Abstract

Mode locking is a non-equilibrium steady state. Capability to control mode-locking states can be used to improve performance as well as shed light on non-equilibrium physics using the laser as an experimental platform. We demonstrate direct control of the mode-locking state using spectral pulse shaping by incorporating a spatial light modulator at a Fourier plane inside the cavity of an Yb-doped fiber laser. We show that we can halt and restart mode locking, suppress instabilities, induce controlled reversible and irreversible transitions between mode-locking states, and perform advanced pulse shaping while using pulses as short as 40 fs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Control of the state of a mode-locked fiber laser using an intracavity Martinez compressor

Kenneth Underwood and Juliet T. Gopinath
Opt. Lett. 41(22) 5393-5396 (2016)

Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber

Hwanseong Jeong, Sun Young Choi, Fabian Rotermund, and Dong-Il Yeom
Opt. Express 21(22) 27011-27016 (2013)

Mode-locked Yb-doped Bragg fiber laser

Caroline Lecaplain, Ammar Hideur, Sébastien Février, and Philippe Roy
Opt. Lett. 34(18) 2879-2881 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Xu and F. W. Wise, Nat. Photonics 7, 875 (2013).
    [Crossref]
  2. M. E. Fermann and I. Hartl, Nat. Photonics 7, 868 (2013).
    [Crossref]
  3. S. Wang, A. Docherty, B. S. Marks, and C. R. Menyuk, J. Opt. Soc. Am. B 31, 2914 (2014).
    [Crossref]
  4. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, Opt. Express 17, 23137 (2009).
    [Crossref]
  5. J. S. Feehan, F. Ö. Ilday, W. S. Brocklesby, and J. H. V. Price, J. Opt. Soc. Am. B 33, 1668 (2016).
    [Crossref]
  6. A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
    [Crossref]
  7. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [Crossref]
  8. M. E. Fermann, Opt. Lett. 23, 52 (1998).
    [Crossref]
  9. M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, Opt. Lett. 37, 1640 (2012).
    [Crossref]
  10. F. Ö. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
    [Crossref]
  11. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, Optica 2, 667 (2015).
    [Crossref]
  12. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, Opt. Lett. 28, 1365 (2003).
    [Crossref]
  13. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref]
  14. W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
    [Crossref]
  15. P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
    [Crossref]
  16. B. Öktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
    [Crossref]
  17. S. Boscolo, J. Peng, and C. Finot, Appl. Sci. 5, 1379 (2015).
    [Crossref]
  18. K. L. Schehrer, E. S. Fry, and G. T. Bennett, Appl. Opt. 27, 1908 (1988).
    [Crossref]
  19. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438 (2014).
    [Crossref]
  20. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
    [Crossref]
  21. D. Yelin, D. Meshulach, and Y. Silberberg, Opt. Lett. 22, 1793 (1997).
    [Crossref]
  22. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [Crossref]
  23. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [Crossref]
  24. U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, Optica 2, 275 (2015).
    [Crossref]
  25. I. L. Budunoglu, C. Ülgüdür, B. Öktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
    [Crossref]
  26. C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
    [Crossref]
  27. J. L. England, Nat. Nanotechnol. 10, 919 (2015).
    [Crossref]
  28. R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, Optica 3, 189 (2016).
    [Crossref]

2016 (3)

2015 (4)

2014 (2)

2013 (2)

C. Xu and F. W. Wise, Nat. Photonics 7, 875 (2013).
[Crossref]

M. E. Fermann and I. Hartl, Nat. Photonics 7, 868 (2013).
[Crossref]

2012 (2)

2011 (1)

C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
[Crossref]

2010 (1)

B. Öktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[Crossref]

2009 (2)

2008 (1)

W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
[Crossref]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

2003 (1)

2002 (2)

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
[Crossref]

F. Ö. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
[Crossref]

2000 (2)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[Crossref]

1998 (1)

1997 (1)

1993 (1)

1988 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[Crossref]

Amrani, F.

Andral, U.

Bale, B. G.

Baumgartl, M.

Bekker, A.

Bennett, G. T.

Billard, F.

Boscolo, S.

J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
[Crossref]

S. Boscolo, J. Peng, and C. Finot, Appl. Sci. 5, 1379 (2015).
[Crossref]

S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438 (2014).
[Crossref]

Brocklesby, W. S.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, Opt. Lett. 28, 1365 (2003).
[Crossref]

Budunoglu, I. L.

Chong, A.

W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
[Crossref]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, Opt. Lett. 28, 1365 (2003).
[Crossref]

Docherty, A.

England, J. L.

J. L. England, Nat. Nanotechnol. 10, 919 (2015).
[Crossref]

Feehan, J. S.

Fermann, M. E.

M. E. Fermann and I. Hartl, Nat. Photonics 7, 868 (2013).
[Crossref]

M. E. Fermann, Opt. Lett. 23, 52 (1998).
[Crossref]

Finot, C.

Fischer, B.

Fodil, R. S.

Fry, E. S.

Gat, O.

Gordon, A.

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
[Crossref]

Grelu, P.

Hartl, I.

M. E. Fermann and I. Hartl, Nat. Photonics 7, 868 (2013).
[Crossref]

Haus, H. A.

Hertz, E.

Hideur, A.

Ilday, F. Ö.

Ippen, E. P.

Jarzynski, C.

C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
[Crossref]

Karakuzu, H.

Keller, U.

Kieu, K.

Klenner, A.

Kutz, J. N.

Lecaplain, C.

Lim, H.

Limpert, J.

Marks, B. S.

Mayer, A. S.

Menyuk, C. R.

Meshulach, D.

Nelson, L. E.

Öktem, B.

B. Öktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[Crossref]

I. L. Budunoglu, C. Ülgüdür, B. Öktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
[Crossref]

Peng, J.

J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
[Crossref]

S. Boscolo, J. Peng, and C. Finot, Appl. Sci. 5, 1379 (2015).
[Crossref]

Petropoulos, P.

Phillips, C. R.

Price, J. H. V.

Renninger, W.

W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
[Crossref]

Schehrer, K. L.

Silberberg, Y.

Smulakovsky, V.

Tamura, K.

Tünnermann, A.

Ülgüdür, C.

B. Öktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[Crossref]

I. L. Budunoglu, C. Ülgüdür, B. Öktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
[Crossref]

Wang, S.

Weill, R.

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

Wise, F.

B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, Opt. Express 17, 23137 (2009).
[Crossref]

W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
[Crossref]

Wise, F. W.

C. Xu and F. W. Wise, Nat. Photonics 7, 875 (2013).
[Crossref]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, Opt. Lett. 28, 1365 (2003).
[Crossref]

F. Ö. Ilday and F. W. Wise, J. Opt. Soc. Am. B 19, 470 (2002).
[Crossref]

Xu, C.

C. Xu and F. W. Wise, Nat. Photonics 7, 875 (2013).
[Crossref]

Yelin, D.

Annu. Rev. Condens. Matter Phys. (1)

C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (1)

S. Boscolo, J. Peng, and C. Finot, Appl. Sci. 5, 1379 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Nanotechnol. (1)

J. L. England, Nat. Nanotechnol. 10, 919 (2015).
[Crossref]

Nat. Photonics (4)

P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012).
[Crossref]

B. Öktem, C. Ülgüdür, and F. Ö. Ilday, Nat. Photonics 4, 307 (2010).
[Crossref]

C. Xu and F. W. Wise, Nat. Photonics 7, 875 (2013).
[Crossref]

M. E. Fermann and I. Hartl, Nat. Photonics 7, 868 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Optica (3)

Phys. Rev. A (1)

W. Renninger, A. Chong, and F. Wise, Phys. Rev. A 77, 023814 (2008).
[Crossref]

Phys. Rev. Lett. (2)

A. Gordon and B. Fischer, Phys. Rev. Lett. 89, 103901 (2002).
[Crossref]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[Crossref]

Sci. Rep. (1)

J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematics of the experimental setup comprising of Yb-doped fiber, wavelength division multiplier (WDM), pump diode (PD), 10% coupler, collimators A and B, 30% non-polarizing beam splitter (BS), λ/2- and λ/4 waveplates, polarizing isolator for unidirectional operation, and dispersive delay line with diffraction gratings (G), mirrors (M), D-shaped mirror (DM), cylindrical beam expander (CBE), and spatial light modulator (SLM). The SLM is controlled by a computer algorithm, which takes into account measured optical spectrum or autocorrelation data. The main elements of the quasi-real-time control algorithm are also shown.

Fig. 2.
Fig. 2.

Control of mode-locking states using the SLM. (a) Optical spectra corresponding to reversible transitions from cw to mode locking with cw peak to pure mode locking. The corresponding spectral filters applied by the SLM are shown at the top of each panel. (b) Autocorrelations and (c) optical spectra corresponding to repeatable irreversible transitions. (d) Autocorrelation trace of 40 fs long pulses. Inset shows corresponding optical spectrum. (e) Autocorrelation traces showing SLM-based pedestal removal; inset shows corresponding optical spectra. Black (red) lines before (after) filtering. (f) Elimination of undesired, characteristic spectral structure for a wave-breaking-free laser operating near its stability limit in terms of pulse energy [12]. Autocorrelation trace is shown. Inset shows spectra before filtering (black line) and after filtering (red line) along with the filter transmission pattern.

Metrics