Abstract

Tunable-ring Airy beams are experimentally generated and employed for the fabrication of large three-dimensional structures with high resolution using multi-photon polymerization. We demonstrate that these beams can be adjusted to abruptly autofocus over an extended range of working distances while keeping their voxel shape and dimensions almost invariant. This striking property together with the real-time electronically controlled focus tuning makes these beams ideal candidates for long-range multi-photon polymerization. Moreover, the well-controlled remote localized deposition of energy can also impact many other fields of linear and nonlinear optics, like filamentation and remote high-power terahertz generation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of refractive index mismatch on multi-photon direct laser writing

Henry E. Williams, Zhenyue Luo, and Stephen M. Kuebler
Opt. Express 20(22) 25030-25040 (2012)

Three-dimensional microfabrication through a multimode optical fiber

Edgar E. Morales-Delgado, Loic Urio, Donald B. Conkey, Nicolino Stasio, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 7031-7045 (2017)

Precise autofocus method employing normalized fluorescence image size in a two-photon polymerization nanofabrication system

Byoung Goo Jeon, Byung Je Jung, Hong Jin Kong, and Yong Hoon Cho
Appl. Opt. 54(24) 7323-7329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
    [Crossref]
  2. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
    [Crossref]
  3. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
    [Crossref]
  4. K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
    [Crossref]
  5. A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
    [Crossref]
  6. M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
    [Crossref]
  7. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4047 (2010).
    [Crossref]
  8. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
    [Crossref]
  9. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
    [Crossref]
  10. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36, 1890–1892 (2011).
    [Crossref]
  11. P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
    [Crossref]
  12. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
    [Crossref]
  13. S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
    [Crossref]
  14. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [Crossref]
  15. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [Crossref]
  16. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [Crossref]
  17. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  18. B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
    [Crossref]
  19. L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
    [Crossref]
  20. S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
    [Crossref]
  21. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  22. V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
    [Crossref]
  23. A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
    [Crossref]

2015 (1)

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

2014 (1)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

2013 (5)

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

2012 (3)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

2011 (3)

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
[Crossref]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36, 1890–1892 (2011).
[Crossref]

2010 (2)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35, 4045–4047 (2010).
[Crossref]

2009 (1)

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[Crossref]

2008 (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

2007 (3)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

2006 (1)

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

1987 (2)

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Abdollahpour, D.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

Arie, A.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

Bhuian, B.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Bückmann, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

Chremmos, I.

Christodoulides, D. N.

Chu, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

Claeyssens, F.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Couairon, A.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

Crean, G. M.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Dolev, I.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

Dürig, U.

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

Eberl, C.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Efremidis, N. K.

El-Tamer, A.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

Fotakis, C.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Frölich, A.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Ganjovi, A.

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Gill, A. A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Güntherodt, H. J.

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

Haycock, J. W.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Hinze, U.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Hu, Y.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

Huang, W.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

Kadic, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Kaminer, I.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

Kaschke, J.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Kennerknecht, T.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Knoll, A.

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

Koch, L.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Kolesik, M.

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[Crossref]

Li, J.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

Liska, R.

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

Melissinaki, V.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Mironov, V.

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

Moloney, J.

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[Crossref]

Moradi, S.

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

O’Brien, S.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

Obata, K.

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Ortega, I.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Panagiotopoulos, P.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

Papazoglou, D. G.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

Polynkin, P.

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[Crossref]

Ranella, A.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Saeed, M.

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Segev, M.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

Shapira, A.

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

Shojaei, F.

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

Siviloglou, G. A.

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

Stampfl, J.

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

Stenger, N.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Suntsov, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

Thiel, M.

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Tzortzakis, S.

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
[Crossref]

Vamvakaki, M.

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Wegener, M.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Winfield, R. J.

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

Yang, L.

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

Züger, O.

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Adv. Mater. (1)

T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater. 24, 2710–2714 (2012).
[Crossref]

Appl. Phys. Lett. (2)

L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, W. Huang, J. Chu, and B. N. Chichkov, “Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams,” Appl. Phys. Lett. 105, 041110 (2014).
[Crossref]

S. Suntsov, D. Abdollahpour, D. G. Papazoglou, P. Panagiotopoulos, A. Couairon, and S. Tzortzakis, “Tailoring femtosecond laser pulse filamentation using plasma photonic lattices,” Appl. Phys. Lett. 103, 021106 (2013).
[Crossref]

Appl. Surf. Sci. (1)

B. Bhuian, R. J. Winfield, S. O’Brien, and G. M. Crean, “Pattern generation using axicon lens beam shaping in two-photon polymerisation,” Appl. Surf. Sci. 254, 841–844 (2007).
[Crossref]

Biofabrication (1)

V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Expert Rev. Med. Devices (1)

A. Ovsianikov, V. Mironov, J. Stampfl, and R. Liska, “Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,” Expert Rev. Med. Devices,  9, 613–633 (2012).
[Crossref]

J. Opt. (1)

M. Farsari, M. Vamvakaki, and B. N. Chichkov, “Multiphoton polymerization of hybrid materials,” J. Opt. 12, 124001 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photon. Rev. 7, 22–44 (2013).
[Crossref]

Light Sci. Appl. (1)

K. Obata, A. El-Tamer, L. Koch, U. Hinze, and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light Sci. Appl. 2, e116 (2013).
[Crossref]

Microelectron. Eng. (1)

A. Knoll, U. Dürig, O. Züger, and H. J. Güntherodt, “Micron-sized mechanical oscillators created by 3D two-photon polymerization: towards a mechanical logic device,” Microelectron. Eng. 83, 1261–1264 (2006).
[Crossref]

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4, 2622 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Plasmas (1)

S. Moradi, A. Ganjovi, F. Shojaei, and M. Saeed, “Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses,” Phys. Plasmas 22, 043108 (2015).
[Crossref]

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: a decade of advances,” Phys. Rep. 533, 1–31 (2013).
[Crossref]

Phys. Rev. Lett. (4)

P. Polynkin, M. Kolesik, and J. Moloney, “Filamentation of femtosecond laser airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[Crossref]

I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental observation of self-accelerating beams in quadratic nonlinear media,” Phys. Rev. Lett. 108, 1–5 (2012).
[Crossref]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[Crossref]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Experimental setup. FT lens (400 mm); f 1 (200 mm); Obj (microscope objective 3.7 × ); f Ai : effective focal length of the ring Airy. (b) Typical SLM phase mask used. (c) Experimental intensity profile as captured by the CCD at the Fourier transform plane (blocked zero order). (d) Typical experimental ring Airy beam propagation spatial dynamics. (e) Schematic representation of a ring Airy beam autofocusing into the volume of a photoresist droplet on a cover glass.

Fig. 2.
Fig. 2.

Experimental intensity profiles of ring Airy beams as captured by the CCD at the FT plane (blocked zero order): (a) varying r o ( w = 19    μm ) and (b) varying w ( r o = 162    μm ) .

Fig. 3.
Fig. 3.

Experimental intensity distributions (all curves normalized) of the ring Airy beams along the propagation axis. Experimental solid curves: (a)  w = 12    μm , r o = 162    μm ; (b)  w = 19    μm , r o = 162    μm ; (c)  w = 19    μm , r o = 220    μm ; (d)  w = 23    μm , r o = 162    μm ; and (e)  w = 19    μm , r o = 333    μm . Dashed–dotted line: threshold line.

Fig. 4.
Fig. 4.

Focus position f Ai of ring Airy beams as a function of (a)  w , keeping constant r o = 162    μm , (b)  r o , keeping constant w = 19    μm . (•, ▪) Experimental points, (blue line) theoretical prediction.

Fig. 5.
Fig. 5.

Focal volume control: focal voxel dimensions (FWHM values) as a function of the focus position for the cases of generated ring Airy beams (curves refer to theoretical estimations). (a) Diameter (spot size). (b) Length Δ f Ai .

Fig. 6.
Fig. 6.

Simulation results of Bessel beams with variable clipping radius: (a) (i) conical phase mask generating a Bessel beam, and (ii) controlled masking of Bessel beam, allowing only an annular ring of radius r and width w to propagate. (b) Intensity distribution of the Bessel beams versus propagation distance for various clipped annular radii.

Fig. 7.
Fig. 7.

Simulation of intensity profiles over propagation: (a) (i) ring Airy focus controlled by varying the ring width ( r = 162    μm , w = 23    μm ), (ii) ring Airy focus controlled by varying the ring diameter ( r = 220    μm , w = 19    μm ), (iii) Gaussian beam (FWHM 796 μm) focusing at the same position as the ring Airy depicted in (ii), and (iv) Bessel clipped by annular ring (clip radius: 195 μm). (b) Aspect ratio of focal voxel comparative curves as a function of the effective focal length for various experimental and simulated ring Airy, Bessel, and Gaussian beams.

Fig. 8.
Fig. 8.

Fabricated structures using ring Airy beams (left) and Gaussian beams (right): SEM images of hexagonal structures (1 mm in height) made using (a) and (b) ring Airy beam ( r = 162    μm , w = 12    μm ) with controllable working distances and (c) and (d) Gaussian beams (FWHM 586 μm) focusing at the same positions as the ring Airy beams depicted in (a) and (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u o ( r , 0 ) = Ai ( r o r w ) exp [ a · ( r o r w ) ] ,
f Ai = 4 π λ w 3 / 2 R o 1 / 2 .
Δ f Ai 0.81 w r o 1 + w / r o f Ai , w Ai ln 2 2 π λ r o f Ai .
Δ f B Δ f B o f B 1 z R 2 + 1 f B 2 ,
A B = ( 8 cos γ 1 + z R 2 / f B 2 ) f B w .
A G = f G w G o .
A Ai 1.15 π ln 2 w λ 1 1 + w / r o 1.22 λ ( w / r o ) 1 / 4 ( 1 + w / r o ) 3 / 4 f Ai .

Metrics