Abstract

A numerical and theoretical study is presented on the realization of the tunable plasmon-induced transparency (PIT) effect in Dirac semimetal films (DSFs) that are known as “three-dimensional graphene”. The weak hybridization between the two parallel bright modes leads to the novel PIT optical response. The properties of the PIT system can be controlled by adjusting the geometric parameters of the DSF strips. Meanwhile, the resonant frequency of the PIT can be dynamically tuned by varying the Fermi energy of the DSFs instead of refabricating the structures. Correspondingly, by adjusting the Fermi energy of the DSFs, a large group delay of more than 1.86 ps is obtained in the vicinity of the transparency peaks. Such proposed DSFs-based PIT system may open up avenues for tunable terahertz switching, slow-light devices, sensing technology and some other THz devices.

© 2017 Optical Society of America

1. Introduction

Electromagnetically induced transparency (EIT) is a quantum interference effect in atomic system, which can dramatically change optical properties of medium [1]. Although the novel effect has tremendous potential applications,the practical application of EIT is strictly limited by the harsh conditions of preserving quantum state coherence [2] because of the sharp dispersion and violent resonance. Recently, plasmon-induced transparency (PIT), an EIT-like optical effect, based on metamaterial structures including cut wires [3–5], split-ring resonators [6–8], and coupled waveguide resonators [9] has drawn enormous attentions due to its outstanding and wide practical applications, such as sensors [10,11], optical storage [12], polarization conversion [13], and switches [14–16]. In general, there are usually two kinds of schemes to achieve the PIT effect: the bright–bright mode coupling [2, 17–21] and the bright-dark mode coupling [3, 8, 10, 22–25]. The former is based on the frequency detuning and weak hybridization of two bright modes, while the latter is based on the destructive interference between the bright mode and dark mode. For example, Zhang et al. [3] first proposed a specific design for the realization of the EIT-like system based on the near-field coupling between bright and dark modes. Kekatpure et al. [20] proposed the analogue of plasmonic EIT at optical frequency in a system of nanoscale plasmonic resonator antennas based on the phase coupling between bright modes.

However, most of these structures are composed of metallic materials, and the performance of surface plasmon in these metals is constrained because of the difficulties in controlling permittivity functions and the existence of enormous material losses, which will result in a low modulation range. As an alternative method, graphene has drawn great attention among researchers because of its dramatic optical properties including extreme field confinement, low propagation losses, especially the gate-voltage-dependent feature that the Fermi energy (EF) of graphene can be tuned dynamically by using the external electrostatic gating. More recently, a novel state of quantum matter that can be considered as “three–dimensional (3D) graphene”—3D Dirac semimetals that are also called bulk Dirac semimetals, arousing great interests among researchers. Similar to graphene, the permittivity functions of 3D graphene can also be dynamically controlled by adjusting EF. Comparing to graphene, a kind of one-atomic-layer material, 3D Dirac semimetal films (DSFs) are easier to process and more stable. Furthermore, because of the crystalline symmetry protection against gap formation [26–28] in DSFs, the mobility is ultrahigh, reaching 9 × 106 cm2 V−1 s−1 at 5 K [29], which is much higher than that in the best graphene (2 × 105 cm2 V−1 s−1 at 5 K) [30]. These features indicate that the DSFs can be considered as a new class of active plasmonic material and enable plasmonic devices that can be effectively tuned at different frequencies.

In this letter, we propose two parallel-coupled coplanar DSF strips based on the weak hybridization between two bright modes to obtain the PIT effect in the THz region. Both the upper and lower strips could be excited by the incident light individually, and a transparency window can be observed when they are placed together. The resonant frequency and line width can be adjusted actively by varying the Fermi energy of the DSF strips and changing the geometry parameters of the design. Finally, a group delay of more than 1.86 ps is achieved under different Fermi energies in our design. Undoubtedly, such a simple DSFs-based PIT system can be used for tunable THz functional devices, such as THz sensors, modulators, and slow-light devices.

2. Structure and method

A unit cell of the plasmonic metamaterial consisting of two parallel DSF strips with dielectric substrate is illustrated in Fig. 2. The refractive index (RI) of the substrate is considered to be 1.5 and the thickness of DSFs is set as 0.2μm. The size of the unit cell can be described by horizontal and vertical periodicities of  Px=115 μm  and  Py=85 μm, respectively. The incident waves are irradiated along the z direction with Ex polarization. All the 3D Dirac semimetal plasmonic films are numerically investigated by using the time-domain solver of the CST microwave package. The complex conductivity of the Dirac semimetal is adopted from a random-phase approximation theory (RPA) [31]. Accounting to the intraband and interband contributed to the longitudinal, the dynamic conductivity of the Dirac semimetal can be written as:

Reσ(Ω)=e2gkF24πΩG(Ω/2)
Imσ(Ω)=e2gkF24π2[4Ω(1+π23(TEF)2)+8Ω0εc(G(ε)G(Ω2)Ω24ε2)εdε]

where G(E)=n(E)n(E) with n(E) being the Fermi distribution function, EF is the Fermi level, kF=EF/νF is the Fermi momentum, νF=106m/s is the Fermi velocity, ε=E/EF, Ω=ω/EF, εc=Ec/EF, Ec=3 is the cutoff energy, and g is the degeneracy factor. Here, we give the dynamic conductivity of the DSFs, as shown in Fig. 1. The dotted line stands for the real part of the dynamic conductivity, while the solid line stands for the imaginary part. As we can see from Fig. 1 that the real parts of the dynamic conductivities are 0 when ω/EF is less than 2 and step signals are generated at ω/EF=2. As for the imaginary parts, the three curves intersect at one point at  ω/EF=1.23.

 figure: Fig. 1

Fig. 1 Schematic illustration of two parallel DSF strips on a substrate with RI 1.5. The geometric parameters are L2=32 μm,  w=5 μm,d=10 μm.   Here, the literal displacement s and length of the upper strip  L1 are variable.

Download Full Size | PPT Slide | PDF

Correspondingly, using the two-band model and taking into account the interband electronic transitions, the permittivity of the 3D Dirac semimetals can be expressed as:

ε=εb+iσ/ωε0

Where  εb=1 for g=40 (AlCuFe quasicrystals [32]) and σ0 is the permittivity of vacuum. According to the above permittivity equation of Dirac semimetals, values of permittivity under different frequencies could be calculated by Matlab, and import these dispersion values to the characteristics of the new material to accomplish the modeling.

 figure: Fig. 2

Fig. 2 Real and imaginary parts of the dynamic conductivity for DSFs under different Fermi levels in units e2/ as a function of the normalized frequency  ω/EF. The parameters are set as  g=40, and μ=3×104cm2V1S1  (the intrinsic time  τ=4.5×1013s).

Download Full Size | PPT Slide | PDF

3. Results and discussions

To illustrate the PIT effect, we numerically calculate the transmission spectra of the unit cell with two parallel DSF strips (L1=40 μm,L2=32 μm,  s=10 μm), which is indicated by the red line in Fig. 3(a). For comparison, we also calculate the transmission spectra of the parallel structures alone with L1=40 μm  and L2=32 μm  respectively, as indicated by the blue and green line in Fig. 3(a). This implies that each of the two strips with specific geometric parameters has a resonant mode. It can be observed clearly that two transmission dips of the PIT spectrum are close their initial resonant mode. And the transmission peak within two resonant modes of the transmission spectra is activated through the coupling between two parallel DSF strips with unequal lengths. The Fermi energy of 70 meV is unchanged in all simulations for Fig. 3(a).

 figure: Fig. 3

Fig. 3 (a) The PIT spectrum (L1=40 μm, s=10 μm) and simulated transmission spectra of the upper strip with L1=40 μm and lower strip with L2=32 μm.The distribution of z-component of electric field at frequencies of (b) 1.434 THz, (c) 1.536 THz and (d) 1.626 THz corresponding to the PIT spectra.

Download Full Size | PPT Slide | PDF

To get a further insight into the physical mechanism behind PIT effect in the simulated design, the distribution of z-component of electric field corresponding to the two transmission dips (1.434 and 1.626 THz) and transmission peak (1.536 THz) is investigated, as shown in the Fig. 3(b)-3(c), respectively. Two DSF strips can be regarded as optical dipole antennas and strongly excited by the incident light, and the excited optical dipole antennas interact with each other. When frequency is 1.434 THz, only the upper strip is excited strongly by the incident light, while the lower strip is excited weakly, as shown in Fig. 3(b). However, when frequency is 1.626 THz, only the lower strip is excited strongly by the incident light and the upper one is excited very weakly, as shown in Fig. 3(d). As for plasmon resonance at 1.536 THz, we observe that both of the two strips are excited simultaneously owing to the plasmon coupling between the two bright modes, which are similar to quadrupole antennas, as shown in Fig. 3(c).

To get more information about the PIT phenomenon, we numerically study the transmission spectra of the structure with different lateral displacements s (L1=40 μm, EF=70meV), as shown in Fig. 4. From the Fig. 4(a), we can see that a low-energy peak and a high-energy peak are obtained when s = 0. With s increasing, the low-energy peak is broadened, while the high-energy one becomes narrower, and the width of transmission peak becomes smaller and the strength weakens gradually. It is mainly because the gradually weakened hybridization between the two resonant modes with the displacement s increases.

 figure: Fig. 4

Fig. 4 (a) Transmission spectra at various lateral displacement s from 0 to 10 μm, when L1 = 40 um. (b),(c) The distribution of z-component of electric field at frequencies of 1.338 and 1.692 THz, when s = 0, respectively.

Download Full Size | PPT Slide | PDF

The distribution of z-component of electric field corresponding to two transmission dips is investigated as shown in Fig. 4(b), 4(c) at frequencies of 1.527 and 1.626 THz, when s = 0, respectively. From Fig. 4(b), 4(c), it can be clearly found that the low-energy (1.527 THz) mode exhibits an out-phase resonance while the high-energy (1.626 THz) mode exhibits an in-phase resonance, which are analogous to the bonding and the anti-bonding modes in a hybridized-molecular system [33]. Since the phase resonances in two DSF strips are opposite, the bonding mode is similar to the quadrupole mode, so the bandwidth is narrow, which can be clearly found from Fig. 4(a). On the contrary, the phase resonances in two DSF strips are the same and the bandwidth of anti-bonding mode is broad. Meanwhile, the coupling strength between the two DSF strips weakens with the increases in s.

Then, we numerically study the transmission spectrum of the DSF strips with different L1 (s=10 μm, EF=70meV). As shown in Fig. 5, it presents the simulation transmission spectrum for different lengths L1 from  32to44μm with an increment of  4μm It can be clearly found that there is only one dip about the red line when  L1=L2=32 μm, this is because the two strips have same resonant mode and phase. Once the state of equal lengths between the two strips is broken, the initial resonant dip gradually splits into two transmission dips, and then the PIT window appears. Obviously, the high-energy peaks are concentrated upon one point approximately at 1.62 THz, this is because the high-energy resonances are generated by the lower DSF strip whose length is fixed at L2=32 μm  in our works, while the low-energy peak generated by the upper strip has a red shift with L1 increases. Meanwhile, the strength and width of the transmission peaks heighten with the length L1 increases. Compared with the curves of L1=40 and L1=44 μm, we find that two transmission dips are asymmetrical when L1=36 μm, as shown by the green line. It is mainly because the phase and resonant mode of the two strips are very close, and they cannot split well. So, this kind of asymmetry will be more pronounced when L1 is between 32 and 36 μm, and we can also understand like this: when the value of lateral displacement s(s=10 μm) is fixed, as L1 decreases, the distance between the central axis of the two strips decrease, hence, the coupling strength enhances, then a low-energy peak and a high-energy peak appear in the transmission spectra.

 figure: Fig. 5

Fig. 5 Transmission spectrum of the DSF strips with different lengths L1 from 32 to 44 μm with an increment of 4 μm when s=10 μm, EF=70meV.

Download Full Size | PPT Slide | PDF

Since the DSFs are easier to process and more stable than graphene layers, we then numerically study the transmission spectrum at various thicknesses td of the DSF strips from 0.16 to 0.22μm with an increment 0.02μm as shown in Fig. 6(a). It is clear that the transmission spectrum exhibits a blue shift with the increase in td. Simultaneously, as td increases, all of the transmission values of dips gradually increase, while the transmission peaks show a linear decreasing trend. Besides, as mentioned before, the optical properties of the 3D Dirac semimetals can be substantially modified since the conductivity of the material can be changed by varying the Fermi energy. By tuning the Fermi energy, the electron density in DSFs is changed, leading to the change of resonant frequencies of DSFs plasmonic structures. To illustrate the tunability, both the transmission and absorption spectra are investigated under different Fermi energies when s=10 μm, L1=40 μm, as plotted in Fig. 6(b). It is obvious that by a small change in the Fermi energy, the PIT effect can be easily tuned in the THz frequency regime and the resonant frequency is gradually blue-shift with the Fermi energy increases. Also, it is noteworthy that the transmission peak gradually decreases with the Fermi energy increases, while the corresponding absorption resonant peak gradually increases. This method of tunability is different from that used in metal-based systems [34, 35] where platforms with similar structures are investigated and changes are needed in the structures for tuning the transparency window of the EIT-like system. Also, the graphene-based PIT system [36] with similar structures provides and evaluates a tunable method, whereas DSFs have more excellent characteristics than graphene, as described above. Especially, the significant tunability can be achieved by changing the thickness of DSFs, which has been shown in Fig. 6(a).

 figure: Fig. 6

Fig. 6 Transmission spectra (a) at various td with an increment 0.02μm and (b) transmission and absorption spectra under different Fermi energies (L1=40 μm,L2=32 μm,s=10 μm).

Download Full Size | PPT Slide | PDF

EIT response has been approved to have the capability to greatly slow down the speed of light [37, 38] due to the strong dispersion of transmission phase. It implies that the traversing time will be increased when a light pulse passes through the metamaterial structures. The slow-light effect attracts much interest because of its potential applications, such as buffers and light storages, especially for the tunable slow-light devices. The PIT phenomena demonstrated in Dirac semimetals plasmonics in our design offers a capability for electrical tuning. In our paper, dephasing times (ps) for the transmission resonant modes with different Fermi energies are quantified accounting to [39]. Corresponding values of about 8.69, 8.73 and 7.69 ps are obtained respectively. Simultaneously, Fig. 7 gives the transmission phase (°) and the corresponding group delay (ps) under different Fermi energies of DSFs. Group delay tg is calculated by tg=dφ(ω)dω, ω=2πf [40], where  ω  is the angular frequency and φ(ω) is the transmission phase. Positive and negative group delays correspond to slow and fast light, respectively. As shown in Fig. 7(b), large positive group delays indicating slow light of more than 1.86 ps under different Fermi energies in the vicinity of the PIT transparency peak are obtained. Moreover, we can achieve the capability of tuning on and off the group delay by changing the Fermi energy.

 figure: Fig. 7

Fig. 7 (a) Transmission phase (°) under different Fermi energies of DSFs, (b) group delay (ps) under different Fermi energies of DSFs

Download Full Size | PPT Slide | PDF

4. Conclusion

In this work, we have successfully proposed that the PIT effect can be realized in DSFs known as “3D graphene” through bright-bright modes coupling in the THz regimes. Two parallel DSF strips couple with each other and the PIT window appears due to the weak hybridization. The properties of PIT system can be influenced by varying the lateral displacement between the two DSF strips and the length of the upper strip. In particular, the PIT window can be dynamically tuned by adjusting the Fermi energy of the DSFs, instead of refabricating the structures. At last, group delays under different Fermi energies are calculated in our proposed structure. All these features may find use in switches, sensors, and slow-light devices in the THz frequency regime.

Funding

Natural Science Foundation of Shandong Province, China (Grant No. ZR2016FM09, ZR2016FM32);National Natural Science Foundation of China (Grant No. 61775123); The Qingdao city innovative leading talent plan (13-CX-25).

References and links

1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]  

2. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009). [CrossRef]  

3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]   [PubMed]  

4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]   [PubMed]  

5. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012). [CrossRef]  

6. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012). [CrossRef]   [PubMed]  

7. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011). [CrossRef]   [PubMed]  

8. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012). [CrossRef]  

9. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012). [CrossRef]   [PubMed]  

10. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]   [PubMed]  

11. Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010). [CrossRef]  

12. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001). [CrossRef]   [PubMed]  

13. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012). [CrossRef]  

14. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011). [CrossRef]   [PubMed]  

15. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000). [CrossRef]  

16. J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015). [CrossRef]  

17. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015). [CrossRef]   [PubMed]  

18. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011). [CrossRef]   [PubMed]  

19. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef]   [PubMed]  

20. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef]   [PubMed]  

21. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009). [CrossRef]   [PubMed]  

22. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012). [CrossRef]   [PubMed]  

23. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef]   [PubMed]  

24. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010). [CrossRef]   [PubMed]  

25. G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013). [CrossRef]   [PubMed]  

26. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011). [CrossRef]  

27. C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012). [CrossRef]   [PubMed]  

28. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012). [CrossRef]   [PubMed]  

29. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014). [CrossRef]   [PubMed]  

30. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008). [CrossRef]  

31. O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016). [CrossRef]  

32. T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013). [CrossRef]  

33. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef]   [PubMed]  

34. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011). [CrossRef]   [PubMed]  

35. X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014). [CrossRef]  

36. G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016). [CrossRef]  

37. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]  

38. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009). [CrossRef]   [PubMed]  

39. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016). [CrossRef]   [PubMed]  

40. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015). [CrossRef]  

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  2. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [Crossref]
  3. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  5. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
    [Crossref]
  6. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  7. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  8. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
    [Crossref]
  9. H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
    [Crossref] [PubMed]
  10. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  11. Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
    [Crossref]
  12. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
    [Crossref] [PubMed]
  13. A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
    [Crossref]
  14. J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
    [Crossref] [PubMed]
  15. H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
    [Crossref]
  16. J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
    [Crossref]
  17. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
    [Crossref] [PubMed]
  18. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  19. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  20. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref] [PubMed]
  21. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [Crossref] [PubMed]
  22. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  23. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
    [Crossref] [PubMed]
  24. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
    [Crossref] [PubMed]
  25. G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
    [Crossref] [PubMed]
  26. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
    [Crossref]
  27. C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
    [Crossref] [PubMed]
  28. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
    [Crossref] [PubMed]
  29. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
    [Crossref] [PubMed]
  30. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
    [Crossref]
  31. O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  32. T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
    [Crossref]
  33. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [Crossref] [PubMed]
  34. X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
    [Crossref] [PubMed]
  35. X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
    [Crossref]
  36. G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
    [Crossref]
  37. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  38. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
    [Crossref] [PubMed]
  39. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
    [Crossref] [PubMed]
  40. J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
    [Crossref]

2016 (3)

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
[Crossref] [PubMed]

2015 (3)

J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

2014 (2)

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

2013 (2)

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

2012 (8)

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (5)

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

2009 (4)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

2008 (3)

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

2000 (1)

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Ahmadivand, A.

Ali, M. N.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Arnaut, L. R.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Basov, D. N.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bernevig, B. A.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Bolotin, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cao, G.

Cao, J.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Carbotte, J. P.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Cava, R. J.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Chen, C.

Chen, C. Y.

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, J.

Chen, S.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Cheng, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Cheong, H. S.

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Dai, X.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Ding, P.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Dong, Z.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Dong, Z. G.

Duan, X.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fan, C.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Fang, C.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, G. L.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Fudenberg, G.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Geng, Z.

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Gerislioglu, B.

Gibson, Q.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gilbert, M. J.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Gong, Q.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

Gu, C.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, J.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

He, M.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

He, X.

J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

He, Z.

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Homes, C. C.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Hone, J.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Hu, X.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

Huang, R.

Jang, W. H.

Jeppesen, C.

Jiang, J.

J. Jiang, Q. Zhang, Q. Ma, S. Yan, F. Wu, and X. He, “Dynamically tunable electromagnetically induced reflection in terahertz complementary graphene metamaterials,” Opt. Mater. Express 5(9), 1962–1971 (2015).
[Crossref]

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Jiang, Z.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Jin, X. R.

Kane, C. L.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Karabiyik, M.

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Kim, K. W.

Kim, P.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Klima, M.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Kotov, O. V.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Kristensen, A.

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lee, S.

Lee, Y.

Li, H.

Li, H.-J.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Li, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Li, T.

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Li, Z.

Liang, E.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Liang, T.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Liu, H.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

Liu, M.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, W.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Liu, Z.

Lozovik, Y. E.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lu, H.

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Lu, Y.

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Ma, Q.

Ma, Y.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Mele, E. J.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ming, H.

Mortensen, N. A.

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Ong, N. P.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Pala, N.

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Park, J.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Ram, R. J.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[Crossref]

Rappe, A. M.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Rhee, J. Y.

Savrasov, S. Y.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Schmidt, H.

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[Crossref]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Sharapov, S. G.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Shur, M.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Sikes, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Sinha, R.

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Stormer, H.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Tai, N. H.

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Teo, J. C. Y.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Tian, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Tian, X.

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Timusk, T.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Turner, A. M.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Un, I. W.

Vishwanath, A.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Wan, X.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Wang, G.

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Wang, J.

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Wang, L.

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Wang, L.-L.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Wang, P.

Wang, Q.

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

Wang, S.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Wang, S. M.

Wang, Y.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wu, C.

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Wu, F.

Xia, S.-X.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Xiao, S.

Xu, H.

Xu, M. X.

Yan, S.

Yang, H.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

Yen, T. J.

Young, S. M.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Zaheer, S.

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Zhai, X.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Zhan, Q.

Zhan, S.

Zhang, J.

Zhang, Q.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, T.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Zhang, W.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zheng, H.

Zhu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Zhu, S.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Zhu, S. N.

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101(14), 143105 (2012).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and T. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

H. Schmidt and R. J. Ram, “All-optical wavelength converter and switch based on electromagnetically induced transparency,” Appl. Phys. Lett. 76(22), 3173–3175 (2000).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. He, T. Li, L. Wang, J. Wang, X. Tian, J. Jiang, and Z. Geng, “Electromagnetically induced transparency and slow light in a simple complementary metamaterial constructed by two bright slot-structures,” Appl. Phys., A Mater. Sci. Process. 116(2), 799–804 (2014).
[Crossref]

Nano Lett. (2)

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

H. Lu, X. Liu, G. Wang, and D. Mao, “Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency,” Nanotechnology 23(44), 444003 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2014).
[Crossref] [PubMed]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Commun. (1)

A. B. Khanikaev, S. H. Mousavi, C. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun. 285(16), 3423–3427 (2012).
[Crossref]

Opt. Express (8)

J. Chen, P. Wang, C. Chen, Y. Lu, H. Ming, and Q. Zhan, “Plasmonic EIT-like switching in bright-dark-bright plasmon resonators,” Opt. Express 19(7), 5970–5978 (2011).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010).
[Crossref] [PubMed]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010).
[Crossref] [PubMed]

G. Cao, H. Li, S. Zhan, H. Xu, Z. Liu, Z. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

X. R. Jin, J. Park, H. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19(22), 21652–21657 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (3)

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B 87(23), 235121 (2013).
[Crossref]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B 83(20), 205101 (2011).
[Crossref]

Phys. Rev. Lett. (7)

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103(3), 033003 (2009).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Plasmonics (2)

J. He, Q. Wang, P. Ding, C. Fan, L. R. Arnaut, and E. Liang, “Optical switching based on polarization tunable plasmon-induced transparency in Disk/Rod hybrid metasurfaces,” Plasmonics 10(5), 1115–1121 (2015).
[Crossref]

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Sci. Rep. (1)

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4(1), 3752 (2015).
[Crossref] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref] [PubMed]

Solid State Commun. (1)

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9), 351–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of two parallel DSF strips on a substrate with RI 1.5. The geometric parameters are L 2 =32 μm,  w=5 μm,d=10 μm.   Here, the literal displacement s and length of the upper strip  L 1 are variable.
Fig. 2
Fig. 2 Real and imaginary parts of the dynamic conductivity for DSFs under different Fermi levels in units e 2 / as a function of the normalized frequency  ω/ E F . The parameters are set as  g=40, and μ=3× 10 4 cm 2 V 1 S 1   (the intrinsic time  τ=4.5× 10 13 s).
Fig. 3
Fig. 3 (a) The PIT spectrum ( L 1 =40 μm, s=10 μm) and simulated transmission spectra of the upper strip with L 1 =40 μm and lower strip with L 2 =32 μm.The distribution of z-component of electric field at frequencies of (b) 1.434 THz, (c) 1.536 THz and (d) 1.626 THz corresponding to the PIT spectra.
Fig. 4
Fig. 4 (a) Transmission spectra at various lateral displacement s from 0 to 10 μm, when L1 = 40 um. (b),(c) The distribution of z-component of electric field at frequencies of 1.338 and 1.692 THz, when s = 0, respectively.
Fig. 5
Fig. 5 Transmission spectrum of the DSF strips with different lengths L 1 from 32 to 44 μm with an increment of 4 μm when s=10 μm,  E F =70 meV.
Fig. 6
Fig. 6 Transmission spectra (a) at various td with an increment 0.02 μm and (b) transmission and absorption spectra under different Fermi energies ( L 1 =40 μm, L 2 =32 μm,s=10 μm).
Fig. 7
Fig. 7 (a) Transmission phase (°) under different Fermi energies of DSFs, (b) group delay (ps) under different Fermi energies of DSFs

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Reσ(Ω) = e 2 g k F 24π ΩG(Ω/2)
Imσ(Ω) = e 2 g k F 24 π 2 [ 4 Ω ( 1+ π 2 3 ( T E F ) 2 ) +8Ω 0 ε c ( G(ε)G(Ω2) Ω 2 4 ε 2 ) εdε ]
ε= ε b +iσ/ω ε 0

Metrics