Abstract

Localized measurements of scattering in biological tissue provide sensitivity to microstructural morphology but have limited utility to wide-field applications, such as surgical guidance. This study introduces sub-diffusive spatial frequency domain imaging (sd-SFDI), which uses high spatial frequency illumination to achieve wide-field sampling of localized reflectances. Model-based inversion recovers macroscopic variations in the reduced scattering coefficient (μs) and the phase function backscatter parameter (γ). Measurements in optical phantoms show quantitative imaging of user-tuned phase-function-based contrast with accurate decoupling of parameters that define both the density and the size-scale distribution of scatterers. Measurements of fresh ex vivo breast tissue samples revealed, for the first time, unique clustering of sub-diffusive scattering properties for different tissue types. The results support that sd-SFDI provides maps of microscopic structural biomarkers that cannot be obtained with diffuse wide-field imaging and characterizes spatial variations not resolved by point-based optical sampling.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative diagnosis of tissue microstructure with wide-field high spatial frequency domain imaging

Weihao Lin, Bixin Zeng, Zili Cao, Xinlin Chen, Kaiyan Yang, and Min Xu
Biomed. Opt. Express 9(7) 2905-2916 (2018)

Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging

Stephen Chad Kanick, David M. McClatchy, Venkataramanan Krishnaswamy, Jonathan T. Elliott, Keith D. Paulsen, and Brian W. Pogue
Biomed. Opt. Express 5(10) 3376-3390 (2014)

Quantitative spatial frequency fluorescence imaging in the sub-diffusive domain for image-guided glioma resection

Mira Sibai, Israel Veilleux, Jonathan T. Elliott, Frederic Leblond, and Brian C. Wilson
Biomed. Opt. Express 6(12) 4923-4933 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
    [Crossref]
  2. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
    [Crossref]
  3. F. Bevilacqua and C. Depeursinge, “Monte carlo study of diffuse reflectance at source-detector separations close to one transport mean free path,” J. Opt. Soc. Am. A 16, 2935–2945 (1999).
    [Crossref]
  4. S. Kanick, U. Gamm, M. Schouten, H. Sterenborg, D. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express 2, 1687–1702 (2011).
    [Crossref]
  5. E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
    [Crossref]
  6. K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
    [Crossref]
  7. J. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
    [Crossref]
  8. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37, 2788–2797 (1998).
    [Crossref]
  9. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
    [Crossref]
  10. X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
    [Crossref]
  11. A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the born approximation,” Opt. Lett. 37, 5220–5222 (2012).
    [Crossref]
  12. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
    [Crossref]
  13. C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
    [Crossref]
  14. F. van Leeuwen-van Zaane, U. Gamm, P. van Driel, T. Snoeks, H. de Bruijn, A. van der Ploeg-van den Heuvel, I. Mol, C. Löwik, H. Sterenborg, A. Amelink, and D. Robinson, “In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy,” Biomed. Opt. Express 4, 696–708 (2013).
    [Crossref]
  15. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
    [Crossref]
  16. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
    [Crossref]
  17. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
    [Crossref]
  18. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
    [Crossref]
  19. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
    [Crossref]
  20. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
    [Crossref]
  21. V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
    [Crossref]
  22. A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
    [Crossref]
  23. L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
    [Crossref]
  24. M. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [Crossref]
  25. V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
    [Crossref]
  26. S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
    [Crossref]
  27. S. Chamot, E. Migacheva, O. Seydoux, P. Marquet, and C. Depeursinge, “Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers,” Opt. Express 18, 23664–23675 (2010).
    [Crossref]
  28. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
    [Crossref]
  29. S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
    [Crossref]
  30. N. Bodenschatz, P. Krauter, A. Liemert, J. Wiest, and A. Kienle, “Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging,” Appl. Opt. 54, 6725–6731 (2015).
    [Crossref]
  31. A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
    [Crossref]
  32. B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
    [Crossref]
  33. J. D. Rogers, İ. R. Çapoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the born approximation,” Opt. Lett. 34, 1891–1893 (2009).
    [Crossref]
  34. K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
    [Crossref]
  35. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
    [Crossref]
  36. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
    [Crossref]
  37. S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
    [Crossref]

2015 (2)

N. Bodenschatz, P. Krauter, A. Liemert, J. Wiest, and A. Kienle, “Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging,” Appl. Opt. 54, 6725–6731 (2015).
[Crossref]

A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
[Crossref]

2014 (3)

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

2013 (1)

2012 (3)

A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the born approximation,” Opt. Lett. 37, 5220–5222 (2012).
[Crossref]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

2011 (6)

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

S. Kanick, U. Gamm, M. Schouten, H. Sterenborg, D. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express 2, 1687–1702 (2011).
[Crossref]

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

2010 (3)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]

S. Chamot, E. Migacheva, O. Seydoux, P. Marquet, and C. Depeursinge, “Physical interpretation of the phase function related parameter γ studied with a fractal distribution of spherical scatterers,” Opt. Express 18, 23664–23675 (2010).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

2009 (6)

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

J. D. Rogers, İ. R. Çapoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the born approximation,” Opt. Lett. 34, 1891–1893 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

2005 (2)

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

2002 (2)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

2001 (1)

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

1999 (2)

1998 (1)

1997 (1)

1996 (4)

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

J. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
[Crossref]

J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
[Crossref]

Alfano, R. R.

Amelink, A.

Ashitate, Y.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Avrillier, S.

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

Backman, V.

A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
[Crossref]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the born approximation,” Opt. Lett. 37, 5220–5222 (2012).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

J. D. Rogers, İ. R. Çapoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the born approximation,” Opt. Lett. 34, 1891–1893 (2009).
[Crossref]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Badizadegan, K.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Barth, R. J.

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Bevilacqua, F.

Bigio, I. J.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[Crossref]

J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett. 21, 546–548 (1996).
[Crossref]

Bodenschatz, N.

Boone, C. W.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Boppart, S. A.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Boustany, N. N.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]

Boyer, J.

Brand, R. E.

Calabro, K. W.

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

Capoglu, I. R.

Çapoglu, I. R.

Chamot, S.

Chaney, E. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Chapman, J. A.

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

Chuttani, R.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Cuccia, D. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

Dasari, R. R.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

de Bruijn, H.

de Matos Granja, N.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

DelaCruz, M.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Depeursinge, C.

Durkin, A. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

Durr, N. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Elliott, J. T.

Eshein, A.

A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
[Crossref]

Feld, M. S.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Frangioni, J. V.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

Gamm, U.

Gélébart, B.

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

Georgakoudi, I.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Gioux, S.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

Goldsmith, J. D.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Gomes, A. J.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Gopal, V.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Gross, J. D.

Guo, L.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Gurjar, R.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Hanlon, E. B.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Hielscher, A. H.

Holmes, D. F.

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

Itani, S.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Itzkan, I.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Jiang, S.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Juskaitis, R.

Kadler, K. E.

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

Kalashnikov, M.

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Kanick, S.

Kanick, S. C.

Keller, M. D.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Kelley, M. C.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Kelly, E.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Kienle, A.

Kogel, C.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Krauter, P.

Krishnaswamy, V.

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Kumar, G.

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Lee, B. T.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Leyden, J.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Liemert, A.

Lin, S. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Liu, Y.

Löwik, C.

Mahadevan-Jansen, A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Marquet, P.

Mazhar, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

McClatchy, D. M.

Migacheva, E.

Modell, M. D.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Moffitt, L. A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Mol, I.

Mourant, J. R.

Mueller, M.

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Mulvey, C. S.

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[Crossref]

Mutyal, N. N.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

Mycek, M.-A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Neil, M.

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Oketokoun, R.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Ozden, N.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Paulsen, K. D.

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Perelman, L. T.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Piguet, D.

Pleskow, D. K.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Pogue, B. W.

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

S. C. Kanick, D. M. McClatchy, V. Krishnaswamy, J. T. Elliott, K. D. Paulsen, and B. W. Pogue, “Sub-diffusive scattering parameter maps recovered using wide-field high-frequency structured light imaging,” Biomed. Opt. Express 5, 3376–3390 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Poplack, S. P.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Pradhan, P.

Qiu, L.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Radosevich, A. J.

A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
[Crossref]

A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the born approximation,” Opt. Lett. 37, 5220–5222 (2012).
[Crossref]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

Rizzo, E. J.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Robinson, D.

Rogers, J. D.

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Roy, H. K.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, J. D. Rogers, H. K. Roy, R. E. Brand, and V. Backman, “Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis,” Opt. Lett. 34, 518–520 (2009).
[Crossref]

Ruderman, S.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Sacks, A.

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Schmitt, J.

Schmitt, J. M.

Schouten, M.

Schwab, M. C.

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Seydoux, O.

Sherwood, C. A.

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[Crossref]

Snoeks, T.

Song, X.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Sterenborg, H.

Stockdale, A.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Subramanian, H.

Tinet, E.

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

Tobias, A. M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Tromberg, B. J.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999).
[Crossref]

Trotter, J. A.

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

Tualle, J. M.

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

Turzhitsky, V.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

van der Ploeg-van den Heuvel, A.

van Driel, P.

van Leeuwen-van Zaane, F.

Vargis, E.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Vitkin, E.

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Wali, R. K.

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

Wang, X.

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Wax, A.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

Weinmann, M.

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

Wells, W. A.

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

Wiest, J.

Wilson, R. H.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

Wilson, T.

Xu, M.

Yang, C.

A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A 19, 737–744 (2002).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

Yi, J.

Zysk, A. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[Crossref]

Appl. Opt. (3)

Biochem. J. (1)

K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316, 1–11 (1996).
[Crossref]

Biomed. Opt. Express (3)

Biophys. J. (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256–2264 (2002).
[Crossref]

Cancer Res. (1)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69, 8790–8796 (2009).
[Crossref]

Clin. Cancer Res. (1)

A. M. Laughney, V. Krishnaswamy, E. J. Rizzo, M. C. Schwab, R. J. Barth, B. W. Pogue, K. D. Paulsen, and W. A. Wells, “Scatter spectroscopic imaging distinguishes between breast pathologies in tissues relevant to surgical margin assessment,” Clin. Cancer Res. 18, 6315–6325 (2012).
[Crossref]

Gastroenterology (1)

V. Backman and H. K. Roy, “Light-scattering technologies for field carcinogenesis detection: a modality for endoscopic prescreening,” Gastroenterology 140, 35–41.e5 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887–893 (2001).
[Crossref]

J. Biomed. Opt. (11)

C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14, 064013 (2009).
[Crossref]

X. Wang, B. W. Pogue, S. Jiang, X. Song, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, “Approximation of mie scattering parameters in near-infrared tomography of normal breast tissue in vivo,” J. Biomed. Opt. 10, 051704 (2005).
[Crossref]

K. W. Calabro and I. J. Bigio, “Influence of the phase function in generalized diffuse reflectance models: review of current formalisms and novel observations,” J. Biomed. Opt. 19, 075005 (2014).
[Crossref]

V. Krishnaswamy, J. T. Elliott, D. M. McClatchy, R. J. Barth, W. A. Wells, B. W. Pogue, and K. D. Paulsen, “Structured light scatteroscopy,” J. Biomed. Opt. 19, 070504 (2014).
[Crossref]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt. 16, 067007 (2011).
[Crossref]

A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

S. Gioux, A. Mazhar, B. T. Lee, S. J. Lin, A. M. Tobias, D. J. Cuccia, A. Stockdale, R. Oketokoun, Y. Ashitate, E. Kelly, M. Weinmann, N. J. Durr, L. A. Moffitt, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “First-in-human pilot study of a spatial frequency domain oxygenation imaging system,” J. Biomed. Opt. 16, 086015 (2011).
[Crossref]

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M.-A. Mycek, M. C. Kelley, and A. Mahadevan-Jansen, “Development of a spatially offset raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16, 077006 (2011).
[Crossref]

A. J. Radosevich, A. Eshein, and V. Backman, “Subdiffusion reflectance spectroscopy to measure tissue ultrastructure and microvasculature: model and inverse algorithm,” J. Biomed. Opt. 20, 097002 (2015).
[Crossref]

S. Gioux, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni, “Three-dimensional surface profile intensity correction for spatially modulated imaging,” J. Biomed. Opt. 14, 034045 (2009).
[Crossref]

J. Opt. Soc. Am. A (2)

Nat. Commun. (1)

E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat. Commun. 2, 587 (2011).
[Crossref]

Nat. Med. (1)

L. Qiu, D. K. Pleskow, R. Chuttani, E. Vitkin, J. Leyden, N. Ozden, S. Itani, L. Guo, A. Sacks, J. D. Goldsmith, M. D. Modell, E. B. Hanlon, I. Itzkan, and L. T. Perelman, “Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus,” Nat. Med. 16, 603–606 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Pure Appl. Opt. (1)

B. Gélébart, E. Tinet, J. M. Tualle, and S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2073 KB)      Expanded Methods

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Representative histology slides of human breast (a) adipose, (b) fibroglandular, and (c) invasive carcinoma tissues illustrating their unique density, size-scale distribution, and organization of biological features.
Fig. 2.
Fig. 2. (a) Photograph of sub-diffusive spatial frequency domain imaging system and (b) diagram of major system components. Sinusoidal intensity patterns (c) are sent to the digital micromirror device and projected on the tissue, with the remitted fringe pattern imaged (d). The stack of fringe patterns over multiple spatial frequencies and wavelengths were demodulated and calibrated to a reference standard yielding a reflectance map stack (e), which was then used to calculate optical property maps (f).
Fig. 3.
Fig. 3. Phantoms with μ s held constant with γ variation. (a) Photograph, (b) annotated D f , and (c)–(e) demodulated reflectance images at λ = 658    nm and f x = [ 0 , 0.2 , 0.5 ]    mm 1 . (f) Normalized plot of percentage change in reflectance versus D f for each spatial frequency. Recovered maps of γ ( 658    nm ) , scatter slope B , and μ s ( 658    nm ) are shown in (g), (h), and (i), respectively. Below are plots of recovered optical property values versus D f in (j), (k), and (l), where the blue error bars represent recovered mean values ± one standard deviation, the black circles represent the Mie theory-predicted γ ( 658    nm ) and μ s ( 658    nm ) values, and the black dotted line represents a regression of scatter slope B versus D f ( r = 0.993 ). Scale bar is 2 mm.
Fig. 4.
Fig. 4. Phantoms with coupled μ s and γ variation. (a) Photograph, (b) annotation of μ s and D f values. Panels (c)–(e) show reflectance images at λ = 658    nm and f x = [ 0 , 0.2 , 0.5 ]    mm 1 , while panels (f)–(h) show absolute values of reflectance versus D f at each level of μ s for each spatial frequency. The dashed lines in (h) correspond to areas within (e) and highlight the nonuniqueness of the reflectance intensity with respect to combinations of μ s and γ . Panels (i),(j), and (k) show recovered γ ( 658    nm ) , scatter slope B, and μ s ( 658    nm ) maps. Below are corresponding plots of recovered optical property values versus D f in (l), (m), and (n), where the blue error bars represent recovered mean values ± one standard deviation, the black circles represent the Mie theory-predicted γ ( 658    nm ) and μ s ( 658    nm ) values, and the black dotted line represents a regression of scatter slope B versus D f ( r = 0.983 ). Scale bar is 2 mm.
Fig. 5.
Fig. 5. Clustering of optical scatter parameters of homogeneous breast tissue of known diagnoses of (a) adipose, (b) fibroglandular, (c) benign fibroadenoma, and (d) invasive carcinoma. The first row of images shows high-magnification H&E stained histology slides of a representative area of each tissue type, and below is a corresponding representative dark-field microscopy image in the second row. In the third row, a scanned co-registered composite histology slide appears with a white-light photograph (below in the following row). The final three rows contain the three optical scatter parameter maps, γ [-], scatter slope B [-], and μ s [ mm 1 ] . Three-dimensional clustering plots are shown for the means ± one standard deviation and for all pixels for each specimen in (e) and (f). (g)–(i) Show two-dimensional clustering of the specimen means ± one standard deviation for each pair of optical scatter parameters. (j)–(l) Show box and whisker plots for all points used in the cluster analysis for each scatter parameter. (m)–(o) Show two-sample Kolmogorov–Smirnov p-values for each pairwise combination of tissue diagnoses with each scatter parameter as the tested distribution.
Fig. 6.
Fig. 6. Spatial contexualization of scattering parameters for heterogeneous breast tissue. (a) Photograph of tissue, (b) dark field scanning microscopy, and (c) sub-diffusive calibrated reflectance image with f x = 0.6    mm 1 with no median filtering. (d)–(f) Show scatter optical property maps of γ [-], scatter slope B [-], and μ s [ mm 1 ] , respectively. (g) Regions of interest corresponding to areas of localized tissue diagnoses and (h) clustering of the scatter properties for each tissue diagnosis.

Tables (1)

Tables Icon

Table 1. Summary of Aggregate Residuals and Correlation Coefficients for Phantom Experiments

Metrics