M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref]
[PubMed]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
J. Butet and O. J. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
[Crossref]
[PubMed]
W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]
M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref]
[PubMed]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref]
[PubMed]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref]
[PubMed]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref]
[PubMed]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref]
[PubMed]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref]
[PubMed]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref]
[PubMed]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref]
[PubMed]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref]
[PubMed]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref]
[PubMed]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref]
[PubMed]
M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref]
[PubMed]
Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref]
[PubMed]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref]
[PubMed]
L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref]
[PubMed]
H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]
H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref]
[PubMed]
X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]
[PubMed]
Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref]
[PubMed]
M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]
[PubMed]
X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref]
[PubMed]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref]
[PubMed]
M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref]
[PubMed]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]
E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref]
[PubMed]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]
H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref]
[PubMed]
J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]
R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref]
[PubMed]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref]
[PubMed]
X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]
[PubMed]
L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref]
[PubMed]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref]
[PubMed]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref]
[PubMed]
L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]
T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref]
[PubMed]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref]
[PubMed]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]
J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]
H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref]
[PubMed]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]
H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref]
[PubMed]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref]
[PubMed]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]
X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref]
[PubMed]
M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref]
[PubMed]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref]
[PubMed]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref]
[PubMed]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref]
[PubMed]
H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref]
[PubMed]
N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref]
[PubMed]
X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]
H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref]
[PubMed]
Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]
Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref]
[PubMed]
Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]
T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]
Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref]
[PubMed]
Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref]
[PubMed]
C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]
J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref]
[PubMed]