Abstract

Cavity-optomechanical systems realized in single-crystal diamond are poised to benefit from its extraordinary material properties, including low mechanical dissipation and a wide optical transparency window. Diamond is also rich in optically active defects, such as the nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers, which behave as atom-like systems in the solid state. Predictions and observations of coherent coupling of the NV electronic spin to phonons via lattice strain have motivated the development of diamond nanomechanical devices aimed at the realization of hybrid quantum systems in which phonons provide an interface with diamond spins. In this work, we demonstrate diamond optomechanical crystals (OMCs), a device platform to enable such applications, wherein the co-localization of 200  THz photons and few to 10 GHz phonons in a quasi-periodic diamond nanostructure leads to coupling of an optical cavity field to a mechanical mode via radiation pressure. In contrast to other material systems, diamond OMCs operating in the resolved-sideband regime possess large intracavity photon capacities (>105) and sufficient optomechanical coupling rates to reach a cooperativity of 20 at room temperature, allowing for the observation of optomechanically induced transparency and the realization of large-amplitude optomechanical self-oscillations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-crystal diamond low-dissipation cavity optomechanics

Matthew Mitchell, Behzad Khanaliloo, David P. Lake, Tamiko Masuda, J. P. Hadden, and Paul E. Barclay
Optica 3(9) 963-970 (2016)

Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics

Karen E. Grutter, Marcelo I. Davanço, and Kartik Srinivasan
Optica 2(11) 994-1001 (2015)

Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs
Optica 2(3) 233-238 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [Crossref]
  2. M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
    [Crossref]
  3. K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
    [Crossref]
  4. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
    [Crossref]
  5. A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
    [Crossref]
  6. K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
    [Crossref]
  7. K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
    [Crossref]
  8. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  9. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [Crossref]
  10. A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
    [Crossref]
  11. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref]
  12. S. E. Coe and R. S. Sussmann, “Optical, thermal and mechanical properties of CVD diamond,” Diamond Relat. Mater. 9, 1726–1729 (2000).
    [Crossref]
  13. Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).
  14. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
    [Crossref]
  15. M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
    [Crossref]
  16. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
    [Crossref]
  17. P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
    [Crossref]
  18. See Supplement 1 for details on simulations, fabrication, experimental setups, and data analysis.
  19. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
    [Crossref]
  20. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
    [Crossref]
  21. A. R. Lang, “The strain-optical constants of diamond: a brief history of measurements,” Diamond Relat. Mater. 18, 1–5 (2009).
    [Crossref]
  22. A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
    [Crossref]
  23. E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
    [Crossref]
  24. P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
    [Crossref]
  25. K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
    [Crossref]
  26. I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
    [Crossref]
  27. A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
    [Crossref]
  28. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).
  29. E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
    [Crossref]
  30. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
    [Crossref]
  31. S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
    [Crossref]
  32. D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
    [Crossref]
  33. D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).
  34. E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).
  35. L. Kipfstuhl, F. Guldner, J. Riedrich-Möller, and C. Becher, “Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond,” Opt. Express 22, 12410–12423 (2014).
    [Crossref]
  36. S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
    [Crossref]
  37. K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
    [Crossref]
  38. M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3, 963–970 (2016).
    [Crossref]

2016 (6)

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

M. Mitchell, B. Khanaliloo, D. P. Lake, T. Masuda, J. P. Hadden, and P. E. Barclay, “Single-crystal diamond low-dissipation cavity optomechanics,” Optica 3, 963–970 (2016).
[Crossref]

2015 (4)

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

2014 (7)

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

L. Kipfstuhl, F. Guldner, J. Riedrich-Möller, and C. Becher, “Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond,” Opt. Express 22, 12410–12423 (2014).
[Crossref]

2013 (5)

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

2012 (3)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

2011 (3)

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

2010 (2)

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

2009 (3)

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

A. R. Lang, “The strain-optical constants of diamond: a brief history of measurements,” Diamond Relat. Mater. 18, 1–5 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

2000 (1)

S. E. Coe and R. S. Sussmann, “Optical, thermal and mechanical properties of CVD diamond,” Diamond Relat. Mater. 9, 1726–1729 (2000).
[Crossref]

Aharonovich, I.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Amezcua, M.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Appel, P.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Aspelmeyer, M.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Ates, S.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Atikian, H. A.

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Balram, K. C.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Barclay, P. E.

Barfuss, A.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Becher, C.

Bennett, S. D.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Bhaskar, M. K.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Bhave, S. A.

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

Bielejec, E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Borregaard, J.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Boss, J. M.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

Burek, M. J.

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Castelletto, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Chen, Y.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

Choy, J. T.

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

Chu, Y.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Cleland, A. N.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Coe, S. E.

S. E. Coe and R. S. Sussmann, “Optical, thermal and mechanical properties of CVD diamond,” Diamond Relat. Mater. 9, 1726–1729 (2000).
[Crossref]

Davanco, M.

K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

Davanço, M.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Davanço, M. I.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

de Leon, N. P.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Degen, C. L.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

Evans, R. E.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Fan, L.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Fang, K.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

Fuchs, G. D.

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).

Golter, D. A.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Gosavi, T. A.

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

Gray, S. K.

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).

Greentree, A. D.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Groblacher, S.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Gröblacher, S.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Grutter, K. E.

K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

Guldner, F.

Hadden, J. P.

Hausmann, B. J. M.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hong, W.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Jayich, A. C. B.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

Jelezko, F.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Jungwirth, N. R.

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

Khanaliloo, B.

Kim, S.

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

Kipfstuhl, L.

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Lake, D. P.

Lang, A. R.

A. R. Lang, “The strain-optical constants of diamond: a brief history of measurements,” Diamond Relat. Mater. 18, 1–5 (2009).
[Crossref]

Latawiec, P.

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

Lee, H.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Lee, K. W.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

Lekavicius, I.

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Liddy, M. S. Z.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Lim, J. Y.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Liu, Y.

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

Loncar, M.

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Luan, X.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

Lukin, M. D.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

MacQuarrie, E. R.

E. R. MacQuarrie, T. A. Gosavi, A. M. Moehle, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Coherent control of a nitrogen-vacancy center spin ensemble with a diamond mechanical resonator,” Optica 2, 233–238 (2015).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).

Maletinsky, P.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Masuda, T.

Matheny, M. H.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

Meenehan, S.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Meesala, S.

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Meuwly, C.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Miao, H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

Mitchell, M.

Moehle, A. M.

Moores, B. A.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

Myers, B. A.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

Nebel, C.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

Neu, E.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Nguyen, C. T.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Oo, T.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Otten, M.

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).

Otterbach, J.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Ovartchaiyapong, P.

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

Pacheco, J. L.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Painter, O.

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

Park, H.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Patel, P.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Peairs, G. A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Pernice, W. H. P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Quan, Q.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Rabl, P.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Rath, P.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

Riedrich-Möller, J.

Rochman, J.

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

Satzinger, K. J.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Schuck, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Shields, B. J.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Sipahigil, A.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Sohn, Y.-I.

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

Song, J. D.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Sørensen, A. S.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Srinivasan, K.

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, “Moving boundary and photoelastic coupling in GaAs optomechanical resonators,” Optica 1, 414–420 (2014).
[Crossref]

Stannigel, K.

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Stewart, K. A.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Su, C. H.

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Sukachev, D. D.

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

Sun, X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Sussmann, R. S.

S. E. Coe and R. S. Sussmann, “Optical, thermal and mechanical properties of CVD diamond,” Diamond Relat. Mater. 9, 1726–1729 (2000).
[Crossref]

Tang, H. X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Tao, Y.

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

Teissier, J.

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

Ummethala, S.

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

Vahala, K. J.

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and losses of localized optical and mechanical modes in optomechanical crystals,” Opt. Express 17, 20078–20098 (2009).
[Crossref]

Vainsencher, A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

Wang, H.

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

Xiong, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

Yao, N. Y.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

Zibrov, A. S.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Zoller, P.

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

Appl. Phys. Lett. (4)

M. Davanço, S. Ates, Y. Liu, and K. Srinivasan, “Si3N4 optomechanical crystals in the resolved-sideband regime,” Appl. Phys. Lett. 104, 041101 (2014).
[Crossref]

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors,” Appl. Phys. Lett. 102, 153507 (2013).
[Crossref]

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109, 033107 (2016).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101, 081115 (2012).
[Crossref]

Diamond Relat. Mater. (2)

A. R. Lang, “The strain-optical constants of diamond: a brief history of measurements,” Diamond Relat. Mater. 18, 1–5 (2009).
[Crossref]

S. E. Coe and R. S. Sussmann, “Optical, thermal and mechanical properties of CVD diamond,” Diamond Relat. Mater. 9, 1726–1729 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. E. Grutter, M. Davanco, and K. Srinivasan, “Si3N4 nanobeam optomechanical crystals,” IEEE J. Sel. Top. Quantum Electron. 21, 61–71 (2015).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. Latawiec, M. J. Burek, Y.-I. Sohn, and M. Lončar, “Faraday cage angled-etching of nanostructures in bulk dielectrics,” J. Vac. Sci. Technol. B 34, 041801 (2016).
[Crossref]

Nano Lett. (1)

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 6084–6089 (2012).
[Crossref]

Nat. Commun. (4)

M. J. Burek, Y. Chu, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin, and M. Lončar, “High quality-factor optical nanocavities in bulk single-crystal diamond,” Nat. Commun. 5, 5718 (2014).
[Crossref]

Y. Tao, J. M. Boss, B. A. Moores, and C. L. Degen, “Single-crystal diamond nanomechanical resonators with quality factors exceeding one million,” Nat. Commun. 5, 3638 (2014).

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref]

P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator,” Nat. Commun. 5, 4429 (2014).

Nat. Photonics (2)

K. Fang, M. H. Matheny, X. Luan, and O. Painter, “Optical transduction and routing of microwave phonons in cavity-optomechanical circuits,” Nat. Photonics 10, 489–496 (2016).
[Crossref]

K. C. Balram, M. I. Davanço, J. D. Song, and K. Srinivasan, “Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits,” Nat. Photonics 10, 346–352 (2016).
[Crossref]

Nature (4)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[Crossref]

A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

New J. Phys. (1)

A. H. Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. Aspelmeyer, and O. Painter, “Laser noise in cavity-optomechanical cooling and thermometry,” New J. Phys. 15, 035007 (2013).
[Crossref]

Opt. Express (2)

Optica (3)

Phys. Rev. Appl. (1)

S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, “Enhanced strain coupling of nitrogen vacancy spins to nanoscale diamond cantilevers,” Phys. Rev. Appl. 5, 034010 (2015).
[Crossref]

Phys. Rev. Lett. (6)

D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
[Crossref]

J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, “Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator,” Phys. Rev. Lett. 113, 020503 (2014).
[Crossref]

S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, “Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing,” Phys. Rev. Lett. 110, 156402 (2013).
[Crossref]

K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett. 105, 220501 (2010).
[Crossref]

E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, “Mechanical spin control of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 111, 227602 (2013).
[Crossref]

I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
[Crossref]

Phys. Status Solidi A (1)

P. Rath, S. Ummethala, C. Nebel, and W. H. P. Pernice, “Diamond as a material for monolithically integrated optical and optomechanical devices,” Phys. Status Solidi A 212, 2385–2399 (2015).
[Crossref]

Rep. Prog. Phys. (1)

I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011).
[Crossref]

Other (4)

A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A. Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanophotonics platform for quantum optical networks,” Science (to be published).
[Crossref]

D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, “Coupling a surface acoustic wave to an electron spin in diamond via a dark state,” arXiv:1608.01356 (2016).

E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, “Cooling a mechanical resonator with a nitrogen-vacancy center ensemble using a room temperature excited state spin-strain interaction,” arXiv:1605.07131 (2016).

See Supplement 1 for details on simulations, fabrication, experimental setups, and data analysis.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3901 KB)      Supplementary 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diamond optomechanical crystal optimized design. (a) Solid model representation of the triangular cross-section unit cell, which is parameterized by the etch angle ( θ ), width ( w ), lattice constant ( a ), and elliptical air hole diameters ( h x , h y ) . Corresponding (b) optical and (c) mechanical band structures of a nominal diamond unit cell with θ = 35 ° and ( a , w , h x , h y ) = ( 580 , 929 , 250 , 590 )    nm . Below the light line in (b), supported transverse electric (TE-like) and transverse magnetic (TM-like) guided modes are indicated by solid black and dashed blue lines, respectively. The left panel inset of (b) displays the cross-sectional optical E y -field profile of the first (dielectric) TE-like guided optical mode at the X-point. In (c), mechanical guided modes shown are for propagation along the x -axis, with y -symmetric and y -antisymmetric vector symmetries again indicated by solid black and dashed blue lines, respectively. Mechanical simulations assume guided mode propagation is oriented with the in-plane [110] crystallographic direction, with the z -axis oriented along [001]. The pink shaded regions in (b) and (c) highlight the optical and mechanical symmetry bandgaps of interest, respectively. Three-dimensional mechanical displacement profiles of the acoustic (d) “flapping” and (e) “swelling” guided modes originating from the Γ -point of the fourth and seventh y -symmetric bands, respectively. The right and left panels in (b) and (c), respectively, show the tuning of the X-point optical and Γ -point mechanical modes of interest as the unit cell is transitioned smoothly from the nominal unit cell to a defect cell with a reduced lattice constant and decreased air hole eccentricity, specifically, ( a defect , h x , defect , h y , defect ) = ( 464 , 327 , 289 )    nm . Normalized (e) optical E y -field of the localized optical cavity mode and mechanical displacement profiles of the (f) flapping and (g) swelling mechanical cavity modes for the optimized diamond OMC design. Eigenfrequencies of these localized optical and mechanical modes are indicated on the respective band structures in (b) and (c) by dashed red lines.

Fig. 2.
Fig. 2.

Fabricated diamond optomechanical crystals. (a) Illustration of angled etching used to realize diamond OMCs. Angled-etching nanofabrication steps: (i) define an etch mask on a substrate via standard fabrication techniques, (ii) transfer etch mask pattern onto the substrate by conventional top-down plasma etching, (iii) employ angled etching to realize suspended nanobeam structures (see illustration), and (iv) remove residual etch mask. SEM images of (b) a fabricated diamond OMC, (c) zoomed-in view of the defect region, and (d) high-resolution image of fabricated air holes comprising the Bragg mirror region. (e) SEM image of an (inverted) diamond OMC liberated from the diamond substrate via stamping on a silver-coated silicon wafer. Inset shows a tilted (60°) SEM image of a broken diamond OMC, revealing the triangular cross-section.

Fig. 3.
Fig. 3.

Diamond optomechanical crystal optical and mechanical mode spectroscopy. (a) Schematic of the fiber-optical characterization setup (see Supplement 1 for description of symbols). The inset is an optical micrograph of the dimpled fiber taper in contact with the diamond OMC under test. (b) Normalized optical transmission spectrum, centered at λ o = 1529.2    nm ( ω o / 2 π = 196    THz ), of a representative diamond OMC. A Lorentzian fit (solid red curve) yields a measured optical Q -factor of 1.76 × 10 5 , corresponding to an optical linewidth of κ 1.11    GHz . (c) Normalized power spectral density (PSD) revealing the broadband radio frequency spectrum of optically transduced diamond OMC thermal Brownian motion (at room temperature). Sharp resonances are attributed to various localized and extended acoustic phonon modes of the diamond OMC [18]. (d) High-resolution PSD of the diamond OMC acoustic “flapping” mode centered at ω m / 2 π = 5.52    GHz . The Lorentzian fit (solid red curve) estimates a mechanical Q -factor of 4100 . (e) PSDs of the acoustic flapping mode and optical transmission (white circles) plotted versus input laser wavelength, indicating significant optomechanical transduction occurs with the laser detuned approximately ± 45    pm from the optical cavity resonance. A clear optical bistability is present in the optical cavity transmission spectrum. The (f) optically amplified mechanical loss rate and (g) optical spring-shifted mechanical frequency (gray circles) measured as a function of laser detuning at a constant intercavity photon number of n c = 10,000 . The optical transmission spectrum (blue circles) is also plotted, with vertical gray dashed lines indicating Δ = ± ω m . Fits to (f) and (g) yield estimates of γ i / 2 π = 1.37    MHz and g o / 2 π = 118    kHz .

Fig. 4.
Fig. 4.

Acoustic flapping mode “phonon lasing” and optomechanically induced transparency. (a) Measured mechanical linewidths ( γ ) collected at laser detuning of Δ = + ω m ( γ red , red circles) and Δ = ω m ( γ blue , blue circles), up to the maximum laser power (corresponding to intracavity photon number of n c 63 , 000 ). Gray circles, which indicate the intrinsic mechanical linewidth values ( γ i ) obtained by taking the average of the detuned data, yield an estimate of γ i / 2 π = 1.41 ± 0.06    MHz . The inset displays calculated optomechanically induced damping ( γ OM = γ red γ i , gray squares), plotted versus n c . A linear fit (red solid line) yields a coupling rate of g o / 2 π = 123 ± 6    kHz . Under blue laser detuning, a threshold input power of n c , thr 27 , 000 (vertical blue dashed line) is required to observe phonon lasing of the mechanical cavity. (b) Normalized power spectral densities collected below, at, and above the phonon lasing threshold input power. The inset plots the peak PSD amplitude versus n c , with a 72    dB increase observed above threshold. (c) Cooperativity values ( C γ OM / γ i ) collected under red laser detuning, plotted versus n c . Solid gray squares and the linear fit (solid red line) are calculated from the γ OM values shown in the panel (a) inset. Open gray squares correspond to mechanical spectra collected with the input laser amplified by an erbium doped fiber amplifier. The extrapolated linear fit (dashed green line) was used to infer the corresponding n c values. (d) Normalized broadband OMIT spectra ( | S 21 | / max { | S 21 | } ) collected with the control laser ( ω c ) red detuned approximately Δ o c ( ω o ω c ) [ ( ω m + 580    MHz ) , ω m , ( ω m 490    MHz ) ] , plotted versus probe laser ( ω p ) detuning ( Δ p c ( ω p ω c ) ). Right inset panels of (d) display zoomed-in OMIT spectra of the transparency window induced by coherent interaction of the mechanical and optical cavities. Fits to OMIT spectra [18] (solid red and blue lines) estimate a cooperativity of C 1.9 for data collected with Δ o c ω m .

Fig. 5.
Fig. 5.

Acoustic swelling mode mechanical spectroscopy. (a) Normalized power spectral density revealing a zoomed-in radio frequency spectrum of optically transduced diamond OMC thermal Brownian motion near 9.5    GHz . (b) High-resolution PSD of the diamond OMC acoustic “swelling” mode centered at ω m / 2 π = 9.454    GHz . The Lorentzian fit (solid red curve) estimates a Q m 7700 , corresponding to an f · Q product of 7.3 × 10 13    Hz . The (c) optically amplified mechanical loss rate and (d) optical spring-shifted mechanical frequency measured as a function of the laser detuning frequency at a constant intercavity photon number of n c = 6000 . The optical transmission spectrum (blue circles) is also plotted, with vertical gray dashed lines indicating Δ = ± ω m . Fits to (c) and (d) (red solid lines) yield estimates of γ i / 2 π = 1.18    MHz and g o / 2 π = 239    kHz . (e) Measured mechanical linewidths ( γ ) collected at laser detuning of Δ = + ω m (red circles) and Δ = ω m (blue circles). Gray circles, which indicate the intrinsic mechanical linewidth values ( γ i ) obtained by taking the average of the detuned data, yield an estimate of γ i / 2 π = 1.27 ± 0.02    MHz . The inset displays calculated optomechanically induced damping ( γ OM = γ red γ i , black squares), plotted versus intracavity photon number ( n c ). A linear fit (red solid line) yields g o / 2 π = 217 ± 12    kHz . Under blue laser detuning, an threshold input power of n c , thr 7 , 600 (vertical blue dashed line) is required to observe phonon lasing of the mechanical cavity. (f) Cooperativity values ( C γ OM / γ i ) collected under red laser detuning, plotted versus n c . Solid gray squares and the linear fit (solid red line) are calculated from the γ OM values shown the panel (e) inset. Open gray squares correspond to mechanical spectra collected with the input laser amplified by an erbium doped fiber amplifier. The extrapolated linear fit (dashed green line) was used to infer the corresponding n c values. A maximum cooperativity value of C 19.9 was measured at an estimated n c 162 , 000 (vertical dashed gray line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n c = P i κ e / 2 ω l ( ( κ / 2 ) 2 + Δ 2 ) ,
γ OM = 2 n c | g o | 2 Re [ 1 i ( Δ ω m ) + κ / 2 1 i ( Δ + ω m ) + κ / 2 ] ,
δ ω m = n c | g o | 2 Im [ 1 i ( Δ ω m ) + κ / 2 1 i ( Δ + ω m ) + κ / 2 ] .

Metrics