
  3. M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
    [Crossref]
  4. S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
    [Crossref]
  5. W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
    [Crossref]
  6. L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
    [Crossref]
  7. D.-W. Sun, Computer Vision Technology for Food Quality Evaluation (Academic, 2016).
  8. C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.
  9. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  10. A. Orth, M. J. Tomaszewski, R. N. Ghosh, and E. Schonbrun, “Gigapixel multispectral microscopy,” Optica 2, 654–662 (2015).
    [Crossref]
  11. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).
    [Crossref]
  12. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007).
    [Crossref]
  13. W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
    [Crossref]
  14. C. D. Tran, “Development and analytical applications of multispectral imaging techniques: an overview,” Fresenius’ J. Anal. Chem. 369, 313–319 (2001).
    [Crossref]
  15. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  16. M. Gu, X. Gan, and X. Deng, Microscopic Imaging Through Turbid Media (Springer, 2015).
  17. J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
    [Crossref]
  18. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
    [Crossref]
  19. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
    [Crossref]
  20. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
    [Crossref]
  21. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).
  22. J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
    [Crossref]
  23. C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
    [Crossref]
  24. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
    [Crossref]
  25. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  26. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [Crossref]
  27. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  28. A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
    [Crossref]
  29. E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
    [Crossref]
  30. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
    [Crossref]
  31. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
    [Crossref]
  32. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
    [Crossref]
  33. B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
    [Crossref]
  34. M. Chakrabarti, M. L. Jakobsen, and S. G. Hanson, “Speckle-based spectrometer,” Opt. Lett. 40, 3264–3267 (2015).
    [Crossref]
  35. M. Mazilu, T. Vettenburg, A. Di Falco, and K. Dholakia, “Random super-prism wavelength meter,” Opt. Lett. 39, 96–99 (2014).
    [Crossref]

2017 (2)

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

2016 (6)

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
[Crossref]

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
[Crossref]

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
[Crossref]

2015 (7)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
[Crossref]

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

M. Chakrabarti, M. L. Jakobsen, and S. G. Hanson, “Speckle-based spectrometer,” Opt. Lett. 40, 3264–3267 (2015).
[Crossref]

A. Orth, M. J. Tomaszewski, R. N. Ghosh, and E. Schonbrun, “Gigapixel multispectral microscopy,” Optica 2, 654–662 (2015).
[Crossref]

2014 (3)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

M. Mazilu, T. Vettenburg, A. Di Falco, and K. Dholakia, “Random super-prism wavelength meter,” Opt. Lett. 39, 96–99 (2014).
[Crossref]

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

2013 (3)

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

2012 (2)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

2010 (2)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).
[Crossref]

2007 (1)

2003 (1)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

2001 (1)

C. D. Tran, “Development and analytical applications of multispectral imaging techniques: an overview,” Fresenius’ J. Anal. Chem. 369, 313–319 (2001).
[Crossref]

1994 (1)

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

1988 (1)

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Akselrod, G. M.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

Andresen, E. R.

Anger, C.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Belton, M. J. S.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Bertolotti, J.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Brady, D. J.

Breitbarth, A.

C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.

Breneman, H.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Cao, H.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Carr, M. H.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Chakrabarti, M.

Chapman, C. R.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Chen, L.

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

Cho, Y.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Choudhary, T. R.

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Clément, B.

S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
[Crossref]

Crozier, K. B.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref]

Davies, M. E.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Deng, X.

M. Gu, X. Gan, and X. Deng, Microscopic Imaging Through Turbid Media (Springer, 2015).

Dholakia, K.

Di Falco, A.

DiMaio, J. M.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Edrei, E.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
[Crossref]

Fan, W.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Fanale, F. P.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Feng, S.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Gan, X.

M. Gu, X. Gan, and X. Deng, Microscopic Imaging Through Turbid Media (Springer, 2015).

Gao, L.

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Gehm, M. E.

Geissler, P.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Ghosh, R. N.

Gierasch, P. J.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Gigan, S.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Greeley, R.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Greenberg, R.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Gu, M.

M. Gu, X. Gan, and X. Deng, Microscopic Imaging Through Turbid Media (Springer, 2015).

Hagen, N.

Han, S.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Hanson, S. G.

Harvey, A. R.

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

He, H.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Head, J. W.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Heffernan, C.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Huang, W.

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

Hubert-Moy, L.

S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
[Crossref]

Ingersoll, A. P.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Jakobsen, M. L.

Jin, K.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

John, R.

Johnson, T. V.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Katz, O.

A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. Katz, “Widefield lensless imaging through a fiber bundle via speckle correlations,” Opt. Express 24, 16835–16855 (2016).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Kester, R. T.

Kim, M.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

Klaasen, K. P.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Ko, S. H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Lagendijk, A.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Lee, Y.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

Li, J.

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

Li, W.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Liew, S. F.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Liu, L.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Lu, Y.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Luo, Q.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
[Crossref]

MacKenzie, L. E.

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

Mazilu, M.

McEwen, A.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

McNaught, A. I.

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

Mikkelsen, M. H.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

Mo, W.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Mosk, A. P.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Naik, D. N.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Nam, K. T.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Neukum, G.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Newman, J. A.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
[Crossref]

Notni, G.

C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.

Oron, D.

Orth, A.

Osten, W.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Park, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, H.

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref]

Park, J.

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, J.-H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Park, Y.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Pedrini, G.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Pieters, C.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Pilcher, C. B.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Porat, A.

Rapinel, S.

S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
[Crossref]

Redding, B.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Rigneault, H.

Rodriguez, C.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Rosenberger, M.

C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Sagan, C.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Sarma, R.

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Scarcelli, G.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Optical imaging through dynamic turbid media using the fourier-domain shower-curtain effect,” Optica 3, 71–74 (2016).
[Crossref]

Schonbrun, E.

Schulz, T. J.

Sellke, E. W.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Shin, J.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Singh, A. K.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

Smith, D. R.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

Squiers, J. J.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Stewart, J. W.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

Sun, D.-W.

D.-W. Sun, Computer Vision Technology for Food Quality Evaluation (Academic, 2016).

Takeda, M.

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Thatcher, J. E.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Thompson, W. R.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Tkaczyk, T. S.

Tomaszewski, M. J.

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Tran, C. D.

C. D. Tran, “Development and analytical applications of multispectral imaging techniques: an overview,” Fresenius’ J. Anal. Chem. 369, 313–319 (2001).
[Crossref]

van Putten, E. G.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vettenburg, T.

Veverka, J.

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

Vos, W. L.

H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2, 424–429 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Wang, Q.

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

Webb, K. J.

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
[Crossref]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Willett, R. M.

Williams, R. M.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Xie, X.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Yilmaz, H.

Yu, H.

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

Zhang, C.

C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.

Zhang, X.

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

Zhou, J.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Zhuang, H.

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Adv. Mater. (1)

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29, 1602971 (2017).
[Crossref]

Exp. Eye Res. (1)

L. E. MacKenzie, T. R. Choudhary, A. I. McNaught, and A. R. Harvey, “In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging,” Exp. Eye Res. 149, 48–58 (2016).
[Crossref]

Fresenius’ J. Anal. Chem. (1)

C. D. Tran, “Development and analytical applications of multispectral imaging techniques: an overview,” Fresenius’ J. Anal. Chem. 369, 313–319 (2001).
[Crossref]

Int. J. Appl. Earth Observ. Geoinf. (1)

S. Rapinel, L. Hubert-Moy, and B. Clément, “Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping,” Int. J. Appl. Earth Observ. Geoinf. 37, 56–64 (2015).
[Crossref]

J. Biomed. Opt. (1)

W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M. DiMaio, and J. E. Thatcher, “Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging,” J. Biomed. Opt. 20, 121305 (2015).
[Crossref]

J. Food Eng. (1)

W. Huang, J. Li, Q. Wang, and L. Chen, “Development of a multispectral imaging system for online detection of bruises on apples,” J. Food Eng. 146, 62–71 (2015).
[Crossref]

Light Sci. Appl. (1)

A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light Sci. Appl. 6, e16219 (2017).
[Crossref]

Nat. Methods (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Methods 17, 1010–1014 (2011).

Nat. Photonics (4)

J.-H. Park, C. Park, H. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Cho, and Y. Park, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Photonics 7, 454–458 (2013).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

B. Redding, S. F. Liew, R. Sarma, and H. Cao, “Compact spectrometer based on a disordered photonic chip,” Nat. Photonics 7, 746–751 (2013).
[Crossref]

Nature (2)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Optica (3)

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87, 930–941 (2010).
[Crossref]

Phys. Rev. Lett. (3)

J. A. Newman, Q. Luo, and K. J. Webb, “Imaging hidden objects with spatial speckle intensity correlations over object position,” Phys. Rev. Lett. 116, 073902 (2016).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

C. Park, J.-H. Park, C. Rodriguez, H. Yu, M. Kim, K. Jin, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y.-H. Lee, Y.-H. Cho, and Y. Park, “Full-field subwavelength imaging using a scattering superlens,” Phys. Rev. Lett. 113, 113901 (2014).
[Crossref]

Sci. Rep. (3)

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

H. Park and K. B. Crozier, “Multispectral imaging with vertical silicon nanowires,” Sci. Rep. 3, 2460 (2013).
[Crossref]

Science (2)

M. J. S. Belton, R. Greeley, R. Greenberg, P. Geissler, A. McEwen, K. P. Klaasen, C. Heffernan, H. Breneman, T. V. Johnson, J. W. Head, C. Pieters, G. Neukum, C. R. Chapman, C. Anger, M. H. Carr, M. E. Davies, F. P. Fanale, P. J. Gierasch, W. R. Thompson, J. Veverka, C. Sagan, A. P. Ingersoll, and C. B. Pilcher, “Galileo multispectral imaging of the north polar and eastern limb regions of the moon,” Science 264, 1112–1115 (1994).
[Crossref]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[Crossref]

Other (4)

D.-W. Sun, Computer Vision Technology for Food Quality Evaluation (Academic, 2016).

C. Zhang, M. Rosenberger, A. Breitbarth, and G. Notni, “A novel 3D multispectral vision system based on filter wheel cameras,” in IEEE International Conference on Imaging Systems and Techniques (IST) (2016), pp. 267–272.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

M. Gu, X. Gan, and X. Deng, Microscopic Imaging Through Turbid Media (Springer, 2015).

Supplementary Material (2)

NameDescription
» Supplement 1       It contains detailed information regarding the optical setup and the post-processing for the data, measurements for the field of view, demonstrations for mixed color components and a demonstration for the spectroscopy technique with scattering media.
» Visualization 1       Live reconstruction of the multispectral objects from their single-shot grayscale speckle images.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of our multispectral imaging technique with a scattering medium and a monochromatic camera: simulation results. (a) Light from a multispectral object propagating through a strongly scattering medium generates a speckle pattern on a monochromatic camera. (b) The speckle patterns produced by a central point object illuminated with different spectral bands are recorded as spectral PSFs. (c) Reconstructed spectral images from the monochromatic speckle image using corresponding spectral PSFs. (d) A full-spectrum image of the object is created by superimposing of individual spectral images. Scale bars: 20 pixels.

Fig. 2.
Fig. 2.

Experimental setup and the reconstructed multispectral images. (a) A common projector without a magnification lens generates 2D multispectral objects on the plane of iris-1 (the object plane), which blocks any stray light from projectors. The light path is scrambled by a scattering medium (optical diffuser) then goes to a monochromatic camera after passing through the second iris, which plays the role of aperture in our imaging system. (b) The raw speckle pattern captured by the monochromatic camera. (c) Reconstructed multispectral images (upper half) and the intensity of their central rows (lower half), respectively. Two arrows mark the central row of the images. (d) A composite multispectral image is constructed by superimposing three individual RGB spectral images in (c). Scale bars: 1000 μm in (b) and 100 μm in others.

Fig. 3.
Fig. 3.

Relationship between cross correlation and spectral overlap of spectral PSFs. (a) The white and RGB spectral PSFs and their cross-correlation coefficients. (b) Spectra of the four spectral PSFs (RGB and white) together with three narrowband PSFs at RGB, respectively. Three narrow bandpass filters are added in front of the projector, then we measure the transmitted spectra. (c) The white PSF and RGB narrow spectral PSFs together with their cross-correlation coefficients. Scale bars: 100 μm.

Fig. 4.
Fig. 4.

Narrowband multispectral imaging analysis. (a) Reconstructed multispectral images from the raw speckle image in Fig. 2(b) with corresponding narrow spectral PSFs. Scale bars: 100 μm. Two arrows mark the central row of the images. (b) Intensity across the central row of the corresponding images in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSFλ1PSFλ2{0if  λ1λ2δif  λ1=λ2,
Oλdeconv(I,PSFλ).