Abstract

K+–Na+ ion-exchanged channel waveguide has been fabricated in Nd3+ doped aluminum germanate (NMAG) glasses with potential photosensitive property. The channel waveguide exhibits single mode at 1.3μm and the mode field diameters were measured to be horizontally 10.1μm and vertically 5.3μm, respectively. Amplified spontaneous emissions (ASE) of 905, 1060, 1334 and 1816nm originating from the 4F3/2 level were recorded under ~800nm diode laser pumping and the maximum stimulated emission cross-sections for the 4F3/24I11/2 and 4F3/24I13/2 transitions are derived to be 21.5 × 10−21 and 7.6 × 10−21cm2, respectively. In addition, with 71.8% quantum efficiency and the largest emission intensity among various Nd3+ doping cases, 2wt% Nd2O3 is considered as the optimized doping concentration for the compact channel waveguide. The ion-exchanged Nd3+-doped NMAG glass channel waveguides offer favorable prospects for the development of optical waveguide amplifiers, broadband light sources and infrared UV-written grating waveguide lasers.

© 2014 Optical Society of America

1. Introduction

Neodymium ions doped glasses for active optical devices have been extensively studied for various applications such as optical amplifiers, laser designators and medical laser treatment [1–16]. The Nd3+ emitting at 1.06μm originates from a four level scheme with fast multi-phonon decays populating the upper levels and depleting the lower laser levels, which is considered to possess a lower laser threshold and a higher efficiency than Yb3+ with quasi-three-level behavior in several hosts [17, 18]. As a disordered media, Nd3+ doped glass material offers a wider gain bandwidth, which makes it more suitable for the development of tunable lasers and high power lasers [19–21]. On the other hand the Nd3+ transition emission at 1.3μm coincides with the second telecommunication window with low dispersion properties in modern optical communications, and it is possible to obtain efficient 1.3μm emission even in the glass systems with medium-high phonon energy due to the wider energy gap to the next lower level (5500cm−1) for the 4F3/2 level of Nd3+. Therefore, compared to the rare earth ions Pr3+, Dy3+ and Ho3+ with small energy gaps for the emitting levels, the practical optical amplifier for the O-band communication window can be realized using Nd3+ ions owing to less influence of multi-phonon relaxations [22–32]. Thus Nd3+ doped glass materials exhibit promising potential for the application in infrared lasers and optical amplifiers.

Optical waveguides in Nd3+-doped glasses have unique properties for the development of compact and efficient laser devices. The waveguide geometry confines the excitation and transmission of the pumping laser, which provides higher optical gains and lower lasing thresholds than those in bulk materials [33]. To produce high-quality optical waveguides in glass substrates, several techniques have been developed, such as ion exchange, laser writing, and ion implantation [34–37]. Among these methods the thermal ion exchange process is considered as the most convenient one and low loss K+–Na+ ion-exchanged channel waveguides have been demonstrated. This technique has been successfully employed in the fabrication of Nd3+ doped phosphate and silicate glass waveguides, and high power lasers have been reported in these works [38, 39]. However an apparent lack of efficient photosensitivity arises in these glasses and the development of UV written grating on the ion-exchanged channel waveguide for integrated photonic devices is limited. Therefore, it is highly appreciated to make an effort in fabricating Nd3+ doped channel waveguide on a high photosensitive glass substrate.

In our previous work, high-quality acid-resistant aluminum germanate (NMAG) glasses with 53 mol % GeO2 which can contribute to the precise control of refractive index change [40, 41] have been successfully employed in making Er3+ and Tm3+ doped ion-exchanged waveguides [42, 43]. In this work, Nd3+-doped ion-exchanged NMAG glass waveguides were prepared and evaluated for laser and optical amplifier application. Potential combination of the ion-exchanged waveguides and UV-direct writing gratings will give rise to attractive photonic devices such as O-band waveguide amplifiers, broadband light sources and infrared UV-written grating waveguide lasers.

2. Experiments

Nd3+-doped NMAG glasses were prepared from high-purity Na2CO3, MgO, Al2O3, GeO2, and Nd2O3 powders according to the host molar composition 23Na2O-2MgO-22Al2O3-53GeO2, and 0.1, 1, 2, 3 and 4wt% Nd2O3 based on the host weights for low- and high-concentration doping cases are adopted. The glasses were melted in pure alumina crucibles at 1550°C for 6 hours and poured onto a preheated aluminum mold to quench to room temperature. Afterward, the samples were annealed at 550°C for 2 h, and then allowed to cool slowly. For optical measurements, the glass samples were sliced into pieces and polished with two parallel sides. The density of the 2wt% Nd2O3 doped NMAG glasses was measured to be 3.227g⋅cm−3 by Archimedes method, and the number density of Nd3+ ions was calculated to be 2.265 × 1020 cm−3. Using a Metricon 2010 prism coupler, the refractive indices of the 2wt% Nd2O3 doping sample were measured to be 1.5901 and 1.5736 at 632.8 and 1536nm, respectively. The refractive indices of the sample at all other wavelengths can be calculated by Cauchy’s equation n=A+B/λ2 with A = 1.5702 and B = 7958nm2. Absorption spectrum of the glass sample was recorded with a Perkin-Elmer UV/visible/near-infrared Lambda 19 double-beam spectrophotometer, and near infrared (NIR) fluorescence spectra (emission and excitation) was determined by a Jobin Yvon Fluorolog-3 spectrophotometer equipped with a NIR PMT detector and a commercial CW Xe-lamp as excitation source. Fluorescence decay curves were recorded under the same setup using a flash Xe-lamp. The luminescence pictures were taken using a Sony SLT-α33 digital camera.

Before preparing the K+–Na+ ion-exchanged channel waveguide, Nd2O3 doped NMAG glass substrate was optically polished and cleaned. A ~150nm-thick high-quality aluminum film was deposited on the glass surface using an Edwards Auto 306 thermal evaporator, and then the channels were opened by a standard micro-fabrication process adopting 8μm wide channel mask. The ion-exchange process for the channel waveguide was performed in pure KNO3 molten bath at 390°C for 8 hours. After cooling down to room temperature, the aluminum film was removed and two end-faces of the waveguide were polished for further optical measurement. The surfaces of the ion-exchanged channel waveguide were investigated using an atomic force microscope (AFM). Laser light at 1.3μm wavelength was coupled into the ion-exchanged waveguide, and the near-field image at the output facets was obtained using a video camera. The optical spectrum measurement of the Nd3+-doped NMAG glass waveguide was carried out when ~800nm diode laser (maximum optical power output: ~120 mW) was coupled into the waveguide channel and the output light from the end-facet was collected by a single-mode fiber connected to YOKOGAMA AQ6375 optical spectrum analyzer (OSA).

3. Results and discussion

Figure 1 shows the absorption spectrum of 2wt% Nd2O3 doped NMAG glass. The absorption spectrum presents eleven inhomogeneously broadened absorption bands due to the f−f electronic transitions of Nd3+ ions. All the absorption bands have been assigned according to their peak energies as illustrated in the figure. An prominent broadband absorption peak locating at 805nm due to the transition from the ground state 4I9/2 to the excited state 2H9/2 + 4F5/2 has been observed and the maximum absorption cross-section σabs for the transition has been calculated to be 1.98 × 10−20cm2, which could lead to an efficient energy capture. Therefore commercial ~800nm diode lasers can be adopted as suitable pumping sources for the intense 4F3/24I11/2 and 4F3/24I13/2 emissions as depicted as the inset of Fig. 1.

 figure: Fig. 1

Fig. 1 Absorption spectrum of 2wt% Nd2O3 doped NMAG glasses. Inset: Energy level diagram of Nd3+ in NMAG glasses.

Download Full Size | PPT Slide | PDF

The Judd-Ofelt (J-O) theory has been widely used to calculate the oscillator strength for transitions from ground level to the excited states for RE ions implanted in different host. Based on the absorption spectrum, J-O intensity parameters Ωt can be derived from the electric-dipole contributions of the experimental oscillator strengths by a least-square fitting approach [44, 45]. From these parameters Ωt, several important optical properties, i.e., the radiative transition probability, the oscillator strength, the branching ratio, and the spontaneous emission probability can be evaluated. The matrix elements given in Ref [46]. are used in the calculation. The experimental oscillator strength contains both the electric-dipole and the magnetic-dipole contributions, thus one has to subtract the latter from the experimental oscillator strength in order to obtain the electric-dipole contribution. The magnetic-dipole contribution, Pmd, can be obtained from the refractive index n of the glasses and the quantity P′ using the formula Pmd=nP as reported in Ref [47].

The measured and calculated oscillator strengths of Nd3+ in NMAG glasses and the Ωt parameters in various Nd3+-doped glasses are listed in Table 1 and 2, respectively. The root-mean-square deviation δrms is 4.4 × 10−7, indicating that the deriving process is reliable. Using Ωt parameters, the electric-dipole spontaneous emission probabilities (Aed) were calculated and the magnetic-dipole spontaneous emission probabilities (Amd) were obtained according to Ref [48–50]. Thereafter the branching ratios (β) and the lifetime (τ) of the transition emissions from the 4F3/2 level were derived and listed in Table 3. As well known, the intensity parameter Ω2 has been identified to be associated with the asymmetry and the covalency of the lanthanide sites, and Ω4 and Ω6 are related to the rigidity of the samples [51]. The comparison of the Ω2, Ω4 and Ω6 to those of other glasses has been listed in Table 2 [52–58]. Ω2 in NMAG glasses was larger than those of MgF2-BaF2-Al(PO3)3-Ba(PO3)2-2wt%Nd2O3, TeO2-ZnO-Na2O-Li2O-Nb2O5-1mol%Nd2O3, TeO2-ZnO-1mol%Nd2O3, SiO2-Al2O3-CaO-NaF-CaF2-2mol%NdF3, SiO2-Na2CO3-PbO-ZnO-1.9wt%Nd2O3 and ZnO-B2O3-1mol%Nd2O3 glasses, and close to the value in P2O5-Na2O-K2O-2mol%Nd2O3 glasses, showing a high inversion asymmetry and strong covalent environment around Nd3+ ions. The spectroscopic quality R = Ω46 in NMAG glass system was demonstrated to be larger than the values in TeO2-ZnO-Na2O-Li2O-Nb2O5-1mol%Nd2O3, P2O5-Na2O-K2O-2mol%Nd2O3 and ZnO-B2O3-1mol%Nd2O3 glasses, and smaller than those of MgF2-BaF2-Al(PO3)3-Ba(PO3)2-2wt%Nd2O3, SiO2-Al2O3-CaO-NaF-CaF2-2mol%NdF3 and TeO2-ZnO-1mol%Nd2O3 glasses.

Tables Icon

Table 1. Measured and calculated oscillator strengths of Nd3+ in NMAG glasses.

Tables Icon

Table 2. Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) of Nd3+ in various glasses.

Tables Icon

Table 3. Predicted spontaneous emission probabilities, branching ratios and radiative lifetime of Nd3+ in NMAG glasses.

Figure 2(a) shows the infrared emissions from 2wt% Nd2O3 doped NMAG glasses under 808nm excitation. The intense 1.065 and 1.337μm emissions are attributed to the 4F3/24I11/2 and 4F3/24I13/2 transitions and their full-width at half-maximum (FWHM) are calculated to be ~45nm and ~57nm, respectively. The inset of Fig. 2(a) depicts the variation of emission intensities with different Nd2O3 concentrations in NMAG glasses. It is obvious that the glass with 2wt% Nd2O3 possesses the maximum intensity for the 1.065 and 1.337μm emissions among these samples and the fluorescence intensity decreases with further increase in the Nd3+ ion concentration. The decrease of the fluorescence intensity at high concentrations can be attributed to Nd3+ self-quenching caused by cross-relaxation processes involving the de-population of emitting 4F3/2 level via the transitions [4F3/2, 4I9/2]→[4I15/2, 4I15/2] and [4F3/2, 4I9/2] → [4I13/2, 4I15/2] [59].

 figure: Fig. 2

Fig. 2 (a) Emissions at the 1.065 and 1.337μm wavelengths in 2wt% Nd2O3 doped NMAG glasses. Inset: Relative emission intensities of different Nd2O3 doping concentration cases. (b) Stimulated emission cross-section profiles for 4F3/24I11/2 and 4F3/24I13/2 transitions in 2wt% Nd2O3 doped NMAG glasses. (c) Excitation spectrum for 1.065μm emission of 2wt% Nd2O3 doped NMAG glasses. (d) Fluorescence decay curve for the 4F3/2 level in 0.1wt% Nd2O3-doped NMAG glasses.

Download Full Size | PPT Slide | PDF

Figure 2(b) shows The emission cross-section profile σem of 2wt% Nd2O3 doped NMAG glasses, which is evaluated from the experimental luminescence spectrum by the Füchtbauer-Ladenburg formula [60, 61]:

σem=Aij8πcn2×λ5I(λ)λI(λ)dλ,
where n is the refractive index, Aij = (Aed + Amd) is the spontaneous emission probability and I(λ) represents the fluorescence spectrum. The maximum emission cross-sections for 4F3/24I11/2 and 4F3/24I13/2 transitions are calculated to be 21.5 × 10−21cm2 and 7.6 × 10−21cm2, respectively. Figure 2(c) shows the excitation spectrum of 1.065 μm emission in 2wt% Nd2O3 doped NMAG glasses. The excitation spectrum is consisted of nine excitation bands that are due to the 4f inner shell transitions peaking at 355, 430, 473, 525, 587, 683, 746, 805 and 872nm, respectively. From the excitation spectrum, ~800nm lasers are the most efficient pumping sources for the NIR emissions in Nd3+-doped NMAG glasses.

Figure 2(d) and Fig. 3 show the fluorescence decay profiles for 4F3/24I11/2 transition emissions in Nd3+ ions doped NMAG glasses with different concentrations. The decay curve is approximately single-exponential for 0.1wt% concentration doping case, and non-exponential for high concentration doping conditions because of the donor (excited ion)−acceptor (ion in ground state) energy transfer through cross-relaxation as mentioned above. The experimental lifetimes of the fluorescent 4F3/2 level for all different concentration cases have been determined by finding the average time using the following formula:

τ=0tI(t)dt0I(t)dt,
where I(t) is the emission intensity at time t. The results are listed in Table 4 and it should be noted that the fluorescence decay time significantly decreases with increasing the Nd3+ ion concentration in NMAG glasses. This decrease in fluorescence decay time as a function of Nd3+ concentration is due to the energy transfer via cross relaxation processes which have negative influence on the luminescence quantum efficiency of Nd3+ in NMAG glasses. Based on the experimental lifetimes the quantum efficiency ηq for 4F3/2 level can be obtained by:
ηq=τexpτrad,
where τexp is the experimentally measured lifetime and τrad is the calculated radiative lifetime. The quantum efficiencies for the 4F3/2 level of Nd3+ in different doping cases are derived to 98.9%, 84.3%, 71.8%, 55.5% and 42.5%, respectively, which confirms that further increase in Nd3+ ion concentration can adversely affect the luminescence quantum efficiency in NMAG glasses.

 figure: Fig. 3

Fig. 3 Fluorescence decay curves of the 4F3/2 level for 1wt% (a), 2wt% (b), 3wt% (c), and 4wt% (d) Nd2O3-doped NMAG glasses.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 4. Fluorescence lifetimes, quantum efficiencies, and cross-relaxation rates of Nd3+ in NMAG glasses

On the other hand the measured lifetime (τexp) can be expressed as [62]:

1/τexp=1/τrad+WMPR+WCR,
where WMPR is the multiphonon relaxation (MPR) rate, and WCR is the cross relaxation rate in the processes [4F3/2, 4I9/2]→[4I15/2, 4I15/2] and [4F3/2, 4I9/2]→[4I13/2, 4I15/2]. As there is a large energy gap of around 5500cm−1 between the 4F3/2 level and the next lower level and it requires at least 6 intrinsic phonons to bridge the interval in the nonradiative relaxation process, the multiphonon relaxation rate WMPR can be negligible. Thus for different concentration doping cases the cross relaxation rate WCR can be calculated by WCR=1/τexp1/τrad and the results are listed in Table 4. Although the quantum efficiency for 4F3/2 level of Nd3+ in 2wt% Nd2O3 doped NMAG glasses is lower than the values in 0.1 and 1wt% doping samples, and the WCR is higher than those in lower concentration doping cases, the selection of medium-high concentration of Nd3+ in NMAG glasses for compact ion-exchanged channel waveguide is necessary in achieving efficient fluorescence. Therefore considering both the quantum efficiency and the active waveguide performance, 2wt% Nd2O3 doped NMAG is suggested in the development of channel waveguide amplifier, broadband light source and waveguide lasers.

Figure 4(a) shows a photo of the 2wt% Nd2O3 doped NMAG glass, which presents transparent violet color and homogeneity. A thermal K+−Na+ ion-exchange process at 390 °C for 8 hours was conducted to fabricate optical slab waveguide in Nd3+-doped NMAG glasses. The refractive index as a function of the diffusion depth at 632.8nm is presented in Fig. 4(b), which was obtained from the measured mode indices using an inverse Wentzel−Kramer−Brillouin (IWKB) method [63]. The surface refractive index of the waveguide n0 was calculated to be 1.5971, and the maximum refractive index change Δn = n0−nsub was calculated to be 0.0070. Figures 4(c) and 4(d) depict typical measurement results of the slab waveguide, of which the peaks represent the detected modes of the waveguide. Here, two modes were demonstrated at 632.8nm wavelength, and one mode at 1536nm, respectively, showing that it is feasible to fabricate a monomode waveguide in the wavelength of 1000−1800nm on NMAG glasses by adjusting the ion exchange time.

 figure: Fig. 4

Fig. 4 (a) Photograph of 2wt% Nd2O3 doped NMAG glasses under nature light. (b) Index profile at 632.8nm of slab waveguide by ion exchange at 390°C for 8 hours. (c) Prism coupler result measured at 632.8nm. (d) Prism coupler result measured at 1536nm.

Download Full Size | PPT Slide | PDF

According to the slab waveguide parameters, the same ion-exchanged condition was adopted to achieve single-mode channel waveguide. Figure 5(a) shows a bright green trace when a 532 nm laser is coupled into the ion-exchanged channel waveguide. An AFM image of the channel surface section is presented in Fig. 5(b), showing the dent caused by the thermal ion-exchange process, which confirms that the K+−Na+ ion-exchanged channel waveguide has been fabricated in Nd3+-doped NMAG glasses. The near-field image at the output facets were examined using a video camera when 1.3μm laser was coupled into the ion-exchanged channel waveguide. Figure 5(c) and 5(d) show the mode profile of the channel waveguide, indicating that it is single mode at 1.3 μm. The measured mode field diameter was 10.5 μm inthe horizontal direction, and 5.8 μm in the vertical direction, which implies an excellent overlap with that of a standard single-mode fiber. The propagation loss of the channel waveguide is measured to be 0.36dB/cm using cutback method. Figure 6(a) and 6(b) show the NIR ASE emission from 2 wt.% Nd3+-doped NMAG glass ion-exchanged waveguide under ~800 nm laser excitation with a standard 9/125-μm optical fiber. The emission spectra exhibit four transition emissions that originated from 4F3/2 level and found at 905, 1060, 1334, and 1816 nm, respectively. All these emission intensities can be further enhanced by increasing the pump power. The NIR fluorescence demonstrates that the Nd3+-doped NMAG glass ion-exchanged channel waveguides have promising potential for the development of optical amplifiers, broadband light sources, and tunable lasers.

 figure: Fig. 5

Fig. 5 (a) Photograph of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide with 532nm laser transmission. (b) AFM image of the channel section. (c) Near-field image of the channel waveguide at 1.3μm. (d) A 3D representation of the near-field mode pattern.

Download Full Size | PPT Slide | PDF

 figure: Fig. 6

Fig. 6 OSA spectra (a) and (b) recorded from the output end facet of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide under the excitation of ~800 nm wavelength laser pumping.

Download Full Size | PPT Slide | PDF

4. Conclusions

K+–Na+ ion-exchanged channel waveguide was fabricated in Nd3+-doped NMAG glasses. The fabricated waveguide exhibits single mode at 1.3 µm with 10.5 µm in the horizontal direction and 5.8 μm in the vertical direction, respectively. ASE Emissions of 905, 1060, 1334, and 1816 nm were obtained, and the maximum stimulated emission cross-sections for 4F3/24I11/2 and 4F3/24I13/2 transitions were 21.5 × 10−21 and 7.6 × 10−21 cm2, respectively. These results indicate that the ion-exchanged Nd3+-doped NMAG glass waveguides show potential in the development of O-band waveguide amplifiers, IR UV-writing grating waveguide lasers, and compact integrated optical devices.

Acknowledgments

The research work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 119708) and the National Natural Science Foundation of China (61275057).

References and links

1. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994). [CrossRef]   [PubMed]  

2. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009). [CrossRef]   [PubMed]  

3. X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, “Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/24I9/2 of Nd3+ ions,” Opt. Mater. Express 4(3), 458–463 (2014). [CrossRef]  

4. S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4-mum amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25(11), 817–819 (2000). [CrossRef]   [PubMed]  

5. Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012). [CrossRef]   [PubMed]  

6. R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001). [CrossRef]  

7. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16(16), 11894–11906 (2008). [CrossRef]   [PubMed]  

8. F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002). [CrossRef]  

9. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000). [CrossRef]  

10. C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012). [CrossRef]  

11. M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011). [CrossRef]   [PubMed]  

12. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007). [CrossRef]   [PubMed]  

13. I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011). [PubMed]  

14. S. L. Li, P. G. Han, M. Shi, Y. C. Yao, B. Hu, M. W. Wang, and X. N. Zhu, “Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing,” Opt. Express 19(24), 23958–23964 (2011). [CrossRef]   [PubMed]  

15. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002). [CrossRef]  

16. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998). [CrossRef]  

17. J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010). [CrossRef]  

18. R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/24I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999). [CrossRef]  

19. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012). [CrossRef]  

20. T. Suzuki, H. Kawai, H. Nasu, S. Mizuno, H. Ito, K. Hasegawa, and Y. Ohishi, “Spectroscopic investigation of Nd3+-doped ZBLAN glass for solar-pumped lasers,” J. Opt. Soc. Am. B 28(8), 2001–2006 (2011). [CrossRef]  

21. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009). [CrossRef]   [PubMed]  

22. A. R. Molla, A. Tarafder, S. Mukherjee, and B. Karmakar, “Transparent Nd3+ doped bismuth titanate glass- ceramic nanocomposites: Fabrication and properties,” Opt. Mater. Express 4(4), 843–863 (2014). [CrossRef]  

23. B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014). [CrossRef]   [PubMed]  

24. M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000). [CrossRef]  

25. U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013). [CrossRef]  

26. E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011). [CrossRef]  

27. L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012). [CrossRef]   [PubMed]  

28. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

29. A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013). [CrossRef]   [PubMed]  

30. K. S. Zou, H. T. Guo, M. Lu, W. N. Li, C. Q. Hou, W. Wei, J. F. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009). [CrossRef]   [PubMed]  

31. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010). [CrossRef]  

32. M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013). [CrossRef]  

33. Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012). [CrossRef]   [PubMed]  

34. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999). [CrossRef]  

35. S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998). [CrossRef]  

36. A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005). [CrossRef]  

37. A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006). [CrossRef]  

38. B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011). [CrossRef]   [PubMed]  

39. C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999). [CrossRef]  

40. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992). [CrossRef]   [PubMed]  

41. D. P. Hand and P. St. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102 (1990). [CrossRef]   [PubMed]  

42. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009). [CrossRef]  

43. D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009). [CrossRef]  

44. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]  

45. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]  

46. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968). [CrossRef]  

47. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968). [CrossRef]  

48. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory, Argonne Illinois (1977).

49. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006). [CrossRef]  

50. C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996). [CrossRef]  

51. C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983). [CrossRef]  

52. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005). [CrossRef]  

53. S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

54. D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007). [CrossRef]  

55. E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006). [CrossRef]  

56. K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007). [CrossRef]   [PubMed]  

57. G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996). [CrossRef]  

58. G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009). [CrossRef]  

59. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991). [CrossRef]  

60. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003). [CrossRef]  

61. J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005). [CrossRef]  

62. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+ and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001). [CrossRef]  

63. S. I. Najafi, Introduction to glass integrated optics (Artech House, 1992).

References

  • View by:

  1. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
    [Crossref] [PubMed]
  2. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
    [Crossref] [PubMed]
  3. X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, “Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/2→4I9/2 of Nd3+ ions,” Opt. Mater. Express 4(3), 458–463 (2014).
    [Crossref]
  4. S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4-mum amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25(11), 817–819 (2000).
    [Crossref] [PubMed]
  5. Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
    [Crossref] [PubMed]
  6. R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
    [Crossref]
  7. J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16(16), 11894–11906 (2008).
    [Crossref] [PubMed]
  8. F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
    [Crossref]
  9. J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
    [Crossref]
  10. C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
    [Crossref]
  11. M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
    [Crossref] [PubMed]
  12. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
    [Crossref] [PubMed]
  13. I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
    [PubMed]
  14. S. L. Li, P. G. Han, M. Shi, Y. C. Yao, B. Hu, M. W. Wang, and X. N. Zhu, “Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing,” Opt. Express 19(24), 23958–23964 (2011).
    [Crossref] [PubMed]
  15. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
    [Crossref]
  16. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
    [Crossref]
  17. J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
    [Crossref]
  18. R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
    [Crossref]
  19. Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
    [Crossref]
  20. T. Suzuki, H. Kawai, H. Nasu, S. Mizuno, H. Ito, K. Hasegawa, and Y. Ohishi, “Spectroscopic investigation of Nd3+-doped ZBLAN glass for solar-pumped lasers,” J. Opt. Soc. Am. B 28(8), 2001–2006 (2011).
    [Crossref]
  21. J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
    [Crossref] [PubMed]
  22. A. R. Molla, A. Tarafder, S. Mukherjee, and B. Karmakar, “Transparent Nd3+ doped bismuth titanate glass- ceramic nanocomposites: Fabrication and properties,” Opt. Mater. Express 4(4), 843–863 (2014).
    [Crossref]
  23. B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
    [Crossref] [PubMed]
  24. M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
    [Crossref]
  25. U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
    [Crossref]
  26. E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
    [Crossref]
  27. L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
    [Crossref] [PubMed]
  28. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).
  29. A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
    [Crossref] [PubMed]
  30. K. S. Zou, H. T. Guo, M. Lu, W. N. Li, C. Q. Hou, W. Wei, J. F. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
    [Crossref] [PubMed]
  31. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
    [Crossref]
  32. M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
    [Crossref]
  33. Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
    [Crossref] [PubMed]
  34. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
    [Crossref]
  35. S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
    [Crossref]
  36. A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
    [Crossref]
  37. A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
    [Crossref]
  38. B. Charlet, L. Bastard, and J. E. Broquin, “1 kW peak power passively Q-switched Nd3+-doped glass integrated waveguide laser,” Opt. Lett. 36(11), 1987–1989 (2011).
    [Crossref] [PubMed]
  39. C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
    [Crossref]
  40. H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
    [Crossref] [PubMed]
  41. D. P. Hand and P. St. J. Russell, “Photoinduced refractive-index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102 (1990).
    [Crossref] [PubMed]
  42. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
    [Crossref]
  43. D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
    [Crossref]
  44. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  45. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  46. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [Crossref]
  47. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [Crossref]
  48. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory, Argonne Illinois (1977).
  49. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
    [Crossref]
  50. C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
    [Crossref]
  51. C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
    [Crossref]
  52. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
    [Crossref]
  53. S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).
  54. D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
    [Crossref]
  55. E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
    [Crossref]
  56. K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
    [Crossref] [PubMed]
  57. G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
    [Crossref]
  58. G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
    [Crossref]
  59. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8(7), 1391–1403 (1991).
    [Crossref]
  60. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
    [Crossref]
  61. J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
    [Crossref]
  62. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+ and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001).
    [Crossref]
  63. S. I. Najafi, Introduction to glass integrated optics (Artech House, 1992).

2014 (3)

2013 (3)

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

2012 (5)

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

2011 (6)

2010 (3)

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

2009 (6)

2008 (1)

2007 (4)

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett. 32(3), 241–243 (2007).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

2006 (3)

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

2005 (3)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

2002 (2)

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

2001 (2)

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+ and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18(3), 264–276 (2001).
[Crossref]

2000 (3)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

S. Tanabe, X. Feng, and T. Hanada, “Improved emission of Tm3+-doped glass for a 1.4-mum amplifier by radiative energy transfer between Tm3+ and Nd3+,” Opt. Lett. 25(11), 817–819 (2000).
[Crossref] [PubMed]

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

1999 (3)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

1998 (2)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

1996 (2)

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

1994 (1)

1992 (1)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

1991 (1)

1990 (1)

1983 (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Abe, Y.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Adam, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Ajo, D.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Aka, G.

Akhmadaliev, Sh.

Al-Saleh, M.

Anjos, V.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

Annapurna, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Azkargorta, J.

Babu, P.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Babu, S. S.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Balda, R.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Bastard, L.

Bell, M. J. V.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Bennetts, S.

Bettinelli, M.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Bettiol, A. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Bhutta, T.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Biswas, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Bohley, C.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Borrero-González, L. J.

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Broquin, J. E.

Caird, J. A.

Campbell, J. H.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Casarin, M.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Charlet, B.

Chen, B. J.

Chen, D. Q.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Chen, F.

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Chin, S. L.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Choi, J. H.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Dantas, N. O.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Daran, E.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

de Araújo, C. B.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref] [PubMed]

de Oliveira, M. A. S.

Diemeer, M. B. J.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Ding, X.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Dong, N. N.

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Driessen, A.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Feng, X.

Fernandez, J.

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Fernández, J.

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Fukudab, T.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

García-Revilla, S.

Gawith, C. B. E.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Geskus, D.

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Gonzalo, J.

Griscom, L. S.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Guo, H. T.

Han, P. G.

Hanada, T.

Hand, D. P.

Hanna, D. C.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Hasegawa, K.

He, J. F.

Hemming, A.

Heo, J.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Honkanen, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Hosono, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Hou, C. Q.

Hu, B.

Hu, L. L.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Hua, P.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Hwang, B.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Iparraguirre, I.

Isaenko, L. I.

Ito, H.

Jackson, S. D.

Jang, K.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jang, K. H.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jayasankar, C. K.

I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
[PubMed]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Jha, A.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Jia, Y. C.

Jiang, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Jiang, S. B.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Jin, C. E.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Jing, X.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Jorgensen, C. K.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Joshi, A. S.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Karmakar, B.

Kassab, L. R. P.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Kawai, H.

Kawazoe, H.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Kern, M. A.

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Kinser, D. L.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Kumar, G. N. H.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Kumar, K. U.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Kumar, V. V. R. K.

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Lancaster, D. G.

Leigh, M.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Li, S. L.

Li, W. N.

Li, X.

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Lin, H.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Liu, F.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Lozano B, W.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Lu, M.

Lu, Q. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Luo, T.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Ma, E.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Machewirth, D. P.

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Mandal, A. K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Margaryan, A.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Marques, M. S.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Mendioroz, A.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Menezes, L. S.

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

Merino, R. I.

Messaddeq, Y.

Miguel, A.

Mizuno, S.

Molla, A. R.

Montagne, J.

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Monte, A. F. G.

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Morea, R.

Mukherjee, S.

Muta, K.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Myers, M.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Naftaly, M.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Nasu, H.

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Nostrand, M. C.

Nunes, L. A. O.

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Nunzi-Conti, G.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ohishi, Y.

Orera, V. M.

Page, R. H.

Park, S. H.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Payne, S. A.

Peña, J. I.

Peng, B.

Pereira-da-Silva, M. A.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

Peyghambarian, N.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Pfau, C.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Pollnau, M.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

Pozza, G.

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Prasad, K. R.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Prathyusha, V. A.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Pun, E. Y. B.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Rajeswari, R.

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

Raju, C. N.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Ramponi, A. J.

Rao, J. L.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Ratnakaram, Y. C.

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

Ravi Kanth Kumar, V. V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Reddy, B. S.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Reddy, C. A.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Reichle, D. J.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Reisfeld, F.

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

Rhonehouse, D.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

Ross, G. W.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Russell, P. St. J.

Sabella, A.

Sailaja, S.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

Saliminia, A.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Sanz, M.

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Schweizer, S.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Seifert, G.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Sengo, G.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Seo, H. J.

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

Serqueira, E. O.

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

Serrano, C.

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

Shanmugavelu, B.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Shepherd, D. P.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Shi, F. G.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Shi, M.

Skrzypczak, U.

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Snitzer, E.

Song, F.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Song, J. H.

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

Sontakke, A. D.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Speghini, A.

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Staver, P. R.

Sum, T. C.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Suratwala, T. I.

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

Suzuki, T.

Takahashic, Y.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Tanabe, S.

Tarafder, A.

Tian, Y.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Uesugia, N.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Vallee, R.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

van Kan, J. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Vázquez de Aldana, J. R.

Venkata Krishnaiah, K.

Venkatramu, V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Venugopal Rao, S.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Vogel, E. M.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Wang, J.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

Wang, J. S.

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, M. W.

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Wang, Y. S.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Watt, F.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

Weeks, R. A.

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Wei, W.

Wu, F.

Xiangli, B.

Xu, J.

X. Li, G. Aka, L. H. Zheng, J. Xu, and Q. H. Yang, “Laser operation in Nd:Sc2SiO5 crystal based on transition 4F3/2→4I9/2 of Nd3+ ions,” Opt. Mater. Express 4(3), 458–463 (2014).
[Crossref]

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Xu, R. R.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Xu, S.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Yang, D. L.

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–362 (2009).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Yang, J.

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Yang, M. B. J. Diemeer, D. Geskus, G. Sengo, M. Pollnau, and A. Driessen, “Neodymium-complex-doped photodefined polymer channel waveguide amplifiers,” Opt. Lett. 34(4), 473–475 (2009).
[Crossref] [PubMed]

Yang, Q. H.

Yanoa, R.

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Yao, Y. C.

Yelisseyev, A. P.

Yu, Y. L.

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

Zhang, C.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, G.

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

Zhang, J.

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

Zhang, J. J.

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

Zheng, L. H.

Zhou, S. Q.

Zhu, X. N.

Zou, K. S.

Appl. Phys. B (1)

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ ion doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101(1-2), 235–244 (2010).
[Crossref]

Appl. Phys. Lett. (4)

F. Song, C. Zhang, X. Ding, J. Xu, G. Zhang, M. Leigh, and N. Peyghambarian, “Determination of thermal focal length and pumping radius in gain medium in laser-diode-pumped Nd:YVO4 lasers,” Appl. Phys. Lett. 81(12), 2145–2147 (2002).
[Crossref]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga: La: S) glass through photoinduced material modification,” Appl. Phys. Lett. 81(20), 3708–3710 (2002).
[Crossref]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+–Na+ ion exchange across a direct-bonded interface,” Appl. Phys. Lett. 75(24), 3757–3759 (1999).
[Crossref]

D. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion exchanged germanate glass channel waveguides for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[Crossref]

Electron. Lett. (1)

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd: LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Yang, M. B. J. Diemeer, G. Sengo, M. Pollnau, and A. Driessen, “Nd-doped polymer waveguide amplifiers,” IEEE J. Quantum Electron. 46(7), 1043–1050 (2010).
[Crossref]

J. Alloy. Comp. (1)

G. N. H. Kumar, J. L. Rao, K. R. Prasad, and Y. C. Ratnakaram, “Fluorescence and Judd-Ofelt analysis of Nd3+ doped P2O5-Na2O-K2O glass,” J. Alloy. Comp. 480(2), 208–215 (2009).
[Crossref]

J. Appl. Phys. (5)

J. H. Song, J. Heo, and S. H. Park, “1.48 μm emission properties and energy transfer between Tm3+ and Ho3+/Tb3+ in Ge-As-Cs-Br glasses,” J. Appl. Phys. 97(8), 083542 (2005).
[Crossref]

M. S. Marques, L. S. Menezes, W. Lozano B, L. R. P. Kassab, and C. B. de Araújo, “Giant enhancement of phonon-assisted one-photon excited frequency upconversion in a Nd3+-doped tellurite glass,” J. Appl. Phys. 113(5), 053102 (2013).
[Crossref]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 101 (2007).

Y. Tian, R. R. Xu, L. L. Hu, and J. J. Zhang, “Fluorescence properties and energy transfer study of Er3+/Nd3+ doped fluorophosphate glass pumped at 800 and 980 nm for mid-infrared laser applications,” J. Appl. Phys. 111(7), 073503 (2012).
[Crossref]

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3 μm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[Crossref]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

J. Cryst. Growth (1)

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288(1), 209–212 (2006).
[Crossref]

J. Less Common Met. (1)

C. K. Jorgensen and F. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less Common Met. 93(1), 107–112 (1983).
[Crossref]

J. Lumin. (3)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

S. S. Babu, R. Rajeswari, K. Jang, C. E. Jin, K. H. Jang, H. J. Seo, and C. K. Jayasankar, “Spectroscopic investigations of 1.06 μm emission in Nd3+-doped alkali niobium zinctellurite glasses,” J. Lumin. 130, 1021–1025 (2010).

E. O. Serqueira, N. O. Dantas, V. Anjos, M. A. Pereira-da-Silva, and M. J. V. Bell, “Optical spectroscopy of Nd3+ ions in a nanostructured glass matrix,” J. Lumin. 131(7), 1401–1406 (2011).
[Crossref]

J. Mater. Sci. (1)

C. N. Raju, C. A. Reddy, S. Sailaja, H. J. Seo, and B. S. Reddy, “Judd–Ofelt theory: optical absorption and NIR emission spectral studies of Nd3+: CdO–Bi2O3–B2O3 glasses for laser applications,” J. Mater. Sci. 47(2), 772–778 (2012).
[Crossref]

J. Non-Cryst. Solids (3)

J. H. Campbell and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power Lasers,” J. Non-Cryst. Solids 263, 318–341 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. B. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

E. O. Serqueira, N. O. Dantas, A. F. G. Monte, and M. J. V. Bell, “Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses,” J. Non-Cryst. Solids 352(32-35), 3628–3632 (2006).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. C (1)

U. Skrzypczak, C. Pfau, C. Bohley, G. Seifert, and S. Schweizer, “Influence of BaCl2 nanocrystal size on the optical properties of Nd3+ in fluorozirconate glass,” J. Phys. Chem. C 117(20), 10630–10635 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and F. Liu, “Fluorescence and Judd−Ofelt analysis of Nd3+ ions in oxyfluoride glass ceramics containing CaF2 nanocrystals,” J. Phys. Chem. Solids 68(2), 193–200 (2007).
[Crossref]

J. Phys. Condens. Matter (1)

L. J. Borrero-González and L. A. O. Nunes, “Near-infrared quantum cutting through a three-step energy transfer process in Nd3+-Yb3+ co-doped fluoroindogallate glasses,” J. Phys. Condens. Matter 24(38), 385501 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256(4-6), 422–427 (2005).
[Crossref]

Opt. Eng. (1)

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37, 3282–3286 (1998).
[Crossref]

Opt. Express (8)

J. Azkargorta, I. Iparraguirre, R. Balda, and J. Fernández, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses,” Opt. Express 16(16), 11894–11906 (2008).
[Crossref] [PubMed]

A. Miguel, J. Azkargorta, R. Morea, I. Iparraguirre, J. Gonzalo, J. Fernandez, and R. Balda, “Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass,” Opt. Express 21(8), 9298–9307 (2013).
[Crossref] [PubMed]

K. S. Zou, H. T. Guo, M. Lu, W. N. Li, C. Q. Hou, W. Wei, J. F. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
[Crossref] [PubMed]

Y. C. Jia, N. N. Dong, F. Chen, J. R. Vázquez de Aldana, Sh. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20(9), 9763–9768 (2012).
[Crossref] [PubMed]

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[Crossref] [PubMed]

M. A. S. de Oliveira, C. B. de Araújo, and Y. Messaddeq, “Upconversion ultraviolet random lasing in Nd3+ doped fluoroindate glass powder,” Opt. Express 19(6), 5620–5626 (2011).
[Crossref] [PubMed]

I. Iparraguirre, J. Azkargorta, R. Balda, K. Venkata Krishnaiah, C. K. Jayasankar, M. Al-Saleh, and J. Fernández, “Spontaneous and stimulated emission spectroscopy of a Nd3+-doped phosphate glass under wavelength selective pumping,” Opt. Express 19(20), 19440–19453 (2011).
[PubMed]

S. L. Li, P. G. Han, M. Shi, Y. C. Yao, B. Hu, M. W. Wang, and X. N. Zhu, “Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing,” Opt. Express 19(24), 23958–23964 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Opt. Mater. (1)

J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Opt. Mater. Express (2)

Phys. B (1)

C. K. Jayasankar and V. V. R. K. Kumar, “Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses,” Phys. B 226(4), 313–330 (1996).
[Crossref]

Phys. Lett. A (1)

R. Yanoa, N. Uesugia, T. Fukudab, and Y. Takahashic, “Observation of persistent multiple-holes for 4F3/2–4I9/2 transition of Nd3+ ion doped silicate glass fiber using diode laser,” Phys. Lett. A 262(4-5), 376–382 (1999).
[Crossref]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (2)

M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B 58(24), 16076–16092 (1998).
[Crossref]

R. Balda, M. Sanz, A. Mendioroz, J. Fernandez, L. S. Griscom, and J. L. Adam, “Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses,” Phys. Rev. B 64(14), 144101 (2001).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hosono, Y. Abe, D. L. Kinser, R. A. Weeks, K. Muta, and H. Kawazoe, “Nature and origin of the 5-eV band in SiO2:GeO2 glasses,” Phys. Rev. B Condens. Matter 46(18), 11445–11451 (1992).
[Crossref] [PubMed]

Solid State Commun. (1)

G. Pozza, D. Ajo, M. Bettinelli, A. Speghini, and M. Casarin, “Absorption and luminescence spectroscopy of Nd3+ and Er3+ in a zinc borate glass,” Solid State Commun. 97(6), 521–525 (1996).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

K. U. Kumar, V. A. Prathyusha, P. Babu, C. K. Jayasankar, A. S. Joshi, A. Speghini, and M. Bettinelli, “Fluorescence properties of Nd3+-doped tellurite glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67(3-4), 702–708 (2007).
[Crossref] [PubMed]

Y. Tian, J. Zhang, X. Jing, and S. Xu, “Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 98, 355–358 (2012).
[Crossref] [PubMed]

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Other (2)

S. I. Najafi, Introduction to glass integrated optics (Artech House, 1992).

W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, “Energy level structure and transition probabilities of the trivalent lanthanides in LaF3,” Argonne National Laboratory, Argonne Illinois (1977).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Absorption spectrum of 2wt% Nd2O3 doped NMAG glasses. Inset: Energy level diagram of Nd3+ in NMAG glasses.
Fig. 2
Fig. 2 (a) Emissions at the 1.065 and 1.337μm wavelengths in 2wt% Nd2O3 doped NMAG glasses. Inset: Relative emission intensities of different Nd2O3 doping concentration cases. (b) Stimulated emission cross-section profiles for 4F3/24I11/2 and 4F3/24I13/2 transitions in 2wt% Nd2O3 doped NMAG glasses. (c) Excitation spectrum for 1.065μm emission of 2wt% Nd2O3 doped NMAG glasses. (d) Fluorescence decay curve for the 4F3/2 level in 0.1wt% Nd2O3-doped NMAG glasses.
Fig. 3
Fig. 3 Fluorescence decay curves of the 4F3/2 level for 1wt% (a), 2wt% (b), 3wt% (c), and 4wt% (d) Nd2O3-doped NMAG glasses.
Fig. 4
Fig. 4 (a) Photograph of 2wt% Nd2O3 doped NMAG glasses under nature light. (b) Index profile at 632.8nm of slab waveguide by ion exchange at 390°C for 8 hours. (c) Prism coupler result measured at 632.8nm. (d) Prism coupler result measured at 1536nm.
Fig. 5
Fig. 5 (a) Photograph of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide with 532nm laser transmission. (b) AFM image of the channel section. (c) Near-field image of the channel waveguide at 1.3μm. (d) A 3D representation of the near-field mode pattern.
Fig. 6
Fig. 6 OSA spectra (a) and (b) recorded from the output end facet of K+–Na+ ion-exchanged 2wt% Nd2O3 doped NMAG glass channel waveguide under the excitation of ~800 nm wavelength laser pumping.

Tables (4)

Tables Icon

Table 1 Measured and calculated oscillator strengths of Nd3+ in NMAG glasses.

Tables Icon

Table 2 Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) of Nd3+ in various glasses.

Tables Icon

Table 3 Predicted spontaneous emission probabilities, branching ratios and radiative lifetime of Nd3+ in NMAG glasses.

Tables Icon

Table 4 Fluorescence lifetimes, quantum efficiencies, and cross-relaxation rates of Nd3+ in NMAG glasses

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ em = A ij 8πc n 2 × λ 5 I(λ) λI(λ)dλ ,
τ= 0 tI( t )dt 0 I( t )dt ,
η q = τ exp τ rad ,
1/ τ exp =1/ τ rad + W MPR + W CR ,

Metrics