Abstract

CH3NH3PbI3 perovskite material has demonstrated great promise in high-performance solar cells and light-emitting devices (LEDs). In this work, we investigated the impact of the coexistence of PbI2 and CH3NH3PbI3 perovskite on photoluminescence (PL) properties. In absorbance and PL measurements performed at room temperature, we observed an emission peak at 780 nm, which is consistent with the band-edge absorption of CH3NH3PbI3. On the top surface, we observed dissolved PbI2, which could serve as a passivation species for improving PL stability upon exposure to ambient conditions. Specifically, dual-peak PL spectra were observed at room temperature. The peak at 780 nm originates from the free-carrier transition of CH3NH3PbI3 and the peak at 796 nm originates from the PbI2-related recombination. Based on time-resolved PL and X-ray diffraction measurements, we can conclude that unconverted and dissolved PbI2 in CH3NH3PbI3 forms a type-II band alignment at the CH3NH3PbI3/PbI2 interface. This type II hetero-structure indeed influences the quality and PL performance of perovskites. To check this structure or quality of perovskite, x-ray diffraction (XRD) and x-ray photoemission spectroscopy (XPS) are common ways. Here, we demonstrated a cheaper, faster and more convenience method, PL measurement, to check the quality of CH3NH3PbI3 perovskite films. It should be a useful way to check the quality perovskite-based LEDs and solar cells merely by observing whether the dual peaks exist or not in the PL spectra.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In recent years, organic–inorganic perovskites (with the general formula ABX3; where X = Cl, Br, or I; B = Pb; A = CH3NH3) have attracted widespread attention due to their outstanding electrical and optical properties, such as a large absorbance coefficient and a sharp optical band edge [110]. These advantages offer huge potential for application in photonic devices, especially solar cells. The lead halide-based perovskite solar cell represents an amazing breakthrough in power conversion efficiency (PCE) of up to 22.1% [11]. Moreover, due to its low threshold and wavelength-tunable properties, interest is extending to the emission performance in lasers [12]. Researchers have demonstrated that a perovskite-based lasing wavelength can be tuned across the entire visible wavelength region with a high gain coefficient [12]. Among all perovskites, the iodide-based perovskite CH3NH3PbI3 with a bandgap of around 1.6 eV has received much attention because of its infrared emission and lasing behavior. However, CH3NH3PbI3 perovskite is extremely sensitive to the external environment, especially to water and moisture [1316]. Near grain boundaries, CH3NH3PbI3 will react with water or moisture and dissolve into CH3NH3I and PbI2. Furthermore, the dissolved PbI2 becomes PbIOH, which then degrades the efficiency of the CH3NH3PbI3 solar cell [1719]. As such, the instability of perovskite has impeded its commercial development. In addition, the existence of PbI2 in CH3NH3PbI3 can affect the photovoltaic/luminescence performance [20]. Currently, various methods are available for synthesizing perovskite crystals and/or thin films. The most popular method for growing perovskite is a solution-processed technique known as the vapor-assisted solution process. However, the purity of the perovskite produced by this solution process can be compromised by unintentional impurities in the liquid phase.

To obtain high-quality photonic materials, the vapor process is an alternative growth method. Some advantages are gained by the use of the vapor process, such as ease of patterning, sequential growth, and material compatibility. Additionally, it is reported that enlarging the crystal size and/or reducing the fraction of the grain boundaries can improve the efficiency of the solar cell [13,2128]. In this study, we fabricated micro-sized CH3NH3PbI3 perovskite films by two-step chemical vapor deposition and found that the stability of the PL properties at room temperature can be significantly improved. In the PbI2-rich region, we observed double-peaked PL spectra at room temperature. A systematic PL analysis was performed to determine the origin of the emission peak with a longer wavelength. The XRD measurements reveal the coexistence of the CH3NH3PbI3 and PbI2 phases, which indicates that the recombination is related to the interface between the PbI2 and perovskite. We concluded that the CH3NH3PbI3/PbI2 type II hetero-structure is formed and this structure would influence the PL properties and quality of sample. Moreover, we confirmed that PL measurement is a convenience and useful method to check this structure and quality of perovskite devices.

2. Experimental setups

We utilized a two-step vapor deposition method to fabricate CH3NH3PbI3 films and grew these microstructural perovskite films on glass substrates. In the first step, we prepared PbI2 films as precursors. Next, we converted the precursor films into CH3NH3PbI3 films by the CH3NH3I vapor treatment method. We used PbI2 powder as a single source, which we placed into a quartz tube mounted on a single-zone furnace. After pre-cleaning a fresh and cleaved glass substrate with acetone, we placed it in the downstream region inside the quartz tube, which had been evacuated to a pressure of 0.1 torr. Then, high purity N2 gas was introduced at a flow of 10 sccm. We set and stabilized the temperature and pressure inside the quartz tube to 380 °C and 0.1 torr, respectively, and maintained these conditions for 80 min, after which the furnace was cooled naturally to room temperature. Next, we placed methyl-ammonium iodide powder directly around the pre-grown PbI2 films in a crucible set in the center of a quartz tube, which had first been evacuated to a pressure of 0.1 torr, followed by the introduction of a 10-sccm flow of high-purity N2 gas. The pressure was stabilized to 0.1 torr and the temperature was elevated to 120 °C, and these conditions were maintained for 120 min. Lastly, the furnace was cooled naturally to room temperature. We then determined the structure and phase purity of the films by glancing incident XRD measurement with a Rigaku D/MAX 2500 at an operation voltage of 40 kV and a current of 30 mA. To perform micro-photoluminescence (µ-PL) measurement, we utilized a 532-nm Nd: YAG laser as an excitation light source, and introduced the laser into a 50X objective lens focused on the films. The PL signal was obtained using the same objective lens in a Horiba–Jobin–Yvon iHR320 spectrometer equipped with a liquid-nitrogen-cooled CCD array detector. Time-resolved PL (TR-PL) results were obtained using the same spectrometer system and a 377-nm pulsed laser (PicoQuant) as the excitation light source. The TR-PL signals were acquired using the time-correlated single-photon counting (or TCSPC) technique with a PicoHarp 300 (PicoQuant) acquisition unit. All PL measurements were performed at room temperature at 50% relative humidity.

3. Experimental results

Figures 1(a) and 1(b) show scanning electron microscopy (SEM) images of the PbI2 precursor before and after conversion. In Fig. 1(a), we can see that the PbI2 crystals are arranged in no particular order. The glass substrates have no crystalline phase, so PbI2 crystals grow randomly. The shapes of the PbI2 microcrystals are regular polygons with a diameter of 1–2 µm and a thickness of about 100 nm. After reacting with the CH3NH3I, the PbI2 was converted into CH3NH3PbI3 perovskite. The CH3NH3PbI3 microcrystals were similar in size, but the crystal surface had become smooth. Moreover, the grain boundary of sample became smaller after converted.

 figure: Fig. 1.

Fig. 1. SEM images of (a) PbI2 and (b) CH3NH3PbI3 crystals synthesized via vapor deposition method.

Download Full Size | PPT Slide | PDF

The absorption spectra of PbI2 and CH3NH3PbI3 films, as shown in Fig. 2(a), reveal that the absorption onset of the PbI2 films occurs around a wavelength of 520 nm, and this absorption increases to the short-wavelength region. After conversion, the absorption onset of the CH3NH3PbI3 films shifted to 780 nm, which agrees with the bandgap wavelength of CH3NH3PbI3 [29] and indicates the formation of CH3NH3PbI3. Figure 2(b) shows the absorption and PL spectra of the CH3NH3PbI3 films. The PL spectrum shows an emission peak centered around 780 nm, which is consistent with the band-edge absorption of CH3NH3PbI3.

 figure: Fig. 2.

Fig. 2. (a) The absorbance spectra of PbI2 (black line) and CH3NH3PbI3 (red line) films by vapor deposition. (b) PL spectra of CH3NH3PbI3.

Download Full Size | PPT Slide | PDF

The near-band-edge emission of perovskite can be divided into several recombination processes, including excitonic recombination, free-carrier recombination (also known as band-to-band transition), and free-to-bound recombination. To further examine the dominant origin of the recombination mechanism, we performed excitation power-dependent PL measurements. Figure 3(a) shows the PL spectra of the CH3NH3PbI3 film with different levels of laser excitation power. The shape of the emission peak located at 780 nm does not change, nor does the shift in the whole range of the excitation power. Figure 3(b) shows the double-logarithm plot of the integrated PL intensity versus excitation density, in which we can see that the PL intensity has excellent power-law dependence on excitation power, with a power law exponent k of 2.02. Upon non-resonant excitation in direct bandgap semiconductors, the PL intensity is a power-law function of the excitation power [30,31], which is given by Iex ∝ IPLk,where k < 1 for free-to-bound recombination, 1 < k < 2 for the recombination of excitons, and k ≥ 2 for free-carrier recombination (band-to-band energy transition). Obviously, the k value of the sample indicates the origin of the recombination process of the free-carrier recombination, which agrees well with those reported for CH3NH3PbI3 films [22,3235]. Moreover, perovskite materials are quite sensitive to water molecules due to their instability [36,37]. To further test the stability of our sample against phase separation, we performed a PL measurement of the CH3NH3PbI3 films at 50% relative humidity with time. As shown in Fig. 3(c), the position of the PL emission peak is slightly red-shifted with time. One of the reasons for this is the formation of localized traps in the band-tail states in the surface due to their interaction with the water molecules [14,38,39]. Importantly, the PL intensities of CH3NH3PbI3 films, as shown in Fig. 3(d), remained stable over the course of three weeks, which demonstrates the superior stability of the PL characteristics. The prolonged PL stability of the vapor-deposition sample might originate from the small portion of the grain boundary. In Fig. 1(b), we observed the smaller grain boundary after converted from PbI2 into CH3NH3PbI3.The moisture or water molecules hardly get into the inner of films due to the smaller grain boundary. Only the perovskite on the top of films were dissolved into PbI2. Therefore, the CH3NH3PbI3 crystals in the inner of the films could be protected.

 figure: Fig. 3.

Fig. 3. (a) PL spectra of CH3NH3PbI3 films via vapor deposition evaporation route while rising excitation power. (b) The logarithm plot of the integrated PL intensity versus excitation density. (c) PL spectra of CH3NH3PbI3 films fabricated by vapor deposition measured at 50% relative humidity week by week. (d) Normalized PL intensities of perovskite films by vapor deposition way excited by 532 nm CW laser perform at room temperature at 50% relative humidity.

Download Full Size | PPT Slide | PDF

In comparison with the vapor deposition approach, films synthesized via spin-coating show poor PL stability shown in Fig. 4. A detailed interpretation of the outstanding stability of our sample is presented later. First, we note the large grain size with just a small amount of grain boundaries, which might prevent the intercalation of water molecules in the CH3NH3PbI3 films.

 figure: Fig. 4.

Fig. 4. (a) PL spectra of CH3NH3PbI3 films fabricated by spin-coating measured at 50% relative humidity day by day. (b) normalized PL intensities of perovskite films by spin-coating excited by 532 nm CW laser perform at room temperature at 50% relative humidity.

Download Full Size | PPT Slide | PDF

During PL stability measurement, we found some regions of the sample had become yellow from their original black color. Interestingly, the stability-measured CH3NH3PbI3 films via vapor deposition method in different color regions exhibited different PL properties. Figure 5(a) shows the typical micro-PL spectrum in the black sample position, for which the result is the same as that noted above. Figure 5(b) shows the micro-PL spectrum observed in the dark-yellowish sample position, which reveals two emission peaks at 780 nm and 796 nm, which is much different from that of the black sample position. The full width at half maximum (FWHM) of the peaks centered at 780 nm and 796 nm are 37 nm and 36 nm, respectively.

 figure: Fig. 5.

Fig. 5. PL spectra with laser focusing on different areas in CH3NH3PbI3 film via vapor deposition method from (a) black region and (b) yellow region.

Download Full Size | PPT Slide | PDF

To further examine the origin of these two emission peaks, we performed depth-dependent micro-PL measurements. Figure 6 shows the micro-PL spectra of the stability-measured CH3NH3PbI3 films via vapor deposition method at various depths, where the origin is set at the sample surface and moves toward the center of the sample. We can see that the PL emission consists of two peaks with wavelengths of 780 nm and 796 nm on the sample surface. With greater depth, the peak at 780 nm becomes dominant. By further examining the inner to the bottom of the film, we see that the intensity of the peak located at 796 nm is greater than that of the peak located at 780 nm. We believe that the origin of the PL emission centered at 780 nm is the free-carrier recombination. Although an emission peak with a longer wavelength peak has been observed in a previous report [40], the origin of the emission peak remains uncertain. Such asymmetric line shape of the emission peak may be attributed to the reabsorption effect [9,10,41]. The thickness (size) of the perovskite films studied in Refs. 9,10,41 are about several tens micro-meters, which is one order of magnitude thicker than that we used. The emitted photons can be re-absorbed by such thick perovskite films. As a result, the higher energy (shorter wavelengths) side of the emission peak will be decreased and become an asymmetric shape. In our case, however, the thickness of our film was only several micro-meters, which is much thinner than their films. Only very small portion of the emitted photons would be reabsorbed by films. In addition, the 796nm- emission peak appears excited at the top and bottom of the thin film as shown in Fig. 6. We would discuss the detail in the next paragraph. Our observation is not similar to the findings from the above-mentioned literature sources. As a result, we could exclude the possibility of the reabsorption effect.

 figure: Fig. 6.

Fig. 6. PL spectra of laser focusing on different depths of yellow region in CH3NH3PbI3 film via vapor deposition method (top to bottom of the film).

Download Full Size | PPT Slide | PDF

The black region is the CH3NH3PbI3, so the PL peak of this region occurs at 780 nm. The PL of the yellow region consists of two peaks with wavelengths of 780 nm and 796 nm. We believe the yellow region to be PbI2 dissolved from CH3NH3PbI3 due to the presence of moisture. To confirm this idea, we performed XRD measurements. For comparison, we also performed XRD measurements on a fresh (as-grown) sample. Figure 7 shows the XRD patterns of the fresh (upper trace) and stability-measured (lower trace) CH3NH3PbI3 film. As can be seen, the XRD pattern of the fresh sample includes several major peaks at 14.08°, 23.48°, 28.40°, and 31.86°, which correspond to the (110), (211), (220), and (310) planes of the CH3NH3PbI3 perovskite, respectively. However, PbI2 (001) and (008) planes, with peaks located at 12.64°, and 25.48°, respectively, can be observed in both samples. Small amounts of di-hydrate and CH3NH3I were also found. For the first-step-grown PbI2 sample, the thickness is about a couple of micrometers, which is quite thick compared with that of the solution-process-grown PbI2 (∼ several hundred nm) [42]. Therefore, such thick PbI2 films would result in an incomplete conversion of PbI2 films into CH3NH3PbI3 perovskite. In other words, a PbI2 layer would be a residual precursor, especially when it occurs at the bottom of the sample. After measuring the stability in an ambient environment, the XRD intensity of the PbI2 increased and dominated the XRD pattern. Clearly, the absorbing moisture causes phase decomposition of CH3NH3PbI3 into PbI2, starting at the top surface of the film.

 figure: Fig. 7.

Fig. 7. The XRD pattern of fresh CH3NH3PbI3 film (red line) and CH3NH3PbI3 film absorbing moisture (black line). The XRD standard reference of PbI2 (blue line) is listed in the bottom of figure. Symbols indicate the diffraction peaks of di-hydrate (▪), PbI2 (●), CH3NH3PbI3 (★), CH3NH3I (▴).

Download Full Size | PPT Slide | PDF

To address the origin of the anomalous PL emission features, we note the reported appearance of double peaks in the PL spectra of CH3NH3PbBr3 films , which indicates that excess PbBr2 not fully converted in perovskite might induce some optical defects [42]. These defects with shallow states in the bandgap would change the emission wavelength and cause the appearance of dual peaks. Furthermore, a PbI2 layer can be implemented in films as an electron-blocking and hole-injecting layer for certain device applications [11]. It might also be used to efficiently collect photo-generated holes from CH3NH3PbI3. Based on the above discussion and our findings, we present a schematic illustration of our CH3NH3PbI3 thick films in Fig. 8, in which the yellow portion on the surface of the film is the PbI2 dissolved from CH3NH3PbI3 due to the effect of the moisture and the other yellow portion on the bottom is the PbI2, which is not converted in the inner film. The PL stability test results (see Fig. 3(d)) reveal outstanding stability in PL intensity, which we believe is also due to the top surface of PbI2 serving as a passivation layer that prevents further decomposition.

 figure: Fig. 8.

Fig. 8. Scheme of the CH3NH3PbI3 film absorbing moisture. The yellow part is PbI2, brown one is CH3NH3PbI3 and black lines imply grain boundaries.

Download Full Size | PPT Slide | PDF

Furthermore, the dissolved CH3NH3PbI3 and unconverted PbI2 might cause optical defects and/or might form a hetero-structure between the CH3NH3PbI3 and PbI2. Researchers have also reported a formation of a type-II (or “staggered”) band alignment at the CH3NH3PbI3/PbI2 interface, as observed by ultraviolet photoelectron spectroscopy [43,44]. To verify these assumptions, we performed a TR-PL measurement, monitored at two wavelengths, the results of which are presented in Fig. 9(a). We determined the TR-PL lifetime from the PL decay curves by fitting them with a bi-exponential decay function, A1exp(−t/τ1) + A2exp(−t/τ2). The PL lifetime is associated with the recombination kinetics, where a short-lived life time (τ1) in the fast component is related to the surface property and/or non-radiative recombination, whereas a long-lived life time (τ2) in the slow component is related to the bulk property [44]. The best fitted values are indicated in Fig. 9(a). The decay time of τ1 for 796 nm is slightly shorter than that for 780 nm, which indicates that a surface-trapped-induced recombination channel occurs. Significantly, the long-lived life time (τ2) at 796 nm is much longer than that at 780 nm, which suggests a construction of a type-II heterostructure between CH3NH3PbI3 and PbI2. Calloni et al also observed the CH3NH3PbI3/PbI2 type II hetero-structure by XPS [44]. When PbI2 exists in the films, it would influence the optical properties of CH3NH3PbI3. In our report, we verified the co-existence of CH3NH3PbI3 and PbI2 via the XRD measurements. Then, we observed the dual-peaks in the PL spectra with different focused depths of the films. Thus, we believe that the abnormal PL behavior of perovskite is associated to PbI2. The CH3NH3PbI3/PbI2 type II hetero-structure could be formed by XPS measurement [44], as plotted in Fig. 9(b). The electrons drop from the conduction band from CH3NH3PbI3 to the valence band of PbI2 due to type II hetero-structure. For optical transition, one of the features of the type II hetero-structure is that the radiative recombination typically has a long decay time due to the spatial separation of electrons and holes.

 figure: Fig. 9.

Fig. 9. (a) TR-PL decay measured at 780 nm (blue line) and 796 nm (red line) respectively. The black lines are fitting lines, and the inset shows the fitted result of TR-PL. (b) the band diagram of CH3NH3PbI3/PbI2 hetero-structure (CBM is conduction band minimum, and VBM is valence band minimum).

Download Full Size | PPT Slide | PDF

4. Conclusions

In conclusion, we successfully synthesized CH3NH3PbI3 films of high optical quality via two-step chemical vapor deposition. The PL stability test results shows superior performance as a result of the passivation of PbI2 on top of the film. We observed dual PL peaks ranging from the yellow–black regions. The emission peak at 780 nm originates from a free-carrier recombination and we attribute the other at 796 nm to a CH3NH3PbI3/PbI2 hetero-structure, which was confirmed by XRD and TR-PL measurements.

Funding

Ministry of Science and Technology, Taiwan (MOST) (MOST 105-2112-M-006-004-MY3).

References

1. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999). [CrossRef]  

2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009). [CrossRef]  

3. Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011). [CrossRef]  

4. F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013). [CrossRef]  

5. W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014). [CrossRef]  

6. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015). [CrossRef]  

7. M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015). [CrossRef]  

8. T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015). [CrossRef]  

9. L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016). [CrossRef]  

10. Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017). [CrossRef]  

11. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017). [CrossRef]  

12. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014). [CrossRef]  

13. Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014). [CrossRef]  

14. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014). [CrossRef]  

15. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015). [CrossRef]  

16. H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018). [CrossRef]  

17. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014). [CrossRef]  

18. J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015). [CrossRef]  

19. J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015). [CrossRef]  

20. B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017). [CrossRef]  

21. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013). [CrossRef]  

22. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014). [CrossRef]  

23. Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014). [CrossRef]  

24. S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014). [CrossRef]  

25. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014). [CrossRef]  

26. Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015). [CrossRef]  

27. M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015). [CrossRef]  

28. L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016). [CrossRef]  

29. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015). [CrossRef]  

30. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992). [CrossRef]  

31. H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016). [CrossRef]  

32. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014). [CrossRef]  

33. V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014). [CrossRef]  

34. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015). [CrossRef]  

35. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015). [CrossRef]  

36. C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017). [CrossRef]  

37. M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013). [CrossRef]  

38. H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015). [CrossRef]  

39. L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015). [CrossRef]  

40. L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016). [CrossRef]  

41. T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017). [CrossRef]  

42. X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016). [CrossRef]  

43. Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014). [CrossRef]  

44. A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
    [Crossref]
  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
    [Crossref]
  3. Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
    [Crossref]
  4. F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
    [Crossref]
  5. W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
    [Crossref]
  6. A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
    [Crossref]
  7. M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
    [Crossref]
  8. T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
    [Crossref]
  9. L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
    [Crossref]
  10. Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
    [Crossref]
  11. W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
    [Crossref]
  12. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
    [Crossref]
  13. Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
    [Crossref]
  14. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
    [Crossref]
  15. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
    [Crossref]
  16. H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
    [Crossref]
  17. S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
    [Crossref]
  18. J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
    [Crossref]
  19. J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
    [Crossref]
  20. B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
    [Crossref]
  21. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
    [Crossref]
  22. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
    [Crossref]
  23. Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
    [Crossref]
  24. S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
    [Crossref]
  25. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
    [Crossref]
  26. Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
    [Crossref]
  27. M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
    [Crossref]
  28. L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
    [Crossref]
  29. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
    [Crossref]
  30. T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
    [Crossref]
  31. H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
    [Crossref]
  32. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
    [Crossref]
  33. V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
    [Crossref]
  34. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
    [Crossref]
  35. J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
    [Crossref]
  36. C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
    [Crossref]
  37. M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013).
    [Crossref]
  38. H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
    [Crossref]
  39. L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
    [Crossref]
  40. L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
    [Crossref]
  41. T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
    [Crossref]
  42. X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
    [Crossref]
  43. Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
    [Crossref]
  44. A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
    [Crossref]

2018 (1)

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

2017 (5)

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

2016 (5)

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
[Crossref]

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

2015 (14)

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
[Crossref]

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
[Crossref]

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

2014 (12)

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
[Crossref]

2013 (3)

F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
[Crossref]

M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

2011 (1)

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

2009 (1)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

1999 (1)

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[Crossref]

1992 (1)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
[Crossref]

Abate, A.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Abdi-Jalebi, M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Alam, M. A.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Alcocer, M. J. P.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Alonso, M. I.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Alsari, M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Amat, A.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Antonietta Loi, M.

M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013).
[Crossref]

Asadpour, R.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Azarhoosh, P.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Barnes, P. R. F.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Beeson, H. J.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Bein, T.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Berti, G.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Bi, C.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Blancon, J.-C.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Bolink, H. J.

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Brivio, F.

F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
[Crossref]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Bussetti, G.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Calloni, A.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Campoy-Quiles, M.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Chan, T. S.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Chan, Y. T.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Chang, T. R.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Chang, W.-H.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Chen, B. A.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Chen, H. M.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Chen, Q.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Chhowalla, M.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Chiu, C. W.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Christians, J. A.

J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
[Crossref]

Chu, T. C.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Ciccacci, F.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Cong, C. X.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Crespo-Quesada, M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Crochet, J. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

D’Innocenzo, V.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

De Angelis, F.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Deschler, F.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Dimitrakopoulos, C. D.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[Crossref]

Ding, Q.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Docampo, P.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Dong, Q.

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

Dong, Q. F.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Dou, L. T.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Du, H. L.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Du, W. N.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

Duan, H. S.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Duan, H.-S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Duò, L.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Ehrler, B.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Ellingson, R. J.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Eperon, G. E.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Espallargas, G. M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Fang, X.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Fang, Y.

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

Friend, R. H.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Fu, Q. D.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Fu, W.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Fu, Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Gao, P.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Gil-Escrig, L.

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

Giovanni, D.

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Gong, Z.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Graetzel, M.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Grancini, G.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Gratzel, M.

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Grätzel, M.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Gregori, G.

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

Gupta, G.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Gustafsson, M. V.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Ha, S. T.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

Habisreutinger, S. N.

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

He, H.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

He, H. Y.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

He, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Heben, M. J.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Herrera, P. A. M.

J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
[Crossref]

Herz, L. M.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Hiromi, O.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Hong, Z.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Hong, Z. R.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Hsu, Y. Y.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Hu, Y.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Huang, J.

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

Huang, J. S.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Hummelen, J. C.

M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013).
[Crossref]

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Inabe, T.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Ishibashi, S.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Jeng, H. T.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Jeon, N. J.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Jiang, C.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Jin, C.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Jin, S.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Jin, Y.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Johnston, M. B.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Ju, M. G.

L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
[Crossref]

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

Jung, E. H.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Kagan, C. R.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[Crossref]

Kamat, P. V.

J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
[Crossref]

Kandada, A. R. S.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Kanemitsu, Y.

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Kelly, T. L.

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

Kim, E. K.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Kim, Y. C.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Ko, H. S.

H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
[Crossref]

Kojima, A.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Lamboll, R.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Lanzani, G.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Lee, D. U.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Lee, J. W.

H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
[Crossref]

Lee, M. M.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Lee, Y. H.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Leguy, A. M. A.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Leijtens, T.

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Leyden, M. R.

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

Li, G.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Li, H.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Li, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Li, Y. P.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Liang, W. Z.

L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
[Crossref]

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

Lim, S. S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Lin, H.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Lin, J. T.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Lin, Z. Z.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Lischka, K.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
[Crossref]

Liu, D. Y.

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

Liu, X.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Liu, X. F.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

Liu, Y.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Liu, Y. S.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Liu, Z.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Luo, S.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Maier, J.

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

Malinkiewicz, O.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Masaki, H.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Mathews, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Meng, F.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Meng, L.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Mhaisalkar, S.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Milot, R. L.

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Mitzi, D. B.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[Crossref]

Miyasaka, T.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Mohite, A. D.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Momblona, C.

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

Moon, S. J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Mosconi, E.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Naito, T.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Najmaei, S.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Nakaike, Y.

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Nazeeruddin, M. K.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Nelson, J.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Neukirch, A. J.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Nicholas, R. J.

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Nie, W.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Niu, L.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Noh, J. H.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Obara, R.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Ono, L. K.

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

Park, B. W.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Park, N. G.

H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
[Crossref]

Pazos-Outón, L. M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Pellet, N.

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Petrozza, A.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

Phillips, A. B.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Qi, Y.

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

Quarti, C.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Ran, G. Z.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Richter, J. M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Ronca, E.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Ryota, N.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Sabba, D.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Schmidt, T.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
[Crossref]

Seo, J.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Seok, S. I.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Sessolo, M.

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

Shang, Q. Y.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

Shao, Y. C.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Shen, C.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

Shi, T. T.

W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
[Crossref]

Shin, S. S.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Shirai, Y.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Si, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Siempelkamp, B. D.

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

Snaith, H. J.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Song, T. B.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Song, T.-B.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Song, Z. N.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Stranks, S. D.

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Suen, N. T.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Sum, T. C.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Sun, G. X.

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

Szumilo, M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Takahashi, Y.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Takeshi, N.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Tao, L.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Tay, B. K.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Terakura, K.

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

Teshima, K.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Tomoya, M.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Tompkins, B. L.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Tretiak, S.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Trinh, M. T.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Tsai, H.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Tsao, C. W.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Ulugbek, A.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Umari, P.

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

van Schilfgaarde, M.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Vrucinic, M.

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

Wakamiya, A.

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Walker, A. B.

F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
[Crossref]

Walsh, A.

F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
[Crossref]

Wang, H.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Wang, H.-H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Wang, H.-L.

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

Wang, J.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Wang, N.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Wang, S.

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

Wang, X.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Wang, X. L.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Wang, Y. L.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Watthage, S. C.

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Weber, O. J.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Wei, H.

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

Weller, M. T.

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Wu, C. Y.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Wu, D.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Wu, X.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Wu, Z. Y.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

Xiao, Z. G.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Xing, G.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Xing, J.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

Xiong, Q.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

Xiong, Q. H.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

Xu, W. G.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

Yakobson, B. I.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Yamada, T.

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Yamada, Y.

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Yan, Y. F.

W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
[Crossref]

Yang, J. L.

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

Yang, J. S.

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

Yang, T. Y.

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

Yang, W. S.

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Yang, Y.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Yantara, N.

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

Yao, L.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Yasuhiko, H.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Ye, Z.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Yella, A.

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Yin, W. J.

W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
[Crossref]

Yivlialin, R.

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Yoichi, H.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

Yoshifumi, Y.

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

You, J.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Yu, P.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Yu, Q.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Yu, T.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Yuan, Y. B.

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

Yuan, Y. W.

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

Zeng, Q. S.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Zhai, W. H.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Zhang, K.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Zhang, L.

L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
[Crossref]

Zhang, Q.

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

Zhang, Y.

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Zhang, Y. F.

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Zhang, Z. H.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Zhao, Y.

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

Zhou, H.

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

Zhou, H. P.

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Zhou, J. D.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Zhou, W.

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Zhu, H.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Zhu, X. Y.

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

Zulehner, W.

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
[Crossref]

ACS Energy Lett. (1)

B. A. Chen, J. T. Lin, N. T. Suen, C. W. Tsao, T. C. Chu, Y. Y. Hsu, T. S. Chan, Y. T. Chan, J. S. Yang, C. W. Chiu, and H. M. Chen, “In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells,” ACS Energy Lett. 2(2), 342–348 (2017).
[Crossref]

ACS Nano (1)

J. L. Yang, B. D. Siempelkamp, D. Y. Liu, and T. L. Kelly, “Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques,” ACS Nano 9(2), 1955–1963 (2015).
[Crossref]

Adv. Funct. Mater. (1)

R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, “Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films,” Adv. Funct. Mater. 25(39), 6218–6227 (2015).
[Crossref]

Adv. Mater. (3)

Z. G. Xiao, Q. F. Dong, C. Bi, Y. C. Shao, Y. B. Yuan, and J. S. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Adv. Mater. 26(37), 6503–6509 (2014).
[Crossref]

W. J. Yin, T. T. Shi, and Y. F. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Adv. Mater. 26(27), 4653–4658 (2014).
[Crossref]

L. Niu, X. F. Liu, C. X. Cong, C. Y. Wu, D. Wu, T. R. Chang, H. Wang, Q. S. Zeng, J. D. Zhou, X. L. Wang, W. Fu, P. Yu, Q. D. Fu, S. Najmaei, Z. H. Zhang, B. I. Yakobson, B. K. Tay, W. Zhou, H. T. Jeng, H. Lin, T. C. Sum, C. Jin, H. Y. He, T. Yu, and Z. Liu, “Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions,” Adv. Mater. 27(47), 7800–7808 (2015).
[Crossref]

Adv. Opt. Mater. (1)

S. T. Ha, X. F. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. H. Xiong, “Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices,” Adv. Opt. Mater. 2(9), 838–844 (2014).
[Crossref]

Angew. Chem., Int. Ed. (1)

T. Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier, “The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer,” Angew. Chem., Int. Ed. 54(27), 7905–7910 (2015).
[Crossref]

APL Mater. (1)

F. Brivio, A. B. Walker, and A. Walsh, “Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles,” APL Mater. 1(4), 042111 (2013).
[Crossref]

Appl. Phys. Lett. (2)

J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105(18), 183902 (2014).
[Crossref]

X. Fang, K. Zhang, Y. P. Li, L. Yao, Y. F. Zhang, Y. L. Wang, W. H. Zhai, L. Tao, H. L. Du, and G. Z. Ran, “Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature,” Appl. Phys. Lett. 108, 071109 (2016).
[Crossref]

Chem. Mater. (2)

A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, “Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells,” Chem. Mater. 27(9), 3397–3407 (2015).
[Crossref]

Z. N. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chem. Mater. 27(13), 4612–4619 (2015).
[Crossref]

Dalton Trans. (1)

Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, and K. Terakura, “Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity,” Dalton Trans. 40(20), 5563–5568 (2011).
[Crossref]

J. Am. Chem. Soc. (3)

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc. 131(17), 6050–6051 (2009).
[Crossref]

Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc. 136(2), 622–625 (2014).
[Crossref]

J. A. Christians, P. A. M. Herrera, and P. V. Kamat, “Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air,” J. Am. Chem. Soc. 137(4), 1530–1538 (2015).
[Crossref]

J. Mater. Chem. A (2)

L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, “Organometal halide perovskite thin films and solar cells by vapor deposition,” J. Mater. Chem. A 4(18), 6693–6713 (2016).
[Crossref]

H. S. Ko, J. W. Lee, and N. G. Park, “15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3,” J. Mater. Chem. A 3(16), 8808–8815 (2015).
[Crossref]

J. Phys. Chem. C (1)

A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, and L. Duò, “Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers,” J. Phys. Chem. C 119(37), 21329–21335 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Masaki, H. Yoichi, N. Ryota, M. Tomoya, A. Ulugbek, O. Hiromi, N. Takeshi, Y. Yoshifumi, and H. Yasuhiko, “In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature,” Jpn. J. Appl. Phys. 57(2), 028001 (2018).
[Crossref]

MRS Bull. (1)

M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, “Photovoltaic devices employing vacuum-deposited perovskite layers,” MRS Bull. 40(08), 660–666 (2015).
[Crossref]

Nano Lett. (5)

J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, and Q. Xiong, “Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers,” Nano Lett. 15(7), 4571–4577 (2015).
[Crossref]

S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, “Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells,” Nano Lett. 14(10), 5561–5568 (2014).
[Crossref]

Q. Zhang, S. T. Ha, X. F. Liu, T. C. Sum, and Q. H. Xiong, “Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nano lasers,” Nano Lett. 14(10), 5995–6001 (2014).
[Crossref]

A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, “Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting,” Nano Lett. 14(6), 3608–3616 (2014).
[Crossref]

Q. Chen, H. P. Zhou, T. B. Song, S. Luo, Z. R. Hong, H. S. Duan, L. T. Dou, Y. S. Liu, and Y. Yang, “Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells,” Nano Lett. 14(7), 4158–4163 (2014).
[Crossref]

Nanoscale (1)

C. Shen, W. N. Du, Z. Y. Wu, J. Xing, S. T. Ha, Q. Y. Shang, W. G. Xu, Q. H. Xiong, X. F. Liu, and Q. Zhang, “Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature,” Nanoscale 9(24), 8281–8287 (2017).
[Crossref]

Nat. Commun. (3)

Y. Fang, H. Wei, Q. Dong, and J. Huang, “Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals,” Nat. Commun. 8, 14417 (2017).
[Crossref]

V. D’Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites,” Nat. Commun. 5(1), 3586 (2014).
[Crossref]

H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nat. Commun. 7(1), 10896 (2016).
[Crossref]

Nat. Mater. (3)

G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Low-temperature solution-processed wavelength-tunable perovskites for lasing,” Nat. Mater. 13(5), 476–480 (2014).
[Crossref]

H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, and X. Y. Zhu, “Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors,” Nat. Mater. 14(6), 636–642 (2015).
[Crossref]

M. Antonietta Loi and J. C. Hummelen, “Perovskites under the Sun,” Nat. Mater. 12(12), 1087–1089 (2013).
[Crossref]

Nat. Photonics (1)

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8(2), 128–132 (2014).
[Crossref]

Nature (1)

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499(7458), 316–319 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (2)

M. G. Ju, G. X. Sun, Y. Zhao, and W. Z. Liang, “A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn,” Phys. Chem. Chem. Phys. 17(27), 17679–17687 (2015).
[Crossref]

L. Zhang, M. G. Ju, and W. Z. Liang, “The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation,” Phys. Chem. Chem. Phys. 18(33), 23174–23183 (2016).
[Crossref]

Phys. Rev. Appl. (1)

T. Yamada, Y. Yamada, Y. Nakaike, A. Wakamiya, and Y. Kanemitsu, “Photon Emission and Reabsorption Processes in CH3NH3PbBr3 Single Crystals Revealed by Time-Resolved Two-Photon-Excitation Photoluminescence Microscopy,” Phys. Rev. Appl. 7(1), 014001 (2017).
[Crossref]

Phys. Rev. B (1)

T. Schmidt, K. Lischka, and W. Zulehner, “Excitation-power dependence of the near-band-edge photoluminescence of semiconductors,” Phys. Rev. B 45(16), 8989–8994 (1992).
[Crossref]

Science (4)

W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science 347(6221), 522–525 (2015).
[Crossref]

L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, “Photon recycling in lead iodide perovskite solar cells,” Science 351(6280), 1430–1433 (2016).
[Crossref]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999).
[Crossref]

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, and S. I. Seok, “Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells,” Science 356(6345), 1376–1379 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. SEM images of (a) PbI2 and (b) CH3NH3PbI3 crystals synthesized via vapor deposition method.
Fig. 2.
Fig. 2. (a) The absorbance spectra of PbI2 (black line) and CH3NH3PbI3 (red line) films by vapor deposition. (b) PL spectra of CH3NH3PbI3.
Fig. 3.
Fig. 3. (a) PL spectra of CH3NH3PbI3 films via vapor deposition evaporation route while rising excitation power. (b) The logarithm plot of the integrated PL intensity versus excitation density. (c) PL spectra of CH3NH3PbI3 films fabricated by vapor deposition measured at 50% relative humidity week by week. (d) Normalized PL intensities of perovskite films by vapor deposition way excited by 532 nm CW laser perform at room temperature at 50% relative humidity.
Fig. 4.
Fig. 4. (a) PL spectra of CH3NH3PbI3 films fabricated by spin-coating measured at 50% relative humidity day by day. (b) normalized PL intensities of perovskite films by spin-coating excited by 532 nm CW laser perform at room temperature at 50% relative humidity.
Fig. 5.
Fig. 5. PL spectra with laser focusing on different areas in CH3NH3PbI3 film via vapor deposition method from (a) black region and (b) yellow region.
Fig. 6.
Fig. 6. PL spectra of laser focusing on different depths of yellow region in CH3NH3PbI3 film via vapor deposition method (top to bottom of the film).
Fig. 7.
Fig. 7. The XRD pattern of fresh CH3NH3PbI3 film (red line) and CH3NH3PbI3 film absorbing moisture (black line). The XRD standard reference of PbI2 (blue line) is listed in the bottom of figure. Symbols indicate the diffraction peaks of di-hydrate (▪), PbI2 (●), CH3NH3PbI3 (★), CH3NH3I (▴).
Fig. 8.
Fig. 8. Scheme of the CH3NH3PbI3 film absorbing moisture. The yellow part is PbI2, brown one is CH3NH3PbI3 and black lines imply grain boundaries.
Fig. 9.
Fig. 9. (a) TR-PL decay measured at 780 nm (blue line) and 796 nm (red line) respectively. The black lines are fitting lines, and the inset shows the fitted result of TR-PL. (b) the band diagram of CH3NH3PbI3/PbI2 hetero-structure (CBM is conduction band minimum, and VBM is valence band minimum).

Metrics