Abstract

Optical nanofibers (ONFs) of sub-wavelength dimensions confine light in modes with a strong evanescent field that can trap, probe, and manipulate nearby quantum systems. To measure the evanescent field and propagating modes and to optimize ONF performance, a surface probe is desirable during fabrication. We demonstrate a nondestructive near-field measurement of light propagation in ONFs by sampling the local evanescent field with a microfiber. This approach reveals the behavior of all propagating modes, and because the modal beat lengths in cylindrical waveguides depend strongly on the radius, it simultaneously provides exquisite sensitivity to the ONF radius. We show that our measured spatial frequencies provide a map of the average ONF radius (over a 600 μm window) along the 10 mm ONF waist with a 40 pm resolution and a high signal-to-noise ratio. The measurements agree with scanning electron microscopy (SEM) to within SEM instrument resolutions. This fast method is immune to polarization, intrinsic birefringence, mechanical vibrations, and scattered light and provides a set of constraints to protect from systematic errors in the measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation

Jonathan E. Hoffman, Fredrik K. Fatemi, Guy Beadie, Steven L. Rolston, and Luis A. Orozco
Optica 2(5) 416-423 (2015)

Modal characterization of nanophotonic waveguides for atom trapping

Todd H. Stievater, Dmitry A. Kozak, Marcel W. Pruessner, Rita Mahon, Doewon Park, William S. Rabinovich, and Fredrik K. Fatemi
Opt. Mater. Express 6(12) 3826-3837 (2016)

Dynamics of trapped atoms around an optical nanofiber probed through polarimetry

Pablo Solano, Fredrik K. Fatemi, Luis A. Orozco, and S. L. Rolston
Opt. Lett. 42(12) 2283-2286 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref]
  2. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  3. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
    [Crossref]
  4. R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref]
  5. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
    [Crossref]
  6. S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
    [Crossref]
  7. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref]
  8. D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
    [Crossref]
  9. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
    [Crossref]
  10. J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
    [Crossref]
  11. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [Crossref]
  12. J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
    [Crossref]
  13. C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
    [Crossref]
  14. B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
    [Crossref]
  15. D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
    [Crossref]
  16. R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
    [Crossref]
  17. H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
    [Crossref]
  18. N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
    [Crossref]
  19. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
    [Crossref]
  20. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
    [Crossref]
  21. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
    [Crossref]
  22. J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
    [Crossref]
  23. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50, 2594–2600 (2011).
    [Crossref]
  24. T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
    [Crossref]
  25. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with Angstrom accuracy,” Opt. Lett. 35, 4006–4008 (2010).
    [Crossref]
  26. Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
    [Crossref]
  27. J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40, 4122–4125 (2015).
    [Crossref]
  28. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson, “Probing optical microfiber nonuniformities at nanoscale,” Opt. Lett. 31, 2393–2395 (2006).
    [Crossref]
  29. L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).
  30. S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
    [Crossref]
  31. A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
    [Crossref]
  32. M. Gasior and J. L. Gonzalez, “Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation,” AIP Conf. Proc. 732, 276–285 (2004).
    [Crossref]
  33. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]

2016 (2)

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

2015 (7)

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2, 416–423 (2015).
[Crossref]

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40, 4122–4125 (2015).
[Crossref]

2014 (4)

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

2013 (4)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

2012 (2)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

2011 (3)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50, 2594–2600 (2011).
[Crossref]

2010 (2)

M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with Angstrom accuracy,” Opt. Lett. 35, 4006–4008 (2010).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

2008 (1)

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

2006 (1)

2005 (1)

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

2004 (1)

M. Gasior and J. L. Gonzalez, “Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation,” AIP Conf. Proc. 732, 276–285 (2004).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

1991 (1)

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

1965 (1)

Albrecht, B.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Appel, J.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Baker, C.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).

Balykin, V. I.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Beadie, G.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Béguin, J.-B.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

Bookjans, E. M.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Bowen, W. P.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).

Chandra, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Chormaic, S. N.

R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Christensen, S. L.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Clairon, A.

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

Clausen, C.

Corzo, N. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Dawkins, S. T.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Deasy, K.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

Dulashko, Y.

Farrell, G.

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

Fatemi, F. K.

Fini, J. M.

Franson, J. D.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Frawley, M.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

Gasior, M.

M. Gasior and J. L. Gonzalez, “Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation,” AIP Conf. Proc. 732, 276–285 (2004).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Goban, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Gokhroo, V.

R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Gonzalez, J. L.

M. Gasior and J. L. Gonzalez, “Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation,” AIP Conf. Proc. 732, 276–285 (2004).
[Crossref]

Gouraud, B.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Grover, J.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Guellati, S.

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

Gupta, S. D.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hakuta, K.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40, 4122–4125 (2015).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hale, A.

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Hlubina, P.

Hoffman, J. E.

Hollenbach, U.

Iakoupov, I.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Jones, D. E.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Junge, C.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Kavungal, V.

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

Keloth, J.

Kien, F. L.

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Kluge, K. W.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Kumar, R.

R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Kupriyanov, D. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Laurat, J.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Madsen, L. S.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).

Malitson, I. H.

Maxein, D.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

Mohr, J.

Morin, O.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Morinaga, M.

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

Morrissey, M. J.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Müller, J. H.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Napiorkowski, M.

Nic Chormaic, S.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Nicholson, J. W.

Nicolas, A.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

O’shea, D.

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Orozco, L. A.

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

Phillips, W. D.

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

Pittman, T. B.

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

Polzik, E. S.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Prel, E.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Rauschenbeutel, A.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Ravets, S.

Reitz, D.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Rolston, S. L.

Rubinsztein-Dunlop, H.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).

Russell, L.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Sadgrove, M.

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Salomon, C.

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

Sayrin, C.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Schneeweiss, P.

C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms,” Optica 2, 353–356 (2015).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Semenova, Y.

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Sheremet, A. S.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Sieber, H.

Solano, P.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Sørensen, A. S.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

Sørensen, H. L.

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Sumetsky, M.

Szczurowski, M.

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

Truong, V. G.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Urbanczyk, W.

Vetsch, E.

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Volz, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

Wu, Q.

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

Yalla, R.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40, 4122–4125 (2015).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

Zhao, H.-Q.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

AIP Adv. (1)

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

AIP Conf. Proc. (1)

M. Gasior and J. L. Gonzalez, “Improving FFT frequency measurement resolution by parabolic and Gaussian spectrum interpolation,” AIP Conf. Proc. 732, 276–285 (2004).
[Crossref]

Appl. Opt. (1)

Europhys. Lett. (1)

A. Clairon, C. Salomon, S. Guellati, and W. D. Phillips, “Ramsey resonance in a Zacharias fountain,” Europhys. Lett. 16, 165–170 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, “High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment,” IEEE Photon. Technol. Lett. 12, 182–183 (2000).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref]

Nat. Commun. (1)

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeutel, “Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide,” Nat. Commun. 5, 5713 (2014).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref]

New J. Phys. (1)

R. Kumar, V. Gokhroo, and S. N. Chormaic, “Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface,” New J. Phys. 17, 123012 (2015).
[Crossref]

Opt. Commun. (1)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Optica (2)

Phys. Rev. A (2)

D. E. Jones, J. D. Franson, and T. B. Pittman, “Ladder-type electromagnetically induced transparency using nanofiber-guided light in a warm atomic vapor,” Phys. Rev. A 92, 043806 (2015).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Phys. Rev. Lett. (9)

S. T. Dawkins, R. Mitsch, D. Reitz, E. Vetsch, and A. Rauschenbeutel, “Dispersive optical interface based on nanofiber-trapped atoms,” Phys. Rev. Lett. 107, 243601 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

D. O’shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, and M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

H. L. Sørensen, J.-B. Béguin, K. W. Kluge, I. Iakoupov, A. S. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Coherent backscattering of light off one-dimensional atomic strings,” Phys. Rev. Lett. 117, 133604 (2016).
[Crossref]

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref]

Proc. SPIE (1)

Y. Semenova, V. Kavungal, Q. Wu, and G. Farrell, “Submicron accuracy fiber taper profiling using whispering gallery modes in a cylindrical fiber micro-resonator,” Proc. SPIE 9634, 96343F (2015).
[Crossref]

Science (1)

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref]

Sensors (1)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, and S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Other (1)

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Non-destructive imaging of optical nanofibres,” arXiv:1606.04064 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Effective indices and spatial beating frequencies as a function of the fiber radius for the lowest modes in an ONF. (a) Effective indices of several allowed modes in an ONF with n ONF = 1.4534 , surrounded by n = 1.0 , and a propagating wavelength of 795 nm. The first four families are labeled with the specific modes in brackets and are color-coded. (b) Spatial frequencies between mode pairs for the first three mode families. As a visual aid, all spatial frequencies between various mode families are colored the same way to show the groups of spatial frequencies observed at a particular R . Of the 9 beat frequency curves between LP 11 and LP 21 , only 3 are shown.

Fig. 2.
Fig. 2.

(a) Schematic of probe fiber with respect to ONF. (b) Camera image of probe fiber and nanofiber on the ONF waist.

Fig. 3.
Fig. 3.

(a) Near-field scanning probe signals over about 30 mm of the ONF. The waist is between | z | 5    mm . (b)–(d) Successive magnifications on the output side of the waist.

Fig. 4.
Fig. 4.

(a) Design profile for ONF as a function of the propagation distance. (b) Spectrograms of the data, along with calculated beat-frequency curves for a number of mode pairs as a function of the propagation distance. Curves of the same color belong to the same family. The right axis on (b) shows the extracted radius corresponding to the HE 11 : TM 01 curve.

Fig. 5.
Fig. 5.

Rate of change of the beat frequency with fiber radius. Note that the HE 11 : HE 21 , HE 11 : TE 11 , and HE 11 : TM 01 have high sensitivities to the radius near 400 nm.

Fig. 6.
Fig. 6.

FFT of a 600 μm long segment of the data (waist of the ONF in Fig. 4). Note the logarithmic vertical scale. The blue trace is the raw data, and the red has been multiplied by a Gaussian filter (see text for details).

Fig. 7.
Fig. 7.

Beat frequencies for the ONF shown in the inset SEM image. The low spatial frequency beat frequencies correspond to a fiber diameter of 742 ± 0.3    nm , in agreement with the SEM measurement of 740 ± 6    nm .

Fig. 8.
Fig. 8.

Control of the modes beating at the fiber waist. (a) shows the spatial data when the HE 11 mode is suppressed. (b) shows the spatial data when the HE 11 is present. The two photos to the right of (a) and (b) show the intensity profiles at the fiber input (top) and output (bottom) for the appropriate modes. (c) and (d) show the FFT of the 300 μm long spatial scan at the waist of the ONF. Note the logarithmic vertical scale. The dark line in the input beam pictures is caused by the π phase jump on the phase plate.

Metrics