Abstract

Coloration using semicontinuous metal films has been explored recently and has shown far-reaching interest as a result of being inexpensive, environment-friendly, and non-bleaching. In this paper, we demonstrate the generation of bright colors through laser modification of semicontinuous Ag films. A palette of colors is obtained from blue through green, orange, up to red, and the potential exists to obtain other hues through varying the scan speed, number of pulses, energy density, power, and exposure time. This unique process can be applied to the macroscopic, mesoscopic and nanoscopic printing of innovatory fade-free artistic images as one example of application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Increased resolution for color images has been a driving force for innovation in the development of mainstream printing technologies. The existing methods of using dye-doped polymers have not only reached their limits in terms of pixel size [1], but these techniques are also hazardous and detrimental to the environment. Plasmonic materials have been used for centuries for aesthetic purposes [2], but very recently coloration with plasmonic nanostructures has been utilized for sub-wavelength resolution printing [3–7]. Color generation with such nanostructures and metasurfaces demonstrates better performance over dye technology [8]; however, it remains costly owing to fabrication methods such as e-beam lithography [4,7] or focused ion beam milling [5,6]. The generation of structural colors with plasmonics (plasmonic colors) is achieved by fabricating metallic nanostructures that resonate at different frequencies at different areas of a substrate, thus producing a color image.

Among the many plasmonic types of structures, semicontinuous metal films (SMFs) that are comprised of random, fractal-type, island films [9–11] are of great interest. These films can be fabricated on large substrates using physical vapor deposition techniques, thus potentially allowing for large-scale production. The optical properties of SMFs strongly depend on the fine details of the nanostructures formed on the substrate, which are in turn a function of deposition process parameters. SMFs in the form of isolated particles, percolated planar structures, or almost continuous films can be fabricated by varying for example the mass of the deposited metal. When light interacts with SMFs, localized surface plasmon resonances, which are collective oscillations of conduction electrons, can be excited in the metallic structures, and electromagnetic energy can be localized in nanoscale regions called “hotspots” where the local electric field can be orders of magnitude higher than in other parts of the film [11–15]. Films near the percolation threshold (the transition from dielectric-like to metal-like) are comprised of nanostructures with different particle sizes and shapes, resulting in absorption of electromagnetic energy in a broad wavelength range extending from the visible to the far infrared [16]. What is striking about SMFs is that different parts of the nanostructured film are responsible for absorption at different wavelengths. Representative examples of SMFs are shown in Section 3.

Laser photomodification of SMFs can induce spectral selective changes in their transmittance, reflectance and absorption. These changes originate from reshaping and fragmentation of metallic nanostructures due to heat accumulation in the vicinity of hotspots excited with the laser [17–22]. Such photomodification allows for a gradual change of the optical response of SMFs, which can result in forming windows of transparency in the mid-infrared spectral range and high transmission bands in the near-infrared [23,24]. A similar effect can be observed in the case of semicontinuous films synthesized on dielectric micro- and nanoparticles [25]. Spectrally selective laser photomodification of plasmonic SMFs could be used for color generation. Laser writing on semicontinuous gold films has been studied recently for coloration [26]. We note that this approach is distinct from laser coloration of bulk metal surfaces originating from the formation of micro- and nanostructures due to irradiation with femtosecond and picosecond laser pulses [27–29].

In this paper, in Section 2, we describe the procedures of fabrication of semicontinuous Ag films on glass and multilayer structures formed from a silver SMF on a silver reflector/mirror with a dielectric spacer. In Section 3, first we study the colors of these structures and next we explore a process of color printing through femtosecond laser post-processing of semicontinuous silver films deposited on a mirror with a spacer. The laser printing results in the formation of vibrant green, brown, red, orange and yellow colors. The colors originate from the spectral changes of reflection of multilayer samples induced by the reshaping of the metallic nanostructures. We also explore the variation of color generation as a function of laser fluence and exposure time. Conclusions and outlook are given in the Conclusion Section.

2. Experimental

All structures were fabricated using an electron-beam physical vapor deposition technique on 75 mm × 25 mm glass substrates (ThermoFisher Scientific, Gold Seal Plain Slide). The glass surface roughness was 0.5 nm. The substrates were precleaned with Nanostrip, a sulfuric acid and hydrogen peroxide solution, and then sonicated in solvents (toluene, acetone and isopropyl alcohol) and dried thoroughly. The deposition was conducted in a high-vacuum deposition chamber (base pressure 2.6 × 10−6 Torr) at room temperature. Silicon dioxide (SiO2) 99.99% purity and silver 99.99% purity both from the Kurt J. Lesker Company were used for fabricating all structures. The thickness of the deposited materials was monitored with quartz crystal microbalance, which provided thickness values of an equivalent continuous film. The deposition rate was maintained constant at 1 Å/s for all materials.

Two types of SMFs were fabricated in the study. The first type was the silver SMF on glass on which 10 nm of silica was deposited in the same process. The thickness of the Ag was varied across the length of the sample through the use of the computer-controlled shutter. Before the Ag deposition, the shutter completely shadowed the substrate from the deposition material. As the deposition started, the shutter was slowly moved with a constant speed and exposed the substrate to the Ag material flux. Thus, one edge of the substrate was exposed to the deposited material longer than the opposite edge. That procedure allowed the fabrication of the SMF with the gradient of Ag thickness ranging from 0 to 20 nm on a single substrate. The second type of sample was a multilayer formed from a silver SMF on a silver reflector/mirror with a silica spacer. In that case, a thin layer of titanium (5 nm) was deposited on the glass to increase the adhesion of Ag to substrate. Next, 100 nm of Ag was deposited, followed by 32 nm SiO2 as a spacer, and then, by the Ag SMF. All layers were fabricated in the same deposition process.

Post-fabrication laser photomodification of the SMFs on the mirror was performed in ambient atmosphere using an ultrafast femtosecond laser (1 kHz, 80 fs, 800 nm, linear polarization). The laser beam was focused using a single lens. The 1/e2 beam size was determined using the knife edge technique. In order to print areas of uniform color, samples were mounted on a motorized XY stage capable of scanning and controlled with a computer interface. A field emission scanning electron microscope (FESEM, Hitachi S-4800) was used to characterize the SMF’s nanostructure. We used an optical microscope (Nikon Eclipse, L150) to capture color images of printed structures. Total transmittance and reflectance of our as-fabricated and photomodified structures were measured using a spectrophotometer (Perkin Elmer, Lambda 950) equipped with an integrating sphere module. Spectralon was used as a reference sample. The transmittance of SMFs on glass was measured using a variable angle spectroscopic ellipsometer (JA Woollam, VASE) at an angel of incidence of 18° with p-polarized incident light. The calculation of CIE 1931 color coordinates from transmittance and reflectance spectra was performed using Origin software [30].

3. Results and discussion

3.1 Colors of semicontinuous metal films on glass

The structure and optical properties of silver SMFs deposited on dielectric substrates are sensitive to the fabrication process parameters. Silver films grow according to the Volmer-Weber growth mode [31]. At thicknesses on the order of few nanometers, silver forms islands. As more metal is deposited, the islands coalesce, then form randomly shaped fractal clusters, and finally merge into a continuous film. Thus, for thin metal films, a small variation of thickness can result in striking changes in the nanostructure and result in drastic changes in the transmittance, reflectance and absorption of the film. Hence, a key understanding of the morphology of the metal film with the change of thickness is required for developing SMF structures for structural color applications.

In order to efficiently study the color of SMFs as a function of the mass of deposited silver, we fabricated a sample with a gradient of Ag thickness (for details of fabrication see Section 2. Experimental). The film was deposited on a glass substrate coated with 10 nm SiO2 by employing a computer-controlled stepper-motor shutter. The silver thickness on this sample changed linearly with distance from 0 nm on one end to 20 nm on the other end. Figure 1(a) shows an optical camera image of freshly fabricated sample on a holder used for mounting it in the deposition chamber. A schematic edge view of such a sample with linearly varied thickness is also presented. Here, we observe a broad variety of exquisite colors obtained as a consequence of the varying Ag thickness which is especially pronounced on the left side (“thinner side”) of the sample (for Ag thickness up to about 10 nm). A correlation between the Ag thickness and the color can be obtained through the transmittance spectra in Fig. 1(b). These spectra were measured using an ellipsometer at several locations corresponding to silver thicknesses from 0.4 nm to 19.5 nm. No reflectance spectra were measured for this sample.

 figure: Fig. 1

Fig. 1 (a) Optical camera image and schematic view of Ag gradient sample. (b) Transmittance spectra of Ag gradient sample measured at locations corresponding to different mass.

Download Full Size | PPT Slide | PDF

We can explicitly see that, with a gradual increase of the silver thickness, at first a dip in transmission is observed that then broadens and shifts toward longer wavelengths. This dip is a result of the absorption and scattering of light by silver nanoparticles. As more metal is deposited, the dip in transmission broadens, and transmission decreases for longer wavelengths as gradually more light is absorbed or reflected by the film. This observation is corroborated by our previous work on SMFs [21].

Figure 2 shows SEM images of the gradient in Ag thickness and the percolation threshold. These images clearly show the growth process for the metal film similar to [21,32]. At low mass thicknesses, isolated granular silver structures form on the silica-coated glass substrate. With more deposited silver, these granules gradually grow and coalesce, forming larger islands. Eventually the islands merge to form a number of short, connected paths. When a single path connects across the sample, the percolation threshold is reached and the film transitions from dielectric-like to metal-like. Still further metal deposition leads to the formation of a continuous metal film with dielectric voids. These SEM images provided a good estimate for the approximate thickness for our subsequent multilayer structures. As stated above, the absorption of SMFs depends on the grain size and shape, and at an Ag thickness near 10 nm, we can observe the different shapes and sizes contributing to plasmon oscillations in a broad, flat frequency range. As the metal filling factor increases, the individual grains form clusters through coalescence, which eventually leads to a continuous, conducting path. Hence, a semicontinuous film in the range of 8-14nm is desired to achieve high absorption in the broadest possible range.

 figure: Fig. 2

Fig. 2 SEM images of Ag gradient sample recorded at locations corresponding to different deposited mass. Gradual nanostructure changes result from the increase of Ag thickness: isolated grains and islands at low thickness, near the percolation threshold at moderate thickness, and finally a continuous metal film with dielectric voids. Scale bar is the same for all images.

Download Full Size | PPT Slide | PDF

In order to better visualize the range of colors of SMFs on glass, we analyzed the spectra presented in Fig. 1 using the CIE 1931 chromaticity diagram (Fig. 3). We decided to analyze the “transmission mode” colors as these films are quite transparent and the observed colors are produced as a result of light transmission through the sample. It is clear that by changing the silver thickness, one can get a rather small variation of colors in the yellow-orange region. Also, the intensity of the produced colors is rather weak. However, after careful examination of the aluminum holder used for the gradient film deposition (Fig. 1(a)), we realized that much more intense colors can be produced when a SMF is deposited on a reflective surface with a dielectric spacer.

 figure: Fig. 3

Fig. 3 CIE 1931 Chromaticity diagram showing the colors of a gradient Ag film at different locations. Numbers 1-11 correspond to the spectra presented in Fig. 1, where 1 is the lowest thickness and 11 is the highest thickness of deposited silver.

Download Full Size | PPT Slide | PDF

3.2 Semicontinuous metal films on mirror with dielectric spacer

In order to generate colors in “reflection mode,” we fabricated silver semicontinuous metal films on mirror (SMF/M) with a dielectric spacer.

Figure 4 shows a schematic view of the multilayer structure with randomly generated silver nanoparticles on top. We used 100 nm Ag film deposited on 5 nm titanium on a glass substrate as the mirror. A film of 32 nm thick silicon dioxide layer was the spacer. Such type of a structure allows utilization of gap plasmon mode extensively studied in case of lithography-defined plasmonic structures [33].

 figure: Fig. 4

Fig. 4 Schematic view of Ag SMF on a SiO2 spacer atop silver mirror.

Download Full Size | PPT Slide | PDF

In order to study the dependence of reflectance and absorption of SMF/M on the silver thickness, we fabricated three samples with top metal layers of 10, 13.5 and 17 nm. (Note that the Ag mirror ensures no light transmission in the visible and near infrared, so transmittance measurements were not included for these samples.) Fig. 5 shows the SEM images as well as the colors captured with an optical microscope using 0.15 NA 5x objective (inset images). The silver nanostructure of these films is similar to the previous films deposited on glass. As the thickness increases, the metal filling fraction increases, and films become more continuous. For further studies of laser printing we chose the film with a 10 nm thick Ag film as it had the highest absorption in the visible range (reflectance and absorption of this sample are presented in Fig. 6(a)), and thus it had the highest potential for color change.

 figure: Fig. 5

Fig. 5 SMF/M samples with different top Ag layer thickness (10 nm, 13.5 nm and 17 nm). Insets present optical images captured using a microscope.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 Comparison of (a) measured and (b) simulated reflectance and absorption spectra of 10 nm Ag SMF/M and SMF/M overcoated with a 30 nm layer of SiO2.

Download Full Size | PPT Slide | PDF

Our initial tests of laser photomodification of the 10 nm thick SMF/M resulted in a change of color (not presented). However, the obtained colors gradually faded with time. We attribute this to the inherent chemical instability of Ag, which is highly susceptible to oxidation / sulfidation [34]. In order to increase the stability of SMF/M, we decided to add a protective layer on top of our semicontinuous silver film. We repeated the deposition of 10 nm Ag SMF/M sample and added 30 nm of SiO2 on top of silver in the same deposition process. An additional advantage of using the silica overcoating layer was the absorption broadening and shift to longer wavelengths, which resulted in an increase of the total absorption in the visible spectral range and blue appearance of the multilayer sample (Fig. 6(a)).

In order to understand the optical properties of SMF/Ms, we simulated the 10 nm Ag samples with and without the silica overcoating. The simulated structures were constructed from the SEM images of the fabricated random metal films for direct numerical simulations with a commercial 3D finite-difference time-domain (FDTD) solver (Lumerical Inc., FDTD Solutions) [35]. The images of the structure were binarized and imported into computational domain directly. We used a simulation approach that was similar to our previous studies on semicontinuous films [22,36]. Here we have assumed that a 20 nm thick silver semicontinuous metal film is sitting on top of the multilayer substrate, which consists of a 32 nm SiO2 spacer and 100 nm silver back reflector. The optical response of the random metallic films is significantly affected by the statistical variation of the nanoparticle sizes within the same film. Hence, in order to obtain a statistical average of the overall response of the film, we simulated a representative number of geometries for each film. To achieve this, we used 25 regions with 500 nm by 500 nm lateral dimension, which allowed us to collect enough statistics for fair averaging of the optical responses. For each of the realizations, we assumed that the unit cell has a periodic boundary condition in the lateral directions. In the second part of the simulations, we considered the same semicontinuous silver film (the same SEM images were used to generate Ag nanostructures) covered by a 30 nm thick protective silica layer. Here we assumed that 10 nm of SiO2 is filling the gaps inside the semicontinuous silver film (as filling fraction is close to 0.5) and the remaining 20 nm of SiO2 covers the film on top. The SiO2 dielectric constant was assumed to be constant across all wavelengths and equal to 2.12. The dielectric constant of silver was retrieved using ellipsometric measurements from a 100 nm thick Ag mirror fabricated under the same process parameters as for SMF/Ms. The quality of this film is close to that reported by Palik [37]. Simulations closely resemble the experimental data. The differences in the locations of reflectance dips and absorption peaks could be a result of several factors. First, the simulations were conducted using the material properties of bulk Ag, however thinner films have smaller grain sizes which results in the variation of optical properties [38]. Second, the grain thickness of the Ag top film was approximated to be uniform and equal to 20 nm. Additionally, straight side walls of the Ag structures were assumed. Nevertheless, the broadening and shift of the SMF absorption spectrum were reproduced by the simulations. In addition, simulations confirmed the existence of hotspots in the semicontinuous silver film and showed that the film is responsible for absorption of the multilayer structure (data not presented). These facts allowed us to expect that similar to the case of SMFs the laser photomodification of SMF/Ms would lead to spectrally selective changes of their reflectance and absorption.

3.3 Laser printing on SMF/Ms

In this section, we present the results of laser printing on silica-overcoated 10 nm silver SMF/M introduced in Section 3.3. For laser photomodification we used 1 kHz, 80 fs pulses of linearly polarized laser operating at 800 nm.

First, we conducted a study on how color generation depends on photomodification exposure time. The SMF/M was illuminated by a beam with 30 mJ cm−2 fluence and 1/e2 diameter of few millimeters. The exposure time was varied from 0.2 seconds to 30 minutes. Figure 7(a) shows the visible spectral range reflectance of the SMF/M photomodified using different exposure times. Reflectance (linearly polarized light, same orientation as that of the photomodifying laser) was measured at the uniform central part of the modified area using a spectrophotometer equipped with an integrating sphere. Laser modification induces an increase in the sample reflection at longer wavelengths, and as the exposure time increases, the high-reflection spectral band progresses toward the shorter wavelengths (from the red to the yellow part of the visible range). Also, it is worth noting that reflection decreases for short wavelengths. Such changes in SMF/M reflectance originate from the localized heat generation (due to absorption of laser light) and restructuring of metal clusters resonating at the 800 nm laser wavelength. With increasing exposure time, this effect leads to a gradual decrease of the absorption of the silver random film and results in an increase of the light reflected from the metallic mirror. In addition, laser-induced restructuring of the silver nanostructures leads to the formation of grains resonating at shorter wavelengths, which results in an increase of the absorption in this part of the visible spectrum. For a short exposure time (0.2 second), a darkening of the film was observed with the naked eye. As the exposure time increased, the film changed gradually to red, orange and yellow. This is in a good correspondence with the reflectance data. In Fig. 7(b), we show the colors induced by laser photomodification of the SMF/M structure plotted on the CIE 1931 Chromaticity diagram. The inset in Fig. 7(b) presents an optical image (captured using a digital camera) of a part of the SMF/M area exposed for 30 minutes. While the central yellow part of the photomodified spot is quite uniform, there is an area with a gradient of colors from green to red to orange to yellow.

 figure: Fig. 7

Fig. 7 (a) Reflectance measured with linearly polarized light co-polarized with respect to laser polarization. SMF/M photomodified using different exposure time. (b) CIE 1931 Chromaticity diagram of colors of as-deposited overcoated 10 nm SMF/M (initial) and after different time exposure to 800 nm, 80 fs, 1 kHz laser. Inset shows an image captured using a digital camera of part of the spot exposed for 30 minutes.

Download Full Size | PPT Slide | PDF

Figure 8 shows SEM images of three locations corresponding to different colors (yellow, red, green) obtained from the spot modified for 30 minutes using 30 mJ cm−2 fluence. Since the SMF/M studied in this section was overcoated with a 30 nm silica layer, the metal nanostructures of the as-deposited film cannot be observed clearly using electron microscopy (image not presented). For the same reason, in the region of green and red color we were not able to specifically identify the changes to the film’s structure. However, in the yellow color region some silver emerged from the silica layer and metal spherical structures were visible. The formation of spherical nanoparticles upon laser photomodification of semicontinuous metal films was reported previously [21].

 figure: Fig. 8

Fig. 8 SEM images corresponding to different color regions (yellow (a); red (b); green (c)) of the photomodified spot after being exposed for 30 minutes.

Download Full Size | PPT Slide | PDF

Next, we explored the influence of laser fluence on color printing on SMF/M. In this case, the laser beam was focused by a single lens to 0.37 mm diameter (1/e2). A few mm2 area was uniformly photomodified employing scanning of the sample across the laser beam. The scanning was performed with a computer-controlled motorized XY stage. We varied the laser fluence in the range of 9.6 mJ cm-2 - 192 mJ cm−2. We also changed the exposure time in two cases: one for a high fluence of 96 mJ cm−2, and the other for a low fluence of 9.6 mJ cm−2. We measured the reflectance of the modified areas using spectrophotometer with an integrating sphere. Linearly polarized light was used. Measurements were performed for co-polarized (Fig. 9(a)) and cross-polarized (Fig. 9(b)) light with respect to photomodifying laser polarization. In Fig. 9, the inset squares represent the generated color palette and are optical images taken using an optical microscope with 0.3 NA 10x objective and unpolarized illumination and collection. The changes of SMF/M reflectance induced by photomodification with different laser fluence resemble those presented in Fig. 7 as a function of exposure time. The changes of reflectance recorded with linear light co-polarized with respect to photomodifying laser polarization show more distinct change in color than the cross-polarized case (data not presented).

 figure: Fig. 9

Fig. 9 Reflectance spectra of overcoated 10 nm Ag SMF/M structure photomodified with different laser fluence measured with linearly polarized light (a) co-polarized and (b) cross-polarized with respect to laser polarization. The inset squares represent the generated color palette recorded using unpolarized light.

Download Full Size | PPT Slide | PDF

The data presented in Figs. 7 and 9 reveal that a substantial range of highly contrasting and vivid earth palette colors can be easily obtained through laser photomodification of semicontinuous silver films. Figure 9 also comprises of range of produced pristine colors: unmodified sample - blue (teal) and laser printed green, orange and red. The control of the generated colors can be achieved by varying either exposure time or laser fluence. The color range generated in this study was not attainable for any of our previous structures. The color palette could be further extended with the use of other plasmonic materials.

As an example of decorative type of laser coloring, we printed a simple two-color checkered pattern and 150 years of Purdue logo with a “P” letter (Fig. 10).

 figure: Fig. 10

Fig. 10 Optical images of laser printed (a) checkered pattern (red - 30 mJ cm−2; yellow - 150 mJ cm−2) and (b) 150 years of Purdue logo with a “P” letter (100 mJ cm−2) on the SMF/M film.

Download Full Size | PPT Slide | PDF

Conclusion

A substantial range of highly contrasting and vivid colors is obtained through femtosecond laser irradiation of Ag semicontinuous metal films deposited on mirror with a dielectric spacer. Such changes occur due to restructuring of plasmonic nanostructures resonating at the laser wavelength. Although Ag is usually susceptible to oxidation and sulfidation, our structure covered with a protective layer not only ensures durability, but we also achieve a brighter contrast of color that can be controlled by varying exposure time, laser fluence, and polarization. A palette of colors is obtained from blue through green, orange, up to red. This unique laser printing process can be applied in the future to the formation of macroscopic, mesoscopic and nanoscopic color images.

Funding

Air Force Office of Scientific Research (FA9550-17-1-0243 and FA9550-14-1-0389); DARPA/DSO Extreme Optics and Imaging (EXTREME) (HR0011-17-2-0032); Polish-U.S. Fulbright Commission; Fulbright Senior Award Scholarship (2018-2019).

Acknowledgements

The authors thank Oksana Makarova for help in characterization of surface roughness of glass substrates.

References

1. N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015). [CrossRef]   [PubMed]  

2. P. Colomban, “The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure,” J. Nano Res. 8, 109–132 (2009). [CrossRef]  

3. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014). [CrossRef]   [PubMed]  

4. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012). [CrossRef]   [PubMed]  

5. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015). [CrossRef]   [PubMed]  

6. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010). [CrossRef]   [PubMed]  

7. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014). [CrossRef]   [PubMed]  

8. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017). [CrossRef]  

9. V. M. Shalaev, Nonlinear Optics of Random Media : Fractal Composites and Metal-Dielectric Films (Springer, 2000).

10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996). [CrossRef]   [PubMed]  

11. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999). [CrossRef]  

12. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

13. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

14. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999). [CrossRef]  

15. V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993). [CrossRef]   [PubMed]  

16. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992). [CrossRef]   [PubMed]  

17. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003). [CrossRef]  

18. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2–3), 61–137 (1996). [CrossRef]  

19. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

20. P. Nyga, M. D. Thoreson, V. de Silva, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, “Infrared Filters Based on Photomodification of Semicontinuous Metal Films,” in Frontiers in Optics (OSA, 2006), p. FTuU3.

21. P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008). [CrossRef]  

22. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010). [CrossRef]  

23. Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997). [CrossRef]  

24. V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998). [CrossRef]  

25. V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016). [CrossRef]   [PubMed]  

26. A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019). [CrossRef]   [PubMed]  

27. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005). [CrossRef]  

28. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008). [CrossRef]  

29. J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017). [CrossRef]   [PubMed]  

30. “Origin: Data Analysis and Graphing Software,” https://www.originlab.com/index.aspx?go=Products/Origin.

31. M. Ohring, Materials Science of Thin Films: Deposition and Structure (Academic Press, 2002).

32. M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009). [CrossRef]  

33. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013). [CrossRef]   [PubMed]  

34. X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017). [CrossRef]   [PubMed]  

35. “Nanophotonic FDTD Simulation Software - Lumerical FDTD Solutions,” https://www.lumerical.com/products/fdtd-solutions/.

36. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011). [CrossRef]  

37. E. D. Palik, Handbook of Optical Constants of Solids. III (Academic Press, 1998).

38. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
    [Crossref] [PubMed]
  2. P. Colomban, “The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure,” J. Nano Res. 8, 109–132 (2009).
    [Crossref]
  3. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  4. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  5. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
    [Crossref] [PubMed]
  6. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  7. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  8. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  9. V. M. Shalaev, Nonlinear Optics of Random Media : Fractal Composites and Metal-Dielectric Films (Springer, 2000).
  10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
    [Crossref] [PubMed]
  11. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
    [Crossref]
  12. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  13. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  14. A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
    [Crossref]
  15. V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
    [Crossref] [PubMed]
  16. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
    [Crossref] [PubMed]
  17. D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
    [Crossref]
  18. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2–3), 61–137 (1996).
    [Crossref]
  19. A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).
  20. P. Nyga, M. D. Thoreson, V. de Silva, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, “Infrared Filters Based on Photomodification of Semicontinuous Metal Films,” in Frontiers in Optics (OSA, 2006), p. FTuU3.
  21. P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
    [Crossref]
  22. U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
    [Crossref]
  23. Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
    [Crossref]
  24. V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
    [Crossref]
  25. V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
    [Crossref] [PubMed]
  26. A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
    [Crossref] [PubMed]
  27. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005).
    [Crossref]
  28. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  29. J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
    [Crossref] [PubMed]
  30. “Origin: Data Analysis and Graphing Software,” https://www.originlab.com/index.aspx?go=Products/Origin .
  31. M. Ohring, Materials Science of Thin Films: Deposition and Structure (Academic Press, 2002).
  32. M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
    [Crossref]
  33. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  34. X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
    [Crossref] [PubMed]
  35. “Nanophotonic FDTD Simulation Software - Lumerical FDTD Solutions,” https://www.lumerical.com/products/fdtd-solutions/ .
  36. M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
    [Crossref]
  37. E. D. Palik, Handbook of Optical Constants of Solids. III (Academic Press, 1998).
  38. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
    [Crossref] [PubMed]

2019 (1)

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

2017 (3)

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

2016 (1)

V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
[Crossref] [PubMed]

2015 (2)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[Crossref] [PubMed]

2014 (2)

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

2011 (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

2010 (3)

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

2009 (2)

P. Colomban, “The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure,” J. Nano Res. 8, 109–132 (2009).
[Crossref]

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

2008 (2)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

2005 (1)

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005).
[Crossref]

2003 (1)

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
[Crossref]

1999 (2)

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
[Crossref]

1998 (1)

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

1997 (1)

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

1996 (2)

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2–3), 61–137 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

1993 (1)

V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
[Crossref] [PubMed]

1992 (1)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

1988 (1)

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Aigouy, L.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Armstrong, R. L.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

Beermann, J.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Berini, P.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Bernstorff, S.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Boccara, A. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Boroviks, S.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Botet, R.

V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Butenko, A. V.

V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
[Crossref] [PubMed]

Calà Lesina, A.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Charron, M.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Chen, Y.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Cheng, F.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Chettiar, U. K.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Colomban, P.

P. Colomban, “The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure,” J. Nano Res. 8, 109–132 (2009).
[Crossref]

Côté, G.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Danilova, Y. E.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

de Silva, V. C.

V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
[Crossref] [PubMed]

Dean, N.

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[Crossref] [PubMed]

Desmarest, C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Deutscher, G.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Drachev, V. P.

V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
[Crossref] [PubMed]

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Dubcek, P.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Fang, J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

Gadenne, P.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Gao, J.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Genov, D. A.

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
[Crossref]

Goh, X. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Grésillon, S.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Guay, J.-M.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005).
[Crossref]

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Haase, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Halas, N. J.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Jakopic, G.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Julien, C.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Karpov, A. V.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Kildishev, A. V.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Kim, W.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Lepeshkin, N. N.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Markel, V. A.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

Martin, O. J. F.

X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
[Crossref] [PubMed]

Mortensen, N. A.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Novikov, S. M.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Nyga, P.

V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
[Crossref] [PubMed]

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Pavlovic, M.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Poitras, D.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Popov, A. K.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Prokopeva, L. J.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

Qiu, C.-W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Quelin, X.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Ramunno, L.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Rautian, S. G.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Rivoal, J. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Roberts, A. S.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Safonov, V. P.

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Sancho-Parramon, J.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Santschi, C.

X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
[Crossref] [PubMed]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
[Crossref]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
[Crossref]

Shalaev, V. M.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
[Crossref]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
[Crossref]

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2–3), 61–137 (1996).
[Crossref]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
[Crossref] [PubMed]

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Shtokman, M. I.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Shubin, V. A.

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
[Crossref]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Slabko, V. V.

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Stechel, E. B.

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Thoreson, M. D.

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

Turkovic, A.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005).
[Crossref]

Wang, X.

X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
[Crossref] [PubMed]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Weck, A.

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yagil, Y.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

Yang, J. K. W.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yang, X.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Yang, Y.

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zorc, H.

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

ACS Nano (1)

A. S. Roberts, S. M. Novikov, Y. Yang, Y. Chen, S. Boroviks, J. Beermann, N. A. Mortensen, and S. I. Bozhevolnyi, “Laser Writing of Bright Colors on Near-Percolation Plasmonic Reflector Arrays,” ACS Nano 13(1), 71–77 (2019).
[Crossref] [PubMed]

Appl. Phys. B (2)

P. Nyga, V. P. Drachev, M. D. Thoreson, and V. M. Shalaev, “Mid-IR plasmonics and photomodification with Ag films,” Appl. Phys. B 93(1), 59–68 (2008).
[Crossref]

U. K. Chettiar, P. Nyga, M. D. Thoreson, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “FDTD modeling of realistic semicontinuous metal films,” Appl. Phys. B 100(1), 159–168 (2010).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

J. Colloid Interface Sci. (1)

V. C. de Silva, P. Nyga, and V. P. Drachev, “Optimization and photomodification of extremely broadband optical response of plasmonic core-shell obscurants,” J. Colloid Interface Sci. 484, 116–124 (2016).
[Crossref] [PubMed]

J. Nano Res. (1)

P. Colomban, “The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure,” J. Nano Res. 8, 109–132 (2009).
[Crossref]

J. Nanophotonics (1)

M. D. Thoreson, J. Fang, A. V. Kildishev, L. J. Prokopeva, P. Nyga, U. K. Chettiar, V. M. Shalaev, and V. P. Drachev, “Fabrication and realistic modeling of three-dimensional metal-dielectric composites,” J. Nanophotonics 5(1), 051513 (2011).
[Crossref]

J. Nonlinear Opt. Phys. Mater. (1)

D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Metal-Dielectric Composite Filters with Controlled Spectral Windows of Transparency,” J. Nonlinear Opt. Phys. Mater. 12(04), 419–440 (2003).
[Crossref]

JETP Lett. (1)

A. V. Karpov, A. K. Popov, S. G. Rautian, V. P. Safonov, V. V. Slabko, V. M. Shalaev, and M. I. Shtokman, “Observation of a wavelength- and polarization-selective photomodification of silver clusters,” JETP Lett. 48(10), 571 (1988).

Nano Lett. (3)

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength Plasmonic Color Printing Protected for Ambient Use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude Relaxation Rate in Grained Gold Nanoantennas,” Nano Lett. 10(3), 916–922 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

J.-M. Guay, A. Calà Lesina, G. Côté, M. Charron, D. Poitras, L. Ramunno, P. Berini, and A. Weck, “Laser-induced plasmonic colours on metals,” Nat. Commun. 8, 16095 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

N. Dean, “Colouring at the nanoscale,” Nat. Nanotechnol. 10(1), 15–16 (2015).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Opt. Express (1)

Phys. A Stat. Mech. its Appl. (1)

Y. E. Danilova, N. N. Lepeshkin, S. G. Rautian, and V. P. Safonov, “Excitation localization and nonlinear optical processes in colloidal silver aggregates,” Phys. A Stat. Mech. its Appl. 241(1–2), 231–235 (1997).
[Crossref]

Phys. Rep. (1)

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep. 272(2–3), 61–137 (1996).
[Crossref]

Phys. Rev. B Condens. Matter (3)

V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B Condens. Matter 48(9), 6662–6664 (1993).
[Crossref] [PubMed]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 µm,” Phys. Rev. B Condens. Matter 46(4), 2503–2511 (1992).
[Crossref] [PubMed]

V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. Linear optical properties,” Phys. Rev. B Condens. Matter 53(5), 2425–2436 (1996).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

A. K. Sarychev, V. A. Shubin, and V. M. Shalaev, “Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites,” Phys. Rev. B Condens. Matter Mater. Phys. 60(24), 16389–16408 (1999).
[Crossref]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B Condens. Matter Mater. Phys. 72(19), 195422 (2005).
[Crossref]

Phys. Rev. Lett. (2)

V. P. Safonov, V. M. Shalaev, V. A. Markel, Y. E. Danilova, N. N. Lepeshkin, W. Kim, S. G. Rautian, and R. L. Armstrong, “Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles,” Phys. Rev. Lett. 80(5), 1102–1105 (1998).
[Crossref]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental Observation of Localized Optical Excitations in Random Metal-Dielectric Films,” Phys. Rev. Lett. 82(22), 4520–4523 (1999).
[Crossref]

Sci. Rep. (1)

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5(1), 11045 (2015).
[Crossref] [PubMed]

Small (1)

X. Wang, C. Santschi, and O. J. F. Martin, “Strong Improvement of Long-Term Chemical and Thermal Stability of Plasmonic Silver Nanoantennas and Films,” Small 13(28), 1700044 (2017).
[Crossref] [PubMed]

Vacuum (1)

M. Lončarić, J. Sancho-Parramon, M. Pavlović, H. Zorc, P. Dubček, A. Turković, S. Bernstorff, G. Jakopic, and A. Haase, “Optical and structural characterization of silver islands films on glass substrates,” Vacuum 84(1), 188–192 (2009).
[Crossref]

Other (8)

E. D. Palik, Handbook of Optical Constants of Solids. III (Academic Press, 1998).

“Nanophotonic FDTD Simulation Software - Lumerical FDTD Solutions,” https://www.lumerical.com/products/fdtd-solutions/ .

“Origin: Data Analysis and Graphing Software,” https://www.originlab.com/index.aspx?go=Products/Origin .

M. Ohring, Materials Science of Thin Films: Deposition and Structure (Academic Press, 2002).

P. Nyga, M. D. Thoreson, V. de Silva, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, “Infrared Filters Based on Photomodification of Semicontinuous Metal Films,” in Frontiers in Optics (OSA, 2006), p. FTuU3.

V. M. Shalaev, Nonlinear Optics of Random Media : Fractal Composites and Metal-Dielectric Films (Springer, 2000).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Optical camera image and schematic view of Ag gradient sample. (b) Transmittance spectra of Ag gradient sample measured at locations corresponding to different mass.
Fig. 2
Fig. 2 SEM images of Ag gradient sample recorded at locations corresponding to different deposited mass. Gradual nanostructure changes result from the increase of Ag thickness: isolated grains and islands at low thickness, near the percolation threshold at moderate thickness, and finally a continuous metal film with dielectric voids. Scale bar is the same for all images.
Fig. 3
Fig. 3 CIE 1931 Chromaticity diagram showing the colors of a gradient Ag film at different locations. Numbers 1-11 correspond to the spectra presented in Fig. 1, where 1 is the lowest thickness and 11 is the highest thickness of deposited silver.
Fig. 4
Fig. 4 Schematic view of Ag SMF on a SiO2 spacer atop silver mirror.
Fig. 5
Fig. 5 SMF/M samples with different top Ag layer thickness (10 nm, 13.5 nm and 17 nm). Insets present optical images captured using a microscope.
Fig. 6
Fig. 6 Comparison of (a) measured and (b) simulated reflectance and absorption spectra of 10 nm Ag SMF/M and SMF/M overcoated with a 30 nm layer of SiO2.
Fig. 7
Fig. 7 (a) Reflectance measured with linearly polarized light co-polarized with respect to laser polarization. SMF/M photomodified using different exposure time. (b) CIE 1931 Chromaticity diagram of colors of as-deposited overcoated 10 nm SMF/M (initial) and after different time exposure to 800 nm, 80 fs, 1 kHz laser. Inset shows an image captured using a digital camera of part of the spot exposed for 30 minutes.
Fig. 8
Fig. 8 SEM images corresponding to different color regions (yellow (a); red (b); green (c)) of the photomodified spot after being exposed for 30 minutes.
Fig. 9
Fig. 9 Reflectance spectra of overcoated 10 nm Ag SMF/M structure photomodified with different laser fluence measured with linearly polarized light (a) co-polarized and (b) cross-polarized with respect to laser polarization. The inset squares represent the generated color palette recorded using unpolarized light.
Fig. 10
Fig. 10 Optical images of laser printed (a) checkered pattern (red - 30 mJ cm−2; yellow - 150 mJ cm−2) and (b) 150 years of Purdue logo with a “P” letter (100 mJ cm−2) on the SMF/M film.

Metrics