Abstract

Orbital angular momentum (OAM) generated by metamaterials has interesting properties in many applications. But in near infrared communication wave bands, broadband OAM generators have rarely been investigated. Here, we report an approach to design a high efficiency, broadband all dielectric transmission metasurface working in a telecom wave band from 1300 nm to 1700 nm. Simulated OAM generators with a topological charge of m = 1 and m = 20 present good mode purity up to 99.99% and high energy efficiency up to 97.38%. The proposed broadband all-dielectric OAM generator is meaningful to reduce dispersion-induced strong distortions and exploit new applications such as broadband object detection and multiplexed communication.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Corrections

Heng Zhou, Jiaqi Yang, Chunqing Gao, and Shiyao Fu, "High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation: erratum," Opt. Mater. Express 9, 2806-2806 (2019)
https://www.osapublishing.org/ome/abstract.cfm?uri=ome-9-7-2806

1. Introduction

Beams carrying orbital angular momentum (OAM), have received extensive attention since Allen demonstrated it in 1992 [1]. Because of excellent properties, OAM beams have many applications in optical communications [25], rotation detection [68], optical tweezers [911] and so on. Many methods have been studied to generate OAM beams. Compared with the traditional ways such as the spiral phase plates (SPPs) [12], cylindrical lenses [13], q-plate [14] and computer-generated holograms [15], metamaterial devices attach significant attention in recent years. Metamaterials are subwavelength periodic nanoscale structures [16]. Different from conventional bulky optical components, metamaterial devices are smaller in size and more compact that can be easily integrated into electronic and mechanical systems. But three-dimensional metamaterials with multilayer structures have also drawbacks such as high loss, dispersion and difficult to manufacture, which limit their applications.

With the development of nanotechnology, metasurface has been proposed to overcome the limits mentioned above. Metasurface, consists of subwavelength antenna arrays resulting in ultrathin thickness, is regarded as two-dimensional surface. It changes the amplitude and phase of an incident beam by exciting strong resonance of each unit structure [17]. Harvard university used metasurfaces to generate OAM beam in 2011 [18]. They used electron beam lithography to fabricate Gold V-antenna arrays on intrinsic silicon wafers and implement phase control from 0 to 2π of the antenna that is very significant near the resonant wavelength. This plasmonic metasurface generated OAM beam with m = 1, where m is the topological charge and can be taken as an arbitrary integer. Based on the same theory, different plasmonic metasurfaces are proposed to generate OAM beam [19]. Due to severe ohmic losses and strong absorption, these plasmonic based metasurfaces showed low energy efficiency.

Now, all-dielectric metasurfaces with low losses and high refractive index have proved of great potential for generating OAM beams, because each resonator consisting of dielectric metasurfaces can support strong electric and magnetic dipole resonances due to the Mie scattering theory [20,21]. These metasurfaces have wide resonant wavelengths and are robust in tailoring the phase and amplitude of wavefront, and suitable to generate OAM beams. Quite a few literatures have been published in this topic by using dielectric metasurface with different resonator shapes such as Z-shape [21], rectangle [22] and elliptical [23]. In addition, to explore new mechanisms for generating OAM beams with improved quality [2428], expanding the operation bandwidth of OAM beams is meaningful to reduce dispersion-induced strong distortions and exploit new applications such as broadband object detection [29,30] and broadband OAM imaging [31]. Some groups have investigated broadband OAM generators in microwave region (6.95-18 GHz in [32], 14-16 GHz in [33]), millimeter wave region (59-70 GHz [34]) and optical regime (670 to 1100 nm [35], 1500nm-1600 nm [23]). However, broadband transmissive all-dielectric OAM generator in near infrared region (NIR) has rarely been reported. Exploration of the NIR region has profound implications for a multitude of applications, such as enhancing spectrum efficiency for OAM communications and increasing available spectrum.

In this letter, we demonstrate a high-efficiency all-dielectric metasurface working in a broadband wave range from 1300 nm to 1700nm (nearly covers all optical communication waveband) for optical vortex generation by utilizing structured silicon resonators resting on fused silica substrate. Based on Mie scattering theory, this transmissive metasurface has extremely high efficiency up to 97.38% across a 400 nm bandwidth and present good mode purity up to 99.99%. To render the resultant phase-shift exhibit proper features required for broadband OAM beams, we use Jones matrix to make a detailed derivation of the propagation process. Simulation results of three representative wavelengths chosen from the operation waveband are presented to show the OAM generator performance, including phase and electric field distribution which are consistent well with expectations. Furthermore, this flexible phase control can be utilized to implement other broadband optical elements with high transmittance such as lenses, quarter wave plates and holograms.

2. Theoretical analysis

To simulate broadband all-dielectric metasurface for optical vortex generating, Jones matrix is employed firstly to describe the mathematics behind the metasurface. For arbitrary Ein and Eout, each dielectric resonator can be seen as a pixel which has the general relation between the input and output electric field that can be described as Eout = TEin, with

$$T = \left[ {\begin{array}{{cc}} {{T_{xx}}}&{{T_{xy}}}\\ {{T_{yx}}}&{{T_{yy}}} \end{array}} \right]$$
where Txx(yy) and Txy(yx) are the transmission of co-polarized light and cross-polarized light. Any arbitrary Ein and corresponding desired Eout can be mapped using a symmetric and unitary Jones matrix. For a birefringent metasurface, if the phase shifts along x- and y- directions and the rotation angle can be chosen freely, it can implement the corresponding Jones matrix [36]. The particularly relationships between Ein, Eout and T are
$$\left[ {\begin{array}{{cc}} {E_x^{out\ast }}&{E_y^{out\ast }}\\ {E_x^{in}}&{E_y^{in}} \end{array}} \right]\left[ {\begin{array}{{c}} {{T_{xx}}}\\ {{T_{yx}}} \end{array}} \right] = \left[ {\begin{array}{{c}} {E_x^{in\ast }}\\ {E_x^{out}} \end{array}} \right]$$
and
$$\left\{ {\begin{array}{{c}} {{T_{xy}} = {T_{yx}}}\\ {{T_{yy}} = - \exp (2i\angle {T_{yx}}){T_{xx}}^\ast } \end{array}} \right.$$
We choose a pair of polarization orthogonality basis, left circular polarization and right circular polarization, as $|{\lambda ^ + \rangle }$ and $|{\lambda ^ - \rangle }$:
$$\begin{array}{{lc}} {|{{\lambda^ + }} \rangle = \frac{{\sqrt {2} }}{{2}}\left[ {\begin{array}{{c}} {1}\\ i \end{array}} \right]}&{|{{\lambda^ - }} \rangle = \frac{{\sqrt 2 }}{2}\left[ {\begin{array}{{c}} 1\\ { - i} \end{array}} \right]} \end{array}$$
The dielectric metasurface transformations in our design are
$$|{{\lambda^{ + }}} \rangle \to {e^{im\varphi }}|{{\lambda^ - }} \rangle \quad \ |{{\lambda^ - }} \rangle \to {e^{i( - m)\varphi }}|{{\lambda^ + }} \rangle $$
with m the topological charge of the OAM beam and φ the azimuthal angle. Based on Eq. (5), we can get two sets of Ein and Eout and put them into Eq. (2) and Eq. (3), the transmission matrix gives:
$$T = \frac{1}{2}\left[ {\begin{array}{{cc}} {{e^{im\varphi }} + {e^{ - im\varphi }}}&{ - i{e^{im\varphi }} + i{e^{ - im\varphi }}}\\ { - i{e^{im\varphi }} + i{e^{ - im\varphi }}}&{ - {e^{im\varphi }} - {e^{ - im\varphi }}} \end{array}} \right]$$
T is a symmetric and unitary matrix that can be eigen decomposition into the following eigenvalues as:
$${\lambda_{1}} = 1 = {e^0} \quad {\lambda _2} = - 1 = {e^{ - \pi }}$$
and eigenvector as:
$$|{{v_1}} \rangle = \left[ {\begin{array}{{c}} {\cos (\frac{1}{2}m\varphi )}\\ {\sin (\frac{1}{2}m\varphi )} \end{array}} \right] \quad |{{v_2}} \rangle = \left[ {\begin{array}{{c}} { - \sin (\frac{1}{2}m\varphi )}\\ {\cos (\frac{1}{2}m\varphi )} \end{array}} \right]$$
So, T can be translated into
$$\begin{aligned} T &= \left[ {\begin{array}{{cc}} {\cos (\frac{1}{2}m\varphi )}&{\sin (\frac{1}{2}m\varphi )}\\ {\sin (\frac{1}{2}m\varphi )}&{ - \cos (\frac{1}{2}m\varphi )} \end{array}} \right]\left[ {\begin{array}{{cc}} {{e^{i\ast 0}}}&0\\ 0&{{e^{i\ast ( - \pi )}}} \end{array}} \right]\left[ {\begin{array}{{cc}} {\cos (\frac{1}{2}m\varphi )}&{\sin (\frac{1}{2}m\varphi )}\\ {\sin (\frac{1}{2}m\varphi )}&{ - \cos (\frac{1}{2}m\varphi )} \end{array}} \right]\\ & = R(\theta )\left[ {\begin{array}{{cc}} {{e^{i{\phi_x}}}}&0\\ 0&{{e^{i{\phi_y}}}} \end{array}} \right]R( - \theta ) \end{aligned}$$
ϕx and ϕy are the phase shifts along x- and y- directions and θ is the rotation angle of each metasurface pixel’s principal axis [37]. We can easily find
$${\phi _x} = 0 \quad {\phi _y} = - \pi \quad \theta = \frac{1}{2}m\varphi$$
According to Eq. (10), in order to design an all-dielectric metasurface generating OAM beam with topological charge m, we need to optimize the geometric parameters of each resonator.

3. Element design

The schematic of the high-efficient all-dielectric metasurface for OAM beam generation is shown in Fig. 1(a). The structure is composed of elliptical silicon resonators laying on 500 nm thickness fused silica substrate. Its thickness is expected, due to the different resonator filling fractions of antennas [38]. Geometric parameter definition of a basic unit is shown in Fig. 1(b), the lattice constant is chosen as 650 nm. In our work, we employ the finite difference time domain (FDTD) method in Lumerical software package for numerical simulations. In simulations, the background refractive index is set to be a constant value as n = 1, fused silica substrate here has a refractive index n1 = 1.4, and silicon resonator has a changeable refractive index depending on wavelength (adopted from Palik: 1.2µm/3.519-1.8µm/3.458). The boundaries are set as perfect matched layer (PML).

 figure: Fig. 1.

Fig. 1. (a) The schematic of the high-efficient all-dielectric metasurface. (b) Geometric parameter definition for a basic unit of the metasurface.

Download Full Size | PPT Slide | PDF

For our proposed dielectric metasurface, silicon shows high quality electromagnetic resonant properties and avoids ohmic losses, due to its high refractive index. In the NIR region, both silicon resonators and silica substrate have low absorption loss. These properties result in a high-efficient transmissive metasurface. To realize polarization conversion and impart a π phase shifts for incident wave, the electric and magnetic dipole resonances need to be optimized to generate orthogonal polarization with respect to the incident wave. The optimized geometric parameters of the resonators are r1= 250nm, r2= 120 nm, h = 1020 nm with θ = 45°. As a result, the elliptical resonators with high index can couple x- or y-pol incident wave and induce displacement currents forming orthogonal electromagnetic dipole resonances that effectively producing orthogonal polarization with respect to the incident wave. To give a better description, the performance of the optimized resonator is plotted in Fig. 2, with an example of x-pol incident. In a broad waveband from 1300 nm to 1700nm, Txx of the output wave is very low comparing to Txy as shown in Fig. 2(a). To further evaluate the polarization conversion efficiency, we utilize the overall polarization conversion rate (PCR) to characterize the conversion efficiency, as follows:

$${PCR} = {{I}_y}/({I_x} + {I_y}),$$
where Ix and Iy are the intensity of the x- and y-polarization components of the transmissive wave. The PCR as total transmittance are plotted in Fig. 2(b), in which both PCR and transmittance greater than 0.84 have a 400 nm bandwidth (1300 nm – 1700nm), as shown in Fig. 2(c). The phases of orthogonal polarizations (ϕx, ϕy) and phase shift (Δϕ) in a broad waveband are shown in Fig. 2(d), where the phase shift is nearly constant as -π responding to Eq. (10).

 figure: Fig. 2.

Fig. 2. The (a) transmittance coefficients, (b) polarization conversion rate, (c) total transmission and (d) phase difference of the optimized resonator in the operation waveband from 1300 nm to 1700nm.

Download Full Size | PPT Slide | PDF

Based on the model discussed in section 2, by tiling rotation θ of the resonator, the resonator can alter the geometric phase of the output wave from 0­ to 2π. Furthermore, the proposed broadband dielectric metasurface for generating optical vortex can be achieved by rotating the Si antenna corresponding the azimuthal angle, due to the same theory.

4. Results and discussions

To give a clear demonstration of the proposed broadband OAM beam generator, we have a circularly polarized Gaussian beam incidence on the structure for simulation, which has a broad wave band from 1300 nm to 1700nm. The design of the all-dielectric metasurface that generate OAM for m = 1 is consisting of elliptical silicon resonators with varying rotation angles (θ =ϕ/2). The simulation radius of the circular dielectric metasurface is 25µm. For the geography phase, it gradient change from 0 to 2π corresponding to the topological charge m = 1 with high efficiency, shown in Fig. 3.

 figure: Fig. 3.

Fig. 3. In a broadband wavelength from 1300 nm to 1700nm, simulated transmission beam (a) geography phase delay and (b) transmittance for Si resonator with varying rotation angle θ.

Download Full Size | PPT Slide | PDF

We adopt three representative wavelengths in the wave range: 1310 nm, 1550 nm and 1645 nm, which have the applications in optical communications and high-power lasers. Amplitude and phase information of the transmissive field with orthogonal polarization are recorded by monitor 3000 nm away from the dielectric metasurface at three wavelengths. It is noteworthy that the monitor is not too far away from the substrate due to the limitation of available computational resources. As shown in Fig. 4, the optical field distribution of OAM beam exhibits a “donut” shape and at the center there is a phase singularity. For the phase, it exhibits apparent spiral nature and fits well with the topological charge m = 1. And this presented phase is the superposition of geography phase and propagation phase [39]. When the position of monitor is immobilized, different wavelengths correspond to different propagation phases so Fig. 4 shows discrepancy in phase at the same azimuthal angle. In addition, we analyze the OAM spectrum to study the purity of generated OAM beams quantitatively, crosstalk between different modes and stability of this OAM generator [40,41], shown in Fig. 4. The mode purity (MP) is defined as the ratio of the dominant mode intensity over the overall intensity distribution in all the modes, as expressed as

$${\textrm{MP}} = \frac{{{{|{{{\textrm{E}}_{\textrm{m}}}} |}^2}}}{{{{\sum {|{{{\textrm{E}}_{\textrm{i}}}} |} }^2}}}$$
with ${E_m}$ the dominant mode amplitude with topological charge m and ${E_i}$ the amplitude of the i-th mode. It can be clearly seen that the m = 1 mode is predominant for all the three wavelengths. The recorded mode purity for the three wavelengths are 99.98%, 99.99% and 99.99%, respectively.

 figure: Fig. 4.

Fig. 4. Electric field distribution, phase distribution and mode purity of the OAM beam with topological charge m = 1 at three representative wavelengths, (a)-(c) 1310 nm, (d)-(f) 1550 nm, (g)-(i) 1645 nm.

Download Full Size | PPT Slide | PDF

For an all-dielectric transmissive broadband OAM generator, transmittance is also an important property to evaluate its energy efficiency. The transmittances of the three representative wavelengths are shown in Table 1. It is worth mentioning that wavelength and transmittance are not liner relationship, there are several possible reasons for this fluctuation in transmission. Firstly, the resonator itself is different for the wavelength due to the characteristic of metasurface. The extinction index of silicon also depends on the wavelength causing different transmittance. These lead to a small fluctuation of the transmittance. Besides, transmittance can be improved by changing the number and the boundary dimensions of the resonators. Figure 4 and Table 1 show a good resemblance at three significant wavelengths, explicitly demonstrating the broadband nature of 1300 nm to 1700nm m = 1 OAM beam generator.

Tables Icon

Table 1. The transmittances of the three representative wavelengths with the topological charge m = 1.

In addition, we change the number and arrangement of the resonators, that consisting OAM beam generator, trying to generate high order OAM beam which shows great potential in optical communication [3], rotation Doppler effect [6] and so on. Low order OAM with topological charge 1 to 9 are already in mass production. However, high order (greater than 10) are usually generated by holograms, which faces some boundedness like low efficiency and bandwidth limitation, for example a transmissive spatial light modulator (Holoeye, LC 2012) with a bandwidth of 420 nm to 850 nm is only 28% efficient. Those limitations can be solved by using broadband dielectric metasurfaces. Here, we choose high order topological charge as m = 20 to design our metasurface for simulation. The simulation condition is set to same with the simulation work of m = 1. To evaluate the performance of the proposed high order OAM beam generator, the electric field distribution and phase distribution are recorded at three representative wavelengths, as shown in Fig. 5, high order OAM beam is also a “donut” shape and with increasing of topological charge, the ring will become more and more big. For the phase distribution, it has 20 times change from 0 to 2π corresponding to the topological charge m = 20 and in the middle, there is a phase singularity. The recorded mode purity for the three wavelengths are 99.28%, 99.49% and 99.59%, respectively, which can be clearly seen from Fig. 5 that the m = 20 mode is predominant for all the three wavelengths. The transmittance of three significant wavelengths are shown in Table 2, which present high energy efficiency comparing with transmissive metallic metasurfaces.

 figure: Fig. 5.

Fig. 5. Electric field distribution, phase distribution and mode purity of the OAM beam with topological charge m = 20 at three representative wavelengths, (a)-(c) 1310 nm, (d)-(f) 1550 nm, (g)-(i) 1645 nm.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 2. The transmittances of the three representative wavelengths with the topological charge m = 20.

5. Conclusion

In summary, we propose an approach to design high-efficient OAM beam generator based on all-dielectric metasurface. This proposed dielectric metasurface shows high energy efficiency up to 97.38% with a broad operation bandwidth from 1300 nm to 1700nm. The electric field distribution and phase distribution fit well with the expectation in three significant wavelengths. The recorded mode purities are all above 99.28%. Meanwhile, the proposed metasurface can generate OAM beams with any order with rearranging the resonators, based on the design method we propose. This work may provide a paradigm for exploiting new broadband optical devices and present great potential to the generation of more complex structured light.

Funding

National Natural Science Foundation of China (NSFC) (11834001); National Postdoctoral Program for Innovative Talents of China (BX20190036); China Postdoctoral Science Foundation (2019M650015).

References

1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef]  

2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013). [CrossRef]  

3. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef]  

4. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014). [CrossRef]  

5. Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, A. Willner, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, I. B. Djordjevic, M. A. Neifeld, and A. E. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016). [CrossRef]  

6. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013). [CrossRef]  

7. H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017). [CrossRef]  

8. S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, “Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions,” Opt. Express 25(17), 20098–20108 (2017). [CrossRef]  

9. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]  

10. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017). [CrossRef]  

11. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef]  

12. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]  

13. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [CrossRef]  

14. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef]  

15. S. Fu, C. Gao, T. Wang, Y. Zhai, and C. Yin, “Anisotropic polarization modulation for the production of arbitrary Poincaré beams,” J. Opt. Soc. Am. B 35(1), 1–7 (2018). [CrossRef]  

16. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004). [CrossRef]  

17. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013). [CrossRef]  

18. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011). [CrossRef]  

19. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015). [CrossRef]  

20. S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002). [CrossRef]  

21. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018). [CrossRef]  

22. R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017). [CrossRef]  

23. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014). [CrossRef]  

24. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007). [CrossRef]  

25. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016). [CrossRef]  

26. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016). [CrossRef]  

27. C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018). [CrossRef]  

28. C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017). [CrossRef]  

29. J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018). [CrossRef]  

30. N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015). [CrossRef]  

31. N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013). [CrossRef]  

32. K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015). [CrossRef]  

33. H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017). [CrossRef]  

34. J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018). [CrossRef]  

35. F. Bi, Z. Ba, and X. Wang, “Metasurface-based broadband orbital angular momentum generator in millimeter wave region,” Opt. Express 26(20), 25693–25705 (2018). [CrossRef]  

36. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012). [CrossRef]  

37. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015). [CrossRef]  

38. R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017). [CrossRef]  

39. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016). [CrossRef]  

40. S. Fu and C. Gao, “Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams,” Photonics Res. 4(5), B1–B4 (2016). [CrossRef]  

41. Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref]
  3. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [Crossref]
  4. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref]
  5. Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, A. Willner, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, I. B. Djordjevic, M. A. Neifeld, and A. E. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
    [Crossref]
  6. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
    [Crossref]
  7. H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
    [Crossref]
  8. S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, “Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions,” Opt. Express 25(17), 20098–20108 (2017).
    [Crossref]
  9. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  10. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
    [Crossref]
  11. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
    [Crossref]
  12. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
    [Crossref]
  13. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
    [Crossref]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref]
  15. S. Fu, C. Gao, T. Wang, Y. Zhai, and C. Yin, “Anisotropic polarization modulation for the production of arbitrary Poincaré beams,” J. Opt. Soc. Am. B 35(1), 1–7 (2018).
    [Crossref]
  16. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
    [Crossref]
  17. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  18. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
    [Crossref]
  19. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
    [Crossref]
  20. S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002).
    [Crossref]
  21. Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
    [Crossref]
  22. R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017).
    [Crossref]
  23. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref]
  24. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
    [Crossref]
  25. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref]
  26. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
    [Crossref]
  27. C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
    [Crossref]
  28. C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
    [Crossref]
  29. J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
    [Crossref]
  30. N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
    [Crossref]
  31. N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
    [Crossref]
  32. K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
    [Crossref]
  33. H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
    [Crossref]
  34. J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
    [Crossref]
  35. F. Bi, Z. Ba, and X. Wang, “Metasurface-based broadband orbital angular momentum generator in millimeter wave region,” Opt. Express 26(20), 25693–25705 (2018).
    [Crossref]
  36. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
    [Crossref]
  37. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref]
  38. R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
    [Crossref]
  39. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  40. S. Fu and C. Gao, “Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams,” Photonics Res. 4(5), B1–B4 (2016).
    [Crossref]
  41. Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
    [Crossref]

2018 (6)

2017 (7)

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017).
[Crossref]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, “Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions,” Opt. Express 25(17), 20098–20108 (2017).
[Crossref]

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

2016 (5)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Fu and C. Gao, “Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams,” Photonics Res. 4(5), B1–B4 (2016).
[Crossref]

Y. Ren, Z. Wang, P. Liao, L. Li, G. Xie, H. Huang, Z. Zhao, Y. Yan, N. Ahmed, A. Willner, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, I. B. Djordjevic, M. A. Neifeld, and A. E. Willner, “Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m,” Opt. Lett. 41(3), 622–625 (2016).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

2015 (4)

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

2014 (2)

2013 (4)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

2012 (1)

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

2011 (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2008 (1)

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

2007 (1)

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

2004 (2)

2002 (1)

S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

2000 (1)

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

1997 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ahmed, N.

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Allen, L.

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ambrosio, A.

R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017).
[Crossref]

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Arlt, J.

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Ashrafi, N.

Ashrafi, S.

Ba, Z.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Barnett, S. M.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[Crossref]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bi, F.

Birnbaum, K. M.

Bock, R.

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Bowman, R.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Cai, X.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Cao, W.

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Capasso, F.

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

R. C. Devlin, A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, “Spin-to-orbital angular momentum conversion in dielectric metasurfaces,” Opt. Express 25(1), 377–393 (2017).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Chen, D.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Chen, M.

Chen, P.

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Cheng, Q.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Cheng, Y.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Courtial, J.

Cui, T.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Cvijetic, N.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref]

Dai, J.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Devlin, R. C.

Devlin, R.C.

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Dholakia, K.

Ding, W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Djordjevic, I. B.

Dolinar, S. J.

Dong, J.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Erkmen, B. I.

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Fraine, A.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Franke-Arnold, S.

Fu, D.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Fu, S.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gao, C.

S. Fu, C. Gao, T. Wang, Y. Zhai, and C. Yin, “Anisotropic polarization modulation for the production of arbitrary Poincaré beams,” J. Opt. Soc. Am. B 35(1), 1–7 (2018).
[Crossref]

S. Fu, T. Wang, Z. Zhang, Y. Zhai, and C. Gao, “Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions,” Opt. Express 25(17), 20098–20108 (2017).
[Crossref]

S. Fu and C. Gao, “Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams,” Photonics Res. 4(5), B1–B4 (2016).
[Crossref]

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Gao, M.

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

Gao, P.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Gibson, G.

Gong, Y.

Grzegorczyk, T.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Gu, M.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Guo, T.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Hong, M.

Z. Ma, Y. Li, Y. Li, Y. Gong, S. A. Maier, and M. Hong, “All-dielectric planar chiral metasurface with gradient geometric phase,” Opt. Express 26(5), 6067–6078 (2018).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Hu, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Huang, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Huang, H.

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Ip, E.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Ke, J.

Khorasaninejad, M.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kong, J.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Lavery, M. P. J.

Li, F.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

Li, G.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Li, L.

Li, X.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Li, Y.

Liang, J.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Liao, P.

Ling, X.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Liu, H.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Liu, K.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Liu, Y. D.

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

Luo, X.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Ma, H.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Ma, X.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Ma, Z.

Maddalena, P.

Mahmoud, A.

Maier, S. A.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Milione, G.

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref]

Minaeva, O.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Mueller, J.P.B.

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Neifeld, M. A.

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

O’Brien, S.

S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

Oh, J.

Oscurato, S. L.

Padgett, M. J.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

Pas’ko, V.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

Pendry, J.B.

S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Pu, M.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Qin, F.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Qin, Y.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Qiu, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Qiu, C. W.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Ren, H.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Ren, Y.

Rogawski, D.

Rubin, N.A.

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Sergienko, A. V.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Simon, D. S.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Simpson, N. B.

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

Song, G.

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Speirits, F. C.

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Sun, Y.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Teck Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Tur, M.

Uribe-Patarroyo, N.

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Vasnetsov, M.

Wang, C.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Wang, H.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Wang, T.

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Wang, X.

Wang, Y.

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Wang, Z.

Willner, A.

Willner, A. E.

Willner, M. J.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

Wintz, D.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, L.

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Xie, G.

Xie, X.

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Xu, G.

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Xu, H.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yan, Y.

Yang, J.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Yang, L.

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

Yang, Z.

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

Yin, C.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Yuan, F.

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

Yuan, W.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Yue, Y.

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Zhai, Y.

Zhang, C.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

J. Yang, C. Zhang, H. Ma, W. Yuan, L. Yang, J. Ke, M. Chen, A. Mahmoud, Q. Cheng, and T. Cui, “Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums,” Opt. Express 26(24), 31664–31674 (2018).
[Crossref]

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Zhang, P.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Zhang, Q.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

Zhang, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Zhang, X.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Zhang, Z.

Zhao, J.

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

Zhao, Z.

Zhou, H.

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, A. Y.

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Adv. Mater. (1)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref]

Adv. Mater. Technol. (1)

C. Zhang, G. Song, H. Ma, J. Yang, W. Cao, X. Xie, P. Chen, Q. Cheng, L. Wu, and T. Cui, “A Metamaterial Route to Realize Acoustic Insulation and Anisotropic Electromagnetic Manipulation Simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Appl. Phys. Lett. (2)

J. Yang, C. Zhang, H. Ma, J. Zhao, J. Dai, W. Yuan, L. Yang, Q. Cheng, and T. Cui, “Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface,” Appl. Phys. Lett. 112(20), 203501 (2018).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

K. Liu, Y. Cheng, Z. Yang, H. Wang, Y. Qin, and X. Li, “Orbital-angular-momentum-based electromagnetic vortex imaging,” IEEE Antennas Wirel. Propag. Lett. 14, 711–714 (2015).
[Crossref]

IEEE Trans. Antennas Propag. (1)

H. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, “Broadband vortex beam generation using multimode Pancharatnam–Berry metasurface,” IEEE Trans. Antennas Propag. 65(12), 7378–7382 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

C. Zhang, J. Yang, W. Yuan, J. Zhao, J. Dai, T. Guo, J. Liang, G. Xu, Q. Cheng, and T. Cui, “An ultralight and thin metasurface for radar-infrared bi-stealth applications,” J. Phys. D: Appl. Phys. 50(44), 444002 (2017).
[Crossref]

J. Phys.: Condens. Matter (1)

S. O’Brien and J.B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys.: Condens. Matter 14(15), 4035–4044 (2002).
[Crossref]

Light: Sci. Appl. (2)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Teck Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light: Sci. Appl. 6(9), e17039 (2017).
[Crossref]

H. Zhou, D. Fu, J. Dong, P. Zhang, D. Chen, X. Cai, F. Li, and X. Zhang, “Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect,” Light: Sci. Appl. 6(4), e16251 (2017).
[Crossref]

Nano Lett. (2)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Dispersionless phase discontinuities for controlling light propagation,” Nano Lett. 12(11), 5750–5755 (2012).
[Crossref]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref]

Nat. Photonics (1)

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Opt. Commun. (3)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994).
[Crossref]

J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000).
[Crossref]

Y. D. Liu, C. Gao, M. Gao, and F. Li, “Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam,” Opt. Commun. 281(8), 1968–1975 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Photonics Res. (1)

S. Fu and C. Gao, “Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams,” Photonics Res. 4(5), B1–B4 (2016).
[Crossref]

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (3)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref]

L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, “Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref]

N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, “Object identification using correlated orbital angular momentum states,” Phys. Rev. Lett. 110(4), 043601 (2013).
[Crossref]

Sci. Adv. (1)

M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, and X. Luo, “Catenary optics for achromatic generation of perfect optical angular momentum,” Sci. Adv. 1(9), e1500396 (2015).
[Crossref]

Sci. Rep. (1)

N. Cvijetic, G. Milione, E. Ip, and T. Wang, “Detecting lateral motion using light’s orbital angular momentum,” Sci. Rep. 5(1), 15422 (2015).
[Crossref]

Science (7)

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352(6287), 805–809 (2016).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science 305(5685), 788–792 (2004).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar Photonics with Metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334(6054), 333–337 (2011).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref]

M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “Detection of a Spinning Object Using Light’s Orbital Angular Momentum,” Science 341(6145), 537–540 (2013).
[Crossref]

R.C. Devlin, A. Ambrosio, N.A. Rubin, J.P.B. Mueller, and F. Capasso, “Arbitrary spin-to-orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic of the high-efficient all-dielectric metasurface. (b) Geometric parameter definition for a basic unit of the metasurface.
Fig. 2.
Fig. 2. The (a) transmittance coefficients, (b) polarization conversion rate, (c) total transmission and (d) phase difference of the optimized resonator in the operation waveband from 1300 nm to 1700nm.
Fig. 3.
Fig. 3. In a broadband wavelength from 1300 nm to 1700nm, simulated transmission beam (a) geography phase delay and (b) transmittance for Si resonator with varying rotation angle θ.
Fig. 4.
Fig. 4. Electric field distribution, phase distribution and mode purity of the OAM beam with topological charge m = 1 at three representative wavelengths, (a)-(c) 1310 nm, (d)-(f) 1550 nm, (g)-(i) 1645 nm.
Fig. 5.
Fig. 5. Electric field distribution, phase distribution and mode purity of the OAM beam with topological charge m = 20 at three representative wavelengths, (a)-(c) 1310 nm, (d)-(f) 1550 nm, (g)-(i) 1645 nm.

Tables (2)

Tables Icon

Table 1. The transmittances of the three representative wavelengths with the topological charge m = 1.

Tables Icon

Table 2. The transmittances of the three representative wavelengths with the topological charge m = 20.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T = [ T x x T x y T y x T y y ]
[ E x o u t E y o u t E x i n E y i n ] [ T x x T y x ] = [ E x i n E x o u t ]
{ T x y = T y x T y y = exp ( 2 i T y x ) T x x
| λ + = 2 2 [ 1 i ] | λ = 2 2 [ 1 i ]
| λ + e i m φ | λ   | λ e i ( m ) φ | λ +
T = 1 2 [ e i m φ + e i m φ i e i m φ + i e i m φ i e i m φ + i e i m φ e i m φ e i m φ ]
λ 1 = 1 = e 0 λ 2 = 1 = e π
| v 1 = [ cos ( 1 2 m φ ) sin ( 1 2 m φ ) ] | v 2 = [ sin ( 1 2 m φ ) cos ( 1 2 m φ ) ]
T = [ cos ( 1 2 m φ ) sin ( 1 2 m φ ) sin ( 1 2 m φ ) cos ( 1 2 m φ ) ] [ e i 0 0 0 e i ( π ) ] [ cos ( 1 2 m φ ) sin ( 1 2 m φ ) sin ( 1 2 m φ ) cos ( 1 2 m φ ) ] = R ( θ ) [ e i ϕ x 0 0 e i ϕ y ] R ( θ )
ϕ x = 0 ϕ y = π θ = 1 2 m φ
P C R = I y / ( I x + I y ) ,
MP = | E m | 2 | E i | 2

Metrics