Abstract

Many particle systems follow a complex time evolution. If system interactions are governed by nonlinear behavior, the theoretical description is often difficult to address. The nonlinear dynamics of some systems feature solitary waves or solitons, which are dynamically stable excitations. They come about whenever the ubiquitous dispersion of a wave is compensated for by some nonlinear, i.e., amplitude-dependent response. First observed in water, today solitons are known to appear in many systems in different fields of physics.

[Optical Society of America ]

PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription