Abstract

Silicon (Si) nanostructures are emerging in the fields of metasurfaces and nanophotonics, while aluminum (Al) is a plasmonic material that is active in the ultraviolet (UV) region. While Si is active in the visible range, its performance in the UV region is not well understood. Here, we discuss our experimental results of the confinement effect in the UV region of Si and Al nanostructures. We prepared Si and Al nanocylinder arrays with a periodicity in the UV range, so that UV light is diffracted coherently and trapped in the plane of the array. We deposited a UV absorbing film on top of the arrays and examined the UV confinement effect by measuring the photoluminescence (PL) intensity from the film. The PL intensity from the film on the Al nanocylinder array was found to be higher than it was from the Si array, showing that the confinement effect is more pronounced in the Al array in the UV region. The result is useful for selecting a constituent material when fabricating nanostructures that are active at specific wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Plasmonic technologies give a tool for localizing light energy at the nanoscale via excitation of surface plasmon polaritons, offering a platform on which strong light-matter interactions can occur. Metallic nanostructures are often utilized to tune the spectral and spatial configurations of light confinement. Of particular interest are diffractive arrays where lattice plasmons, i.e., hybridized mode of localized surface plasmon resonances (LSPRs) with in-plane diffraction, are supported [1,2]. In such arrays, the light is trapped in the plane of the array via the excitation of the lattice plasmons. Lattice plasmons have been studied in diffractive arrays consisting of a variety of metals, including Au [35], Ag [6,7], and of conducting oxides [8] and nitrides [9,10]. Their interactions with light at various frequencies (from ultraviolet (UV) to near infrared) have also been explored. Al is a plasmonic metal that possesses a high plasma frequency in the UV region [1113]. Diffractive arrays of Al nanocylinders excite lattice plasmons over a wide range of frequencies from the UV to the visible regions [14].

Si nanophotonics also offers the opportunity to manipulate light in the visible and near infrared regions [15,16]. Si is transparent in the near infrared at wavelengths (λ) longer than λ > 1100 nm, which is below the bandgap of Si ( = 1.1 eV). Even in the visible region, Si is not a strong absorber because of its indirect bandgap. Figure 1 shows the refractive indices (n) and extinction coefficients (k) (versus wavelength) of the polycrystalline Si used in this study. The data were deduced from the fit to the spectroscopic ellipsometry data. The k of Si is negligible in the visible region, while n is high compared to those of high-refractive-index dielectric oxides such as TiO2. The magnitude of the extinction in Si is more easily quantified via the absorption length a, i.e., the distance over which light propagates before the intensity becomes 1/e of the original value. This parameter is inversely proportional to the absorption coefficient α ( = 4πk/λ). Figure 1(b) shows that a varies over four orders of magnitude as λ increases from 300 to 800 nm, i.e., a increases from 6 to 3 × 104 nm. This shows that visible light travels some distance through the Si nanostructure before being fully absorbed. For example, a ∼ 1000 nm at λ = 600 nm. This is why Si metasurfaces are utilized as enhancers for photoluminescence (PL) [1719] and magneto-optical effect [20,21], and as pixels for color-printing [2227] in the visible portion of the spectrum.

 

Fig. 1. (a) Refractive index (n, left axis) and extinction coefficient (k, right) of the polycrystalline Si used in this study. Both n and k were deduced from the ellipsometry data. (b) Absorption length (a) calculated from the relation a = 1/α = λ/(4πk) where α is the absorption coefficient.

Download Full Size | PPT Slide | PDF

In contrast to the absorbing properties of Si in the visible region, its absorption in the UV region is serious. This is because of the inter-band intrinsic transition of Si at the center of the Brillouin zone, which is a direct transition without a wavevector mismatch and the probability of which is higher compared to the transition through the indirect bandgap at 1.1 eV [28,29]. Although the a of Si is smaller in the UV region than it is in the visible region and its performance in light confinement may be less efficient, n is higher in the UV region than it is in the visible range; thus, it is not clear how well Si nanostructures trap UV light waves.

In this paper, we discuss our experimental results of the light confinement effect in Si nanostructures in the UV region. To begin, we prepare Si and Al nanocylinder arrays of identical design and compare the UV confinement in the Si array with that in the Al array. Si and Al nanocylinder arrays are designed to support hybridized modes of in-plane diffraction with Mie resonances and LSPRs, respectively. The extent of light confinement is verified via PL intensity. A luminous film absorbing UV and emitting red PL with a high quantum yield is deposited on the arrays. We select tris(hexafluoroacetylacetonato) europium bis(triphenylphosphine oxide) (Eu(hfa)3(TPPO)2) as an emitter [3032]. The large Stokes shift (1.6 eV) of Eu(hfa)3(TPPO)2 allows us to design the arrays to tune the spectral position of the lattice plasmon to the excitation wavelength while the arrays being virtually transparent at the PL wavelength. The PL intensities of the Si and Al nanocylinder arrays are compared with the aid of numerical simulations.

2. Results and discussion

Figures 2(a) and (b) show the SEM images of the triangle arrays of the Al and Si nanocylinders, respectively, with a lattice constant a = 200 nm. The cylinder diameters are approximately 80 nm and the heights of the Al and Si cylinders are 100 and 90 nm, respectively. We also prepared Al and Si triangle arrays with a = 250 and 300 nm (see Fig. 9 in Appendix for the SEM images).

 

Fig. 2. SEM images of the Al (a) and Si (b) arrays with a lattice constant a = 200 nm (scale bar = 500 nm). The coordinate axes used in this study are also denoted. The right inset in (a) is the experimental configuration: The incident light is polarized along the y-direction, and θin was varied to give momentum in the x-direction.

Download Full Size | PPT Slide | PDF

Figures 3(a) and (b) show the transmittance spectra for the Al and Si nanocylinder arrays with a = 200 nm after the deposition of the emitter film. The spectra are plotted as a function of the angle of incidence (θin) and are shown as a colormap. The spectrum of the Al nanocylinder array (Fig. 3(a)) shows two dips at λ = 306 and 360 nm. These dips reflect the excitation of the LSPRs hybridized to in-plane diffraction with different spatial distributions of light energy, as shown in Fig. 4 using simulated data. The dips are redshifted as the incident angle deviates from θin = 0 °; this tendency coincides with the white dotted lines that correspond to the conditions at which in-plane diffraction, where the incident light is scattered in the plane of the array (i.e., the Rayleigh anomaly) occurs. Because the parallel component of the wave vector in the array plane is conserved, the Rayleigh anomaly conditions satisfy the relation: kout = kin ± G, where kout and kin are the diffracted and incident wave vectors, respectively. G = (m1b1, m2b2) is the reciprocal lattice vector, which can be expressed for the triangle lattice as [33]:

$$\begin{aligned} {{\textbf b}_1} = (2\pi /a)({\textbf x} + {\textbf y}/\sqrt 3 )\\ {{\textbf b}_2} = (2\pi /a)({\textbf x} - {\textbf y}/\sqrt 3 ), \end{aligned}$$
where m1 and m2 are integers that denote the diffraction order. When kin does not have a component in the y-direction, kout|| can be expressed as:
$$k_{\textrm{out}||}^2 = k_{\textrm{in}}^2 + 2(2\pi /a)({m_1} + {m_2}){k_{\textrm{in}}} + {(2\pi /a)^2}{({m_1} + {m_2})^2} + {(2\pi /a)^2}{({m_1} - {m_2})^2}/3,$$
where kout|| = 2πn/λ and kin = (2π/λ)sinθin are the parallel components of the diffracted and incident wave vectors, respectively. We denote the magnitude of k as k. The dotted lines are drawn at n = 1.51 and 1.46, which are the refractive indices of the Eu(hfa)3(TPPO)2 thin film and the substrate (SiO2 glass), respectively. The shift of the dips in the transmittance following the Rayleigh anomaly reflects the hybridization of the LSPRs with diffraction. The redshift of the dip from the exact location of the Rayleigh anomaly indicates a strong degree of hybridization [5]. In Fig. 3(b), which shows the transmittance from the Si array, two dips appear, but the angular dependence is weaker than it is for the Al array, indicating that the hybridization is weaker. As a increases, the diffraction condition shifts to longer wavelengths. The transmittance data for the arrays with a = 250 and 300 nm are shown in Appendix Figs. 10 and 11, respectively. The dips in transmittance following the Rayleigh anomaly occur in these transmittance data as well.

 

Fig. 3. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. White dashed lines represent the in-plane diffraction conditions with n = 1.51 (Eu(hfa)3(TPPO)2), appears at longer wavelengths, and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from the deuterium lamp.

Download Full Size | PPT Slide | PDF

 

Fig. 4. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d–g) Distribution of light energy under the illumination with an s-polarized plane wave (electric field oscillating in the y-direction) from the SiO2 glass side under the resonant conditions at θin = 0°. (d) λ = 306 and (e) 362 nm for the Al array, and (f) 306 and (g) 412 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick

Download Full Size | PPT Slide | PDF

Figure 3(c) compares the transmittance between the Al and Si nanocylinder arrays at θin = 0 °. Two dips are noticeable in each spectrum. It is noted that at longer wavelengths, typically λ > 500 nm, the arrays are transparent. Given that the main PL peak of Eu3+ is around λ = 617 nm, both the arrays are transparent around the spectral range in which PL occurs. The peak at λ = 580 nm is an experimental artifact from the deuterium lamp.

The simulated optical transmittance data are presented in Figs. 4(a) and (b). In the simulation, we varied the diameter of the cylinders around 80 nm, the value obtained from the SEM image. Finally, we employed 60 nm for both the Al and Si arrays, which gave the best agreement with the experiment. The experimental data are qualitatively reproduced by the simulations. At θin = 0 °, two dips in the spectrum for both Al and Si nanocylinder arrays are visible (see Fig. 4(c)). The arrays are transparent at λ > 500 nm.

To understand the origin of the dips, we plotted in Figs. 4(d) – 4(g) the optical energy distribution calculated under the illumination conditions corresponding to the two dips. Note that the light is incident from the substrate side, in accordance with the experimental configuration. For the Al nanocylinder array, the dips at λ = 306 and 362 nm represent the LSPRs hybridized with the in-plane diffractions. The field distribution shows that the extinction at λ = 306 nm (Fig. 4(d)) is primarily due to the LSPRs at the substrate/Al interface, and the reflection is observed to be large. The energy distribution at λ = 362 nm (Fig. 4(e)) is similar to that at λ = 306 nm, but the energy is more focused in the vicinity of the Al nanocylinder (note the difference in the scales of the two colormaps). For the Si nanocylinder array, the effect of in-plane diffraction is less notable, as shown by the weaker angular dependence of the optical resonance (Figs. 3(b) and 4(b)). It is noted that at λ = 306 nm, the light energy does not penetrate the Si nanocylinder (Fig. 4(f)) because of the strong absorption at this wavelength, as shown in Fig. 1; a = 6 nm at λ = 306 nm, which is far smaller than any of the dimensions of the Si nanocylinder (diameter = 60 nm and height = 90 nm). By contrast, at λ = 412 nm, the light energy is inside the nanocylinder (Fig. 4(g)), indicating the presence of Mie-type resonance. The simulations for the arrays with a = 250 and 300 nm (Appendix Figs. 12 and 13, respectively) show that as a increases, the diffraction conditions shift to longer wavelengths where the absorption of Si is smaller. Consequently, excitation of in-plane diffraction in the Si array becomes stronger and the spatial distribution of light energy becomes close to that of the Al array.

For the PL measurement, a λ = 325 nm line from the He-Cd laser was used. The simulated light energy distribution at λ = 325 nm and θin = 0°, corresponding to the excitation condition used in the PL measurement, is shown in Appendix Fig. 14. For the Al array, the optical energy distribution is similar to that corresponding to the conditions λ = 306 nm and θin = 0°; however, the light energy is concentrated in the emitter film. We calculated the average light energy contained in the emitter film (see sec. 4.4 for calculation detail) and found that there was 1.31 times more energy stored in the emitter film on the Al array than in the emitter film on the flat SiO2 glass substrate, which was used as a reference. In contrast, for the Si array, no light energy accumulation was observed inside the emitter film at the illumination conditions λ = 325 nm and θin = 0°. The energy stored in the film was 0.85 times that stored in the emitter film of the reference.

Figure 5 shows the PL spectra for the emitter films on the Al and Si nanocylinder arrays with a = 200 nm. The emitter shows red PL, typical of the Eu3+. The main peak at λ = 617 nm corresponds to the 5D0-7F2 transition. PL from the Al array is 1.58 times that from the emitter film of the reference, while the PL from the Si array is the same as that of the reference. The spectral shape does not change. We also compare these PL results with those obtained for the arrays with a = 250 and 300 nm (Appendix Fig. 15). There is also more intense PL from the emitter film on the Al array than from the emitter film on the Si array.

 

Fig. 5. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with a = 200 nm and on flat glass substrates. The inset shows the experimental configuration: The samples were excited at θin = 0° from the substrate side at λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.

Download Full Size | PPT Slide | PDF

Among the many plasmon-related optical phenomena that have caught the attention of scientists in the field of plasmonics, the interaction of light emitters with metallic nanostructures has been a topic [3436]. The effect of a metallic nanostructure on PL can be illustrated by considering three optical phenomena: absorption, quantum yield (the ratio of the radiative decay rate with the nonradiative one), and outcoupling (a process where the PL in the film is diffracted out in a direction defined by the periodicity) [37]. Plasmonic diffractive arrays contribute to PL enhancement by tuning the lattice geometries, such as the pattern or the lattice constant, so that they can support the lattice plasmons in the spectral ranges of absorption [14] and PL [38,39]. In the present study, the array is transparent in the spectral range in which PL occurs, because the diffraction does not occur in this spectral range. In this portion of the spectrum, the reason for the increased PL intensity from the Al array is absorption enhancement. We note that the 1.58 times increase in the magnitude of the PL enhancement, shown in Fig. 5, is similar to the simulated enhancement of light energy confined to the emitting film (1.31 times), supporting the speculation that absorption enhancement is the principal cause of the observed PL enhancement. The possibility of a change in quantum yield will be examined via PL lifetime measurement later.

Figure 6 compares the experimentally obtained increase in the intensity of the PL from the emitting film on the Al and Si arrays with a = 200, 250, and 300 nm and the simulated energy of excitation light (λ = 325 nm and θin = 0°) confined inside the emitting film. A correlation is found between them, confirming that the PL enhancement comes from an increase in the absorption. Note that for the array with a > 300 nm, the diffraction shifts to the visible and there is no excitation of fundamental diffraction in the UV region [14].

 

Fig. 6. I/I0 at the main peak for Eu3+ PL (λ = 617 nm) excited with a He-Cd laser (λ = 325 nm) at θin = 0° (circles, left axis) and the squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 and integrated over the film at λ = 325 nm and θin = 0° (squares, right axis) as a function of the lattice constant a of the Al and Si arrays. The dashed lines are the guides for the eyes.

Download Full Size | PPT Slide | PDF

We also measured the PL decay to assess the PL quantum yield of the emitters on the arrays. Figure 7 shows the PL decay curves for the Eu(hfa)3(TPPO)2 films on the arrays, highlighting the decay of the main PL peak at λ = 617 nm. The PL from the reference film can be fitted by a single exponential with a lifetime = 779 µs. This long lifetime is due to the forbidden nature of the f - f transition, which results from the spatial symmetry of the initial and final states of the transition. The PL decays more quickly for the films on the Al and Si arrays than it does for the reference. The PL lifetimes, deduced from the single exponential fit to the decay curve, are 577 and 621 µs for the Al and Si nanocylinder arrays with a = 200 nm, respectively. The PL lifetimes for all the arrays measured are summarized in Table 1. The change in the PL decay could come from the change in radiative and/or nonradiative decay rates. The radiative decay change occurs with the change in the optical density of the states, i.e., the Purcell effect, at the wavelengths of PL. We assume that the Purcell effect is small in the present system, because both the Al and Si arrays are transparent at λ = 617 nm, as shown in Fig. 3. Therefore, we assume that the lifetime change occurs owing to the increase in nonradiative decay. This nonradiative decay results from the energy transfer from the emitter to the Al or Si and results in energy dissipation to heat and a decrease in PL intensity. The faster decay for the Al array indicates that the energy transfer is larger for the Al array. Even with the rapid energy transfer, the Al array manifests a higher PL enhancement.

 

Fig. 7. PL decay curves of the Eu(hfa)3(TPPO)2 thin films (125 nm) on the Al (black) and Si (blue) nanocylinder arrays with a = 200 nm and on a flat SiO2 glass substrate (gray dotted line) The decays were monitored at λ = 617 nm with a central excitation wavelength = 320 nm.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. PL lifetimes of the Eu(hfa)3(TPPO)2 thin films on different arrays deduced from the single exponential fit to the PL decay curves.

At the present excitation wavelength (λ = 325 nm), the increase in PL intensity from the Al array is higher than it is from the Si array. However, this relationship could change at different wavelengths. In Fig. 8, we plot the light energy stored in the emitter film as a function of the wavelength of the incident light for the arrays with a varying from 200 to 400 nm. For both the Si and Al arrays, the wavelength at which maximum confinement occurs tends to redshift with an increase in a, indicating the presence of in-plane diffraction (denoted by the vertical dotted lines). For all a values, the Al arrays show a higher confinement effect in the UV region (λ < 400 nm). This indicates that the absorption by Si in the UV region is so strong that the Si arrays cannot confine the UV light in the plane of the array. At a = 350 and 400 nm, however, the Si arrays show a higher confinement effect at λ = 480 and 535 nm for a = 350 and 400 nm, respectively. These results confirm that Si arrays trap visible light more effectively than the Al arrays with identical designs under resonant condition, which is in accordance with the experimental work that reports a higher PL enhancement from the Si array with a = 400 nm than that from the Al array due to light trapping of the visible light [19].

 

Fig. 8. Squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 averaged over the Eu(hfa)3(TPPO)2 film as a function of λ at θin = 0° on the Al and Si nanocylinder arrays with a = 200, 250, 300, 350, and 400 nm. The vertical dashed lines denote the in-plane diffraction conditions with n = 1.46.

Download Full Size | PPT Slide | PDF

3. Conclusion

We have fabricated periodic Al and Si nanocylinder arrays with identical designs and compared the PL intensities from the Eu(hfa)3(TPPO)2 films on the arrays. The PL from the Al array is enhanced because of the confinement of UV light to the emitting film. By contrast, the PL from the emitter on the Si array is not enhanced. The simulation shows that the incident UV light does not accumulate in the film on the Si array because of the large optical absorption of Si in the UV spectral region. The results verify the superiority of Al diffractive nanocylinder arrays to confine UV light.

4. Method

4.1 Array fabrication

An aluminum thin film (thickness: 100 nm) was grown on a SiO2 glass substrate using electron beam deposition. The thin film was then patterned using a combination of nanoimprint lithography (EntreTM3, Obducat) and reactive ion etching (RIE) (RIE-101iPH, Samco) to fabricate the Al nanocylinder arrays. First, the resist (TU2-170, thickness: 200 nm) was coated onto the Al thin film and prebaked for 5 min at 95 °C. As a master mold for the nanoimprint lithography, Si molds consisting of triangle arrays of nanopillars were fabricated using electron-beam lithography (F7000s-KYT01, Advantest) and Si deep etching (RIE-800iPB-KU, Samco). Next, the surface structures of the Si molds were transferred to the resist by nanoimprint lithography. The triangle arrays of Al nanocylinders were structured by RIE under a gas flow of N2 and Cl2. The Si nanocylinder arrays were fabricated using a combination of electron beam lithography and Si deep etching. A 90-nm-thick polycrystalline Si film was deposited on a SiO2 glass substrate using a low-pressure chemical vapor deposition at 600 °C under the flow of He and SiH4 gases. The resist (NEB22A2, Sumitomo) was coated onto the Si thin film and patterned by electron-beam lithography (F7000s-KYT01, Advantest). After development, the thin film was patterned by Si deep etching (RIE-800iPB-KU, Samco). Finally, the resist residues were removed by O2 ashing (RIE-10NR-KF, Samco).

4.2 Preparation of the emitter film

Eu(hfa)3(TPPO)2 films on the substrates were prepared by vacuum evaporation. A powder sample of Eu(hfa)3(TPPO)2 was mounted in a holder and placed in a vacuum chamber (SVC-700, Sanyu Electron) under a pressure of 7 × 10-4 Pa. The powder was sublimated by heating up to 338 °C and deposited onto the Al and Si nanocylinder arrays. The thickness of the film was estimated with a surface stylus profiler (Alpha-Step IQ, KLA Tencor). The dielectric function of the film was determined by spectroscopic ellipsometry (FE-5000, Otsuka Electron).

4.3 Optical characterization

Zeroth-order optical transmission spectra (s-polarized component) were measured as a function of the angle of incidence θin. For the measurement, the sample was placed on a rotation stage and white light from a deuterium lamp was incident from the backside (substrate side). The zeroth-order optical transmission spectra were obtained by normalizing the transmission of the incident light through the sample to that through the glass substrate. PL measurements were performed by illuminating the samples with a He–Cd laser (excitation wavelength λ = 325 nm, s-polarized) at θin = 0° from the backside. The PL was measured from the opposite side at the angle from the surface normal (θem = 10°) using a fiber-coupled spectrometer (USB4000, Ocean Optics) mounted on a computer-controlled rotation stage. The stage could be rotated around the excitation spot. As a reference, we measured the PL of an Eu(hfa)3(TPPO)2 thin film on a flat SiO2 glass substrate. The PL decay at the main luminescence peak (λ = 617 nm) was measured using a time-correlated single-photon counting module (Quantaurus-Tau, Hamamatsu Photonics) equipped with a pulsed flash lamp (temporal resolution of 0.5 µs) with a band-pass filter (center wavelength: 320 nm, full width at half maximum: 40 nm) as an excitation source.

4.4 Simulation

The optical characteristics of the arrays were simulated using the finite-element method (COMSOL Multiphysics). Three-dimensional models were used with periodic boundary conditions on the lateral coordinates to model the triangle lattice with a periodicity of 200, 250, and 300 nm. The simulated structures consisted of a SiO2 glass substrate and Si or Al nanocylinder with an Eu(hfa)3(TPPO)2 thin film on the top of it. The film thickness obtained from the surface stylus profiler measurement varied; we used representative values of 125 nm for the Si and Al nanocylinder arrays. The height of the nanocylinders were 100 and 90 nm for Si and Al, and the diameters were 60, 70, and 90 nm for the Al nanocylinders (with a = 200, 250, and 300 nm), and 60, 80, and 90 nm for the Si nanocylinders (with a = 200, 250, and 300 nm). The refractive indices (n) and extinction coefficients (k) were deduced from the fits to the spectroscopic ellipsometry data for Al, Si, and the Eu(hfa)3(TPPO)2 thin film [40]; the n of the SiO2 glass substrate was set to 1.46. A plane wave with an electric field oscillating in the y-direction (see the inset in Fig. 2 for the configuration) was incident from the top boundary at a defined θin to investigate the optical response of the model.

The average light energy contained in the emitter film was calculated as the squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2, integrated over the film.

Appendix

 

Fig. 9. SEM images of the Al arrays with a = (a) 250 and (b) 300 nm, and Si arrays with a = (c) 250 and (d) 300 nm. Scale bar = 500 nm.

Download Full Size | PPT Slide | PDF

 

Fig. 10. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.

Download Full Size | PPT Slide | PDF

 

Fig. 11. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.

Download Full Size | PPT Slide | PDF

 

Fig. 12. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 396 nm for the Al array, and (e) 418 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.

Download Full Size | PPT Slide | PDF

 

Fig. 13. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 456 nm for the Al array, and (e) 448 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.

Download Full Size | PPT Slide | PDF

 

Fig. 14. Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y direction) from the SiO2 glass side under the excitation condition for the PL measurement at θin = 0° and λ = 325 nm for (a) Al and (b) Si nanocylinder arrays with a = 200 nm.

Download Full Size | PPT Slide | PDF

 

Fig. 15. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with (top panel) a = 250 and (bottom panel) 300 nm, and on flat glass substrates. The inset sketches the experimental configuration: The samples were excited at θin = 0° from the substrate side and with λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.

Download Full Size | PPT Slide | PDF

Funding

Ministry of Education, Culture, Sports, Science and Technology (MEXT) (16H04217, Nanotech Cupal); Iketani Science and Technology Foundation; Asahi Glass Foundation.

Acknowledgments

The authors thank Dr. Takayuki Nakanishi (Tokyo University of Science) and Prof. Yasuchika Hasegawa (Hokkaido University) for the synthesis of Eu(hfa)3(TPPO)2. This work was partly supported by the Nanotechnology Hub, Kyoto University and the National Institute for Material Science (NIMS) Nanofabrication Platform in the “Nanotechnology Platform Project,” sponsored by MEXT, Japan.

References

1. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018). [CrossRef]  

2. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018). [CrossRef]  

3. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef]  

4. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008). [CrossRef]  

5. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009). [CrossRef]  

6. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004). [CrossRef]  

7. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013). [CrossRef]  

8. R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018). [CrossRef]  

9. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015). [CrossRef]  

10. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017). [CrossRef]  

11. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014). [CrossRef]  

12. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, A. V. Zayats, W. Dickson, and D. Gerard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691 (2017). [CrossRef]  

13. I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017). [CrossRef]  

14. Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018). [CrossRef]  

15. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011). [CrossRef]  

16. M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019). [CrossRef]  

17. J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018). [CrossRef]  

18. M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016). [CrossRef]  

19. S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019). [CrossRef]  

20. M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019). [CrossRef]  

21. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017). [CrossRef]  

22. V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017). [CrossRef]  

23. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017). [CrossRef]  

24. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017). [CrossRef]  

25. Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017). [CrossRef]  

26. C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019). [CrossRef]  

27. Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015). [CrossRef]  

28. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999). [CrossRef]  

29. M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966). [CrossRef]  

30. Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003). [CrossRef]  

31. Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003). [CrossRef]  

32. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007). [CrossRef]  

33. J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

34. W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998). [CrossRef]  

35. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004). [CrossRef]  

36. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef]  

37. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013). [CrossRef]  

38. S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017). [CrossRef]  

39. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018). [CrossRef]  

40. Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
    [Crossref]
  2. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
    [Crossref]
  3. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref]
  4. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  5. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
    [Crossref]
  6. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref]
  7. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref]
  8. R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
    [Crossref]
  9. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  10. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
    [Crossref]
  11. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  12. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, A. V. Zayats, W. Dickson, and D. Gerard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691 (2017).
    [Crossref]
  13. I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
    [Crossref]
  14. Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
    [Crossref]
  15. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref]
  16. M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
    [Crossref]
  17. J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
    [Crossref]
  18. M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  19. S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
    [Crossref]
  20. M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
    [Crossref]
  21. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
    [Crossref]
  22. V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
    [Crossref]
  23. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref]
  24. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
    [Crossref]
  25. Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
    [Crossref]
  26. C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
    [Crossref]
  27. Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
    [Crossref]
  28. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
    [Crossref]
  29. M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
    [Crossref]
  30. Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
    [Crossref]
  31. Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
    [Crossref]
  32. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
    [Crossref]
  33. J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).
  34. W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [Crossref]
  35. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
    [Crossref]
  36. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref]
  37. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  38. S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
    [Crossref]
  39. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
    [Crossref]
  40. Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
    [Crossref]

2019 (5)

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

2018 (6)

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

2017 (9)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, A. V. Zayats, W. Dickson, and D. Gerard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691 (2017).
[Crossref]

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

2016 (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

2015 (2)

2014 (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

2013 (2)

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

2011 (1)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

2009 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

2008 (2)

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

2007 (1)

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

2004 (3)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

2003 (2)

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

1999 (1)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

1966 (1)

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Auguie, B.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Bagheri, S.

Barcikowski, S.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

Barsukova, M. G.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Bergstresser, T. K.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Berrier, A.

Bohn, J.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Bonod, N.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Brugger, J.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Bucher, T.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chiarelli, G.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Choi, D.-Y.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chong, K. E.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chu, Y. Z.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Cohen, M. L.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Cortes, E.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

De Zuani, S.

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Dickson, W.

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Fedyanin, A. A.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Flauraud, V.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Fujita, K.

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Gargiulo, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Gerard, D.

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Giessen, H.

Gissibl, T.

Gómez Rivas, J.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Goto, T.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Hada, M.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Hanulia, T.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Hara, M.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Hasegawa, Y.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Hashimoto, T.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Hayashi, T.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Hegde, R. S.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Hu, E. L.

Inami, W.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Ishii, S.

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Jakobi, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Kai, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kamakura, R.

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Kanehisa, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kawachiya, Y.

Kawai, H.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Kawamura, Y.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Kawata, S.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Kawata, Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Khlopin, D.

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Kivshar, Y. S.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Komar, A.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

König, M.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Krawczyk, M.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Kuznetsov, A. I.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Laux, F.

Le-Van, Q.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

Maier, S. A.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Martin, J.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Miyata, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Murai, S.

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

Musorin, A. I.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Nagamura, T.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Nagao, T.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Nagasaki, Y.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nakajima, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Nakamura, K.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Nakamura, K. G.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Nakanishi, T.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Nakashima, N.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Neshev, D. N.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Ohkubo, T.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Olmos-Trigo, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Ozaki, Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Paniagua-Domínguez, R.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Pertsch, T.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Peyronel, T.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Pirruccio, G.

Plain, J.

Provencio, P. N.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Ramezani, M.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Reyes, M.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Richter, G.

Rodriguez, S. R. K.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Sáenz, J. J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Saito, M.

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Sakamoto, H.

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Samara, G. A.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Schlücker, S.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Schumacher, L.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Serebryannikov, A. E.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Shorokhov, A. S.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Sogabe, K.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Staude, I.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stauden, T.

Stefani, F. D.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Sterl, F.

Suzuki, M.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Takahara, J.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Takeishi, T.

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

Tanabe, I.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Tanaka, K.

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Tanaka, Y. Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Tiecke, T. G.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Tittl, A.

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Tsuchimoto, Y.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Vaidya, G.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Van Hoof, N.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Vashistha, V.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Verschuuren, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

Violi, I. L.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Wada, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Walter, R.

Wang, S.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Wardley, W. P.

Watari, K.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Wilcoxon, J. P.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Winn, N. J.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Wurtz, G. A.

Yamamoto, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Yamamuro, M.

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Yanagida, S.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Yang, J. K. W.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yano, T.-A.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Yasuda, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Zayats, A. V.

Zaza, C.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Zgrabik, C. M.

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

ACS Photonics (7)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

APL Photonics (2)

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

Appl. Phys. Lett. (3)

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Chem. Rev. (1)

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

J. Appl. Phys. (2)

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (2)

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Light: Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Mater. Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Nano Lett. (4)

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Phys. Rev. B (2)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Sci. Rep. (1)

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Small (1)

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Other (1)

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Refractive index (n, left axis) and extinction coefficient (k, right) of the polycrystalline Si used in this study. Both n and k were deduced from the ellipsometry data. (b) Absorption length (a) calculated from the relation a = 1/α = λ/(4πk) where α is the absorption coefficient.
Fig. 2.
Fig. 2. SEM images of the Al (a) and Si (b) arrays with a lattice constant a = 200 nm (scale bar = 500 nm). The coordinate axes used in this study are also denoted. The right inset in (a) is the experimental configuration: The incident light is polarized along the y-direction, and θin was varied to give momentum in the x-direction.
Fig. 3.
Fig. 3. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. White dashed lines represent the in-plane diffraction conditions with n = 1.51 (Eu(hfa)3(TPPO)2), appears at longer wavelengths, and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from the deuterium lamp.
Fig. 4.
Fig. 4. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d–g) Distribution of light energy under the illumination with an s-polarized plane wave (electric field oscillating in the y-direction) from the SiO2 glass side under the resonant conditions at θin = 0°. (d) λ = 306 and (e) 362 nm for the Al array, and (f) 306 and (g) 412 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick
Fig. 5.
Fig. 5. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with a = 200 nm and on flat glass substrates. The inset shows the experimental configuration: The samples were excited at θin = 0° from the substrate side at λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.
Fig. 6.
Fig. 6. I/I0 at the main peak for Eu3+ PL (λ = 617 nm) excited with a He-Cd laser (λ = 325 nm) at θin = 0° (circles, left axis) and the squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 and integrated over the film at λ = 325 nm and θin = 0° (squares, right axis) as a function of the lattice constant a of the Al and Si arrays. The dashed lines are the guides for the eyes.
Fig. 7.
Fig. 7. PL decay curves of the Eu(hfa)3(TPPO)2 thin films (125 nm) on the Al (black) and Si (blue) nanocylinder arrays with a = 200 nm and on a flat SiO2 glass substrate (gray dotted line) The decays were monitored at λ = 617 nm with a central excitation wavelength = 320 nm.
Fig. 8.
Fig. 8. Squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 averaged over the Eu(hfa)3(TPPO)2 film as a function of λ at θin = 0° on the Al and Si nanocylinder arrays with a = 200, 250, 300, 350, and 400 nm. The vertical dashed lines denote the in-plane diffraction conditions with n = 1.46.
Fig. 9.
Fig. 9. SEM images of the Al arrays with a = (a) 250 and (b) 300 nm, and Si arrays with a = (c) 250 and (d) 300 nm. Scale bar = 500 nm.
Fig. 10.
Fig. 10. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.
Fig. 11.
Fig. 11. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.
Fig. 12.
Fig. 12. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 396 nm for the Al array, and (e) 418 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.
Fig. 13.
Fig. 13. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 456 nm for the Al array, and (e) 448 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.
Fig. 14.
Fig. 14. Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y direction) from the SiO2 glass side under the excitation condition for the PL measurement at θin = 0° and λ = 325 nm for (a) Al and (b) Si nanocylinder arrays with a = 200 nm.
Fig. 15.
Fig. 15. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with (top panel) a = 250 and (bottom panel) 300 nm, and on flat glass substrates. The inset sketches the experimental configuration: The samples were excited at θin = 0° from the substrate side and with λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.

Tables (1)

Tables Icon

Table 1. PL lifetimes of the Eu(hfa)3(TPPO)2 thin films on different arrays deduced from the single exponential fit to the PL decay curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

b 1 = ( 2 π / a ) ( x + y / 3 ) b 2 = ( 2 π / a ) ( x y / 3 ) ,
k out | | 2 = k in 2 + 2 ( 2 π / a ) ( m 1 + m 2 ) k in + ( 2 π / a ) 2 ( m 1 + m 2 ) 2 + ( 2 π / a ) 2 ( m 1 m 2 ) 2 / 3 ,

Metrics