Abstract

Chalcogenide glasses from (GeSe2)100-x(Sb2Se3)x system were synthesized, with x varying from 5 to 70, in order to evaluate the influence of antimony selenide addition on nonlinear optical properties and photosensitivity. Nonlinear refractive index and two photon absorption coefficients were measured both at 1064 nm in picosecond regime using the Z-scan technique and at 1.55 µm in femtosecond regime using an original method based on direct analysis of beam profile change while propagating in the chalcogenide glasses. The study of their photosensitivity at 1.55 μm revealed highly glass composition dependent behavior and quasi-photostable compositions have been identified in femtosecond regime. To better understand these characteristics, the evolution of the glass transition temperature, density and structure with the chemical composition were determined.

© 2014 Optical Society of America

1. Introduction

Chalcogenide glasses, based on S, Se or Te elements in combination with suitable elements from 14th or 15th group of the periodical system (Ge, As, Sb, etc.), are known to present high linear refractive index, photosensitivity to light exposure [14], and to be highly nonlinear [57]. Indeed, they present great Kerr nonlinearities at femtosecond time scale which can reach values several orders of magnitude larger than that of silica glass, variable two-photon absorption depending on their bandgap and insignificant free carrier absorption [8]. For these reasons, chalcogenide glasses have been studied under the scope of the development of all-optical signal processing based on nonlinear effects for telecommunication systems [913]. For mentioned integrated optical devices, a key prerequisite is an identification of appropriate bulk glass composition regarding the nonlinear figure of merit (FOM) for photonic applications. Thus, among the variety of chalcogenide glasses compositions, materials presenting high nonlinear refractive index represented by n2 (m2/W), low two photon absorption (TPA) defined by nonlinear absorption coefficient β (m/W), leading to optimized FOM=n2λβTPA, along with negligible linear absorption α (m−1) are of interest. Given the diversity of vitreous compositions available, it is necessary to predict the overriding factors which could lead to the best figure of merit.

For crystalline semiconductors according to the theoretical works based on a two-band model assuming a sharp absorption edge proposed by Sheik-Bahae et al., it was reported that TPA starts to occur when the photon energy (hν) is above the half bandgap energy Eg while n2 is an increasing function of photon energy until hv=0.5Eg in case of direct gap or close to Eg for indirect gap [14]. Consequently, the figure of merit fluctuates inside this energy range.

The sulfide and selenide glasses are considered as indirect gap amorphous materials and thus, the two-band model is not absolutely valid without a rough approximation [15]. The distribution of electronic states of amorphous semiconductors remains not perfectly described [16]. It can be noted that the exact determination of optical bandgap Eg, with no well-defined band edges due to the presence of tails and localized electronic states encroached up on the bandgap, is still subject of discussion. Consistent with the approximate onset of significant absorption, the optical gap Eg03 is generally taken at α = 1000 cm−1 for which the absorption changes from the one controlled by Tauc’s relation (where the density of states can be approximated to parabolic bands of extended states) to an exponential Urbach’s tail absorption involving both, tail states and extended states. As absorption coefficient is following Tauc’s relation in region of hvEg, the optical gap Eg can be also evaluated from Tauc’s law typically used in case of amorphous chalcogenide thin films.

The presence of Urbach’s tail related to both, thermal effects and static disorder, leads to TPA below the half bandgap energy. Far below the bandgap energy, the linear properties, α and n0 (linear refractive index), do not exhibit strong dependences on Eg; unlike the nonlinear properties [17]. Naturally for a given λlaser, the TPA increases from sulfide glasses to selenide glasses following the bandgap energy decrease. In case of telecommunication wavelength, an energy bandgap larger than ~1.6 eV is required for a negligible TPA. Some increase of TPA in selenide glasses can be tolerated if n2 is growing faster. Sanghera et al. used the classical anharmonic oscillator model to describe the nonlinear data and claimed a linear dependence of n2 versus 1Eg61(1(hvEg)2)4providing a predictive capability for nonlinear refractive index [8].

Moreover, if one considers a microscopic approach, the correlation between the local structure (polarity and covalent-ionic nature of the bonds) and the optical nonlinearities in chalcogenide glasses is not completely established yet. However, the polarizable electronic lone pairs (S, Se, As, Sb) seem to have a direct influence on the nonlinear refractive index. For high optical nonlinearities, As-S(Se,Te) and Ge-(As)-S(Se,Te) glass systems were mainly studied [1822]. The substitution of S with Se or Te was realized in order to increase the n2 from 2 to 7⋅10−18 m2/W for As2S3 glass to 11-30⋅10−18 m2/W for As2Se3 glass at near-infrared wavelengths, see for instance [19, 20, 23, 24]. Nevertheless, according to Harbold et al. [19, 20], nonlinear refractive index of sulfide and selenide glasses based on As-S(Se) and Ge-As-S(Se) systems is not only dependent on the lone pair electron density of the chalcogen and arsenic, but also on two-photon resonant enhancement accompanied by TPA when the photon energy of the operating laser approaches half of the optical bandgap energy of the material. Thus, in Ge-As-Se system for a fixed ratio of Ge/As = 0.5, a deficit of selenium, which decreases the electronic lone pair density, seems to increase n2. It was shown that in Ge-As-Se glass set, where the normalized photon energy (hvEg) varies from 0.41 to 0.45, the highest value of n2 was found for normalized photon energy equal to 0.45 with a major detrimental impact on the TPA following the bandgap energy decrease compared to stoichiometric composition. Consequently, the best FOM was obtained for the stoichiometric glass. In case of Ge-As-Se system glasses rich in Ge (Ge/As ratio varying from 1.1 to 2.8), Gopinath et al. [25] showed that variations of the nonlinear refractive index cannot be satisfactorily explained considering the n2 dependence on lone pair electron density. As the normalized photon energy varies only from 0.38 for stoichiometric glass to 0.41 for the glass with the highest deficit of selenium, the TPA is probably not really large for Ge rich glasses and β remains in the range of 0.4-0.5 cm/GW. Glasses with a strong deficit of Se present particular structure containing homopolar bonds (Ge(As)-Ge or As-As) that may possibly play a non-negligible role if one considers the microscopic approach.

We focused our attention on Ge-Sb-Se system regarding the substitution of As with Sb that may increase the nonlinear properties of the corresponding amorphous chalcogenides due to the enlargement of hyperpolarisability. The corresponding amorphous chalcogenides will have also lower bandgap energy related to this substitution. Further, the use of antimony is beneficial regarding its lower toxicity in comparison with arsenic. Finally, presence of antimony in amorphous chalcogenides is known to reduce photosensitivity of the material. Only few compositions were investigated in the Ge-Sb-Se system, Ge28Sb12Se60 (commercially known as AMTIR-3 or IG5, Eg~1.8 eV) with n2 = 9.4⋅10−18 m2/W at 1.5 μm or some Se over-stoichiometric glasses for which the Ge/Sb varies from 1.1 to 5 measured at 1.064 μm [5, 26]. The tailoring of the glass chemical composition in Ge-Sb-Se system would lead to the optimization of FOM thanks to stronger increasing of n2 comparing with TPA.

In this paper, beyond the description of basic physico-chemical properties we focused on nonlinear properties of selected bulk chalcogenide glasses from Ge-Sb-Se system. Within this ternary glass system, a careful analysis of trends in physico–chemical properties is performed by studying their compositional dependences along a characteristic cut-line of glass-forming region. Some authors claim that the knowledge of Z (mean coordination number reflecting the global connectivity of glass) and the glass composition (chemical short-range order) is needed to have a balanced view of the evolution of physico-chemical properties in ternary system [27]. In our case, we consider a variation of composition on the cut-line (GeSe2)100-x(Sb2Se3)x to investigate the introduction of antimony versus properties of glasses. Nonlinear refractive index and two-photon absorption of studied glasses are measured using Z-scan technique in picosecond regime at 1064 nm and at 1.55 µm in femtosecond regime using an original method. Photosensitivity of Ge-Sb-Se glasses is also studied at 1.55 µm in femtosecond regime.

2. Materials and experimental methods

For this study, chalcogenide glasses from pseudo-binary (GeSe2)100-x(Sb2Se3)x system (where x varied from 5 to 70) were synthesized. For reader’s convenience, individual chemical compositions are shown in ternary Ge-Sb-Se diagram [Fig. 1, adopted from [28]]. Ge-Sb-Se glasses were prepared from commercial elements (Ge, Sb and Se) of high purity (5N) using the conventional melting and quenching technique. Despite the high purity of selenium, it presented a surface oxidation (SeO2); therefore selenium was purified before mixing with other elements by distillations under dynamic and static vacuum. At first, all the elements were weighted in appropriate amounts, placed in a silica glass ampoule, which was evacuated and sealed. The elements were melted during 30 minutes at 850 °C in a rocking furnace. Then, the temperature was maintained at 800 °C during 10 hours. After quenching, glass rods were annealed 20 °C below their glass transition temperature during 6 hours, and finally slowly cooled down to room temperature. For optical characterization, resulting glass rods (25 mm diameter, 2mm in thickness) were sliced and polished (RMS roughness less than 3 nm as determined by atomic force microscopy measurements).

 

Fig. 1 Ternary diagram of Ge-Sb-Se system showing glass forming regions for different cooling rates (solid curve: water quenching, dashed curve: quenching on air, dotted curve: slow cooling), adopted from Popescu [28]. Synthesized (GeSe2)100-x(Sb2Se3)x samples are depicted by numbers, i.e. Nr. 1-8 stand for samples where x = 5, 10, 20, 30, 40, 50, 60, and 70. Samples Nr. 1-7 form glasses; sample Nr. 8 is of crystalline nature.

Download Full Size | PPT Slide | PDF

A scanning electron microscope with an energy-dispersive X-ray analyzer (EDS, JSM 6400-OXFORD Link INCA) was used for the determination of Ge-Sb-Se bulk glasses chemical composition and uniformity. Thermal characteristics of Ge-Sb-Se glasses were determined by DSC (Q20 DSC, TA Instruments). DSC measurements were performed with 10 mg powdered samples, heated up to 450°C at heating rate of 10 °C.min−1.

The structure of bulk glasses was analyzed using micro-Raman spectroscopy. Raman spectra were recorded at room temperature under 785 nm laser excitation with an InVia reflex spectroscope (Renishaw) coupled to an Olympus BFXM free space x20 microscope.

Transmittance spectra were measured with a visible-near-IR spectrophotometer (PerkinElmer). Linear refractive indices spectral dependencies (not shown here) as well as optical bandgap values of (GeSe2)100-x(Sb2Se3)x glasses were obtained from the analysis of variable angle spectroscopic ellipsometry (VASE) data measured using an ellipsometer with automatic rotating analyzer (J. A. Woollam Co., Inc.). The measurement parameters are as follows: spectral region 300-2300 nm with wavelengths steps of 20 nm, angles of incidence 50°, 60°, and 70°. For the analysis of VASE data, we used Cody-Lorentz model which includes both the correct band edge function and weak Urbach absorption tail; this model is appropriate for the description of amorphous chalcogenides optical functions [4].

Nonlinear refractive indices and two photon absorption coefficients were first measured using Z-scan technique [29] at 1064 nm [30]. The excitation is provided by a linearly polarized mode-locked Nd:YAG laser (1064 nm, pulse duration of 15 ps, 10 Hz). The measurement was performed using a 4f system. The image receiver is a 1000 x 1018 pixels cooled CCD camera (−30 °C) operating with a fixed gain. The sample is moved in the common focus region belonging to both lenses along the beam propagation direction (Z axis). Open and closed Z-scan normalized transmittance are numerically processed from the acquired images by integrating over all the pixels in the first case and over a circular numerical filter in the second one (giving a linear aperture transmittance equal to 0.7). The incident intensity can be varied by a polarizing system at the entry of the setup. In this work and when the material is highly absorbing, the intensity at the center of the beam and in the focus of the Z-scan system is kept around I0 = 0.4 GW/cm2.

Nonlinear optical properties of studied chalcogenide glasses were further determined in femtosecond regime. An optical parametric oscillator (OPO, Chameleon, Coherent Inc.) is tuned to 1.55 µm and focused in a bulk glass sample. Pulses duration is 200 fs, while repetition rate is 80 MHz, which gives peak power of 12.5 kW at the average output power of 200 mW. A NIR camera and two power meters monitor the output beam profile and sample transmission, respectively. Both, two photon absorption coefficient and nonlinear Kerr coefficient, are deduced from direct transmission analysis (DTA). The TPA coefficients β are deduced from the analysis of samples transmission as a function of beam intensity. For this measurement, the beam waist is positioned mid-way between the entrance and output faces of the sample (typically 2 mm long) to minimize the influence of diffraction and self-focusing. In a second step, the beam waist is placed exactly at the entrance face of the sample and beam profile at the output face is monitored with the camera. From the modifications of the output beam diameter between linear and nonlinear regime, the Kerr coefficient n2 sign and amplitude are deduced. To this end, the experimental observations are compared with simulations based on numerical resolution of the nonlinear Schrödinger equation. Moreover, from the same experimental arrangement, the damage threshold intensities are evaluated for the different glass compositions. At last, to study the photosensitivity of the materials, the long term evolution of the beam profile at the exit face of the chalcogenide samples is observed.

3. Results and discussion

3.1 Physico-chemical properties

The bulk (GeSe2)100-x(Sb2Se3)x samples were amorphous, as confirmed by X-ray diffraction patterns, excluding (GeSe2)30(Sb2Se3)70 material, which contains crystals and was not used for further structural and optical characterization. Chemical composition of fabricated (GeSe2)100-x(Sb2Se3)x glasses as determined using EDS is in good agreement with nominal one; the differences are about 1 at. % - this value corresponds to the EDS measurements uncertainty (Table 1). Table 1 contains also cut-off wavelengths showing linear increase with introduction of Sb2Se3. The bandgap energy determined by Cody-Lorentz model from VASE data ( ± 0.01 eV) decreases with introduction of Sb2Se3 in good agreement with Eg03 values.

Tables Icon

Table 1. Theoretical and real chemical composition (evaluated by EDS) of fabricated (GeSe2)100-x(Sb2Se3)x glasses ( ± 0.5 at.%), their cut-off wavelengths determined as wavelengths at which absorption coefficient is equal to 10 and 1000 cm−1, and optical bandgap (Eg, ± 0.01 eV) values extracted by Cody-Lorentz model from VASE data and as energy where α = 1000 cm−1 (Eg03).

No crystallization peaks were observed in DSC curves (in measured temperature region) except for x = 70 composition which is close to glassy domain edge [Fig. 1]. Globally, glass transition temperature (Tg) decreases monotonously when antimony concentration increases [Fig. 2]. This trend follows changes of vitreous network connectivity occurring when antimony is incorporated in chalcogenide glasses. We note that antimony coordination is 3 (in [SbSe3/2] pyramids), whereas germanium is known to be in a tetrahedral environment ([GeSe4/2] tetrahedra). On the other hand, density of (GeSe2)100-x(Sb2Se3)x glasses clearly increases with rising x [Fig. 2]. Considering atomic masses of elements (Ar(Ge) = 72.64, Ar(Sb) = 121.76, Ar(Se) = 78.96)), the density of glasses increases coherently with antimony introduction.

 

Fig. 2 Compositional dependences of glass transition temperature (Tg) and density of (GeSe2)100-x(Sb2Se3)x glasses (x = 5-60).

Download Full Size | PPT Slide | PDF

3.2 Structure of (GeSe2)100-x(Sb2Se3)x glasses

Raman study of amorphous selenium [31] and amorphous germanium [32] have been reported in the last 60s. Concerning Ge-based chalcogenide glasses, a lot of published data report on amorphous (a-) GeSe2 structure [3337] and to less extent on more complex system, such as ternary and quaternary glasses [3842]. Table 2 summarizes the main features observed in the Raman scattering spectra and their attribution, according to past studies.

Tables Icon

Table 2. Contributions of different structural entities to Raman scattering spectra in Ge-Sb-Se glasses according to past studies.

Normalized Raman scattering spectra of bulk (GeSe2)100-x(Sb2Se3)x glasses are presented in Fig. 3. For a comparison, Raman spectrum of GeSe2 glass is shown as well.

 

Fig. 3 Raman scattering spectra of bulk (GeSe2)100-x(Sb2Se3)x glasses (x = 0-60). Dotted lines correspond to contributions coming from Ge-Se structural entities, solid lines correspond to contributions due to introduction of antimony.

Download Full Size | PPT Slide | PDF

Normalized Raman spectra were decomposed using ten Gaussian contributions corresponding to ten vibrational modes observed in the glassy matrix and numbered in Table 2. As an example, Fig. 4 shows decomposition of (GeSe2)90(Sb2Se3)10, (GeSe2)70(Sb2Se3)30, and (GeSe2)50(Sb2Se3)50 Raman spectra.

 

Fig. 4 Raman scattering spectra of (GeSe2)90(Sb2Se3)10 (a), (GeSe2)70(Sb2Se3)30 (b), and (GeSe2)50(Sb2Se3)50 (c) glasses, and their respective decomposition in Gaussian curves (colored dashed lines). Full red curves correspond to the sum of Gaussian contributions.

Download Full Size | PPT Slide | PDF

The dominant feature of the spectra of GeSe2-rich glasses is a broad band in the ~170-240 cm−1 spectral region. Two main peaks are observed at ~200 and ~215 cm−1 which are attributed to A1 symmetric stretching mode of corner linked [GeSe4/2] tetrahedra and to A1c breathing vibration mode (also called companion mode) of [GeSe4/2] tetrahedra connected by edge. In a-GeSe2, a 170 cm−1 contribution is observed, which, associated with a weaker 270 cm−1 contribution, is revealing Ge-Ge bonds vibrations. In detail, Raman feature peaking at ~170 cm−1 is significant for Ge2Se6/2 entities and band with maximum at ~270 cm−1 is assigned to Ge-GemSe4-m (m = 1,2,3,4) entities. One can also note a broad band of low intensity, covering ~230-330 cm−1 region which corresponds to homopolar Se-Se bonds originating from different kind of entities (Se chains at ~235 cm−1, stretching mode of Se-Se bond at the outrigger at ~245-250 cm−1, [GeSe4/2] corner-shared dimers at ~265 cm−1). At higher frequencies (i.e. ~285-300 cm−1), one can expect a contribution of F2 asymmetric vibration mode of [GeSe4/2] tetrahedra.

When increasing Sb content in the glassy matrix, changes in Raman spectra are observed. First of all, intensities of Raman bands peaking at ~200 and ~215 cm−1 decrease with increasing Sb content. Looking at decomposition of Raman spectra [Fig. 4], one can note that the ratio between the intensity of the A1 and the A1c contributions decreases with increasing Sb content, meaning that corner linked tetrahedra are the first bonds broken by Sb introduction. The network slowly evolves from a tetrahedra dominated network to a pyramidal one. Peak intensity corresponding to Ge-Ge bonds vibrations (~170 and ~270 cm−1) also decreases when Sb content increases. Raman intensity at ~140 cm−1 which is significant for a type E vibrational mode of Se polymeric chains, decreases when Sb content increases. Finally, a broadening of the main band is observed; this broadening is due to the increase of ~190 cm−1 contribution corresponding to Sb-Se bond vibration in [SbSe3/2] pyramids. A Raman feature peaking at ~160 cm−1 appears when Sb2Se3 content reaches 40%, corresponding to Sb-Sb bond vibration in Se2Sb-SbSe2 entities. Note that the Ge-based entities in this region (at ~170 cm−1) are dominated by the Sb-based entities, probably due to their higher polarizability, leading to masking effects, as observed in case of Ge-Sb-Te and Ge-Sb-S system [45, 46]. The broad high frequency band of low intensity (~230-330 cm−1) also tends to disappear when increasing Sb content, meaning that its introduction induces probably a diminution of homopolar Se-Se bond in the glassy matrix.

In order to understand in more detail structural changes occurring in (GeSe2)100-x(Sb2Se3)x glasses with increasing Sb2Se3 content, relative intensities of vibrational modes were investigated as follows. The Sb2Se3 content dependence of the intensity ratio of the A1c to the A1 modes was plotted, corresponding qualitatively to the ratio between number of edge-sharing tetrahedra to corner-sharing ones present in the glassy matrix [Fig. 5]. In Ge rich GexSe1-x glasses, the formation of edge-sharing polyhedra is favored, as observed by Sugai [35]. As shown in Fig. 5, intensity ratio of edge-shared to corner-shared entities increases with x. Decrease of GeSe2 component concentration in the glassy network thus tends to favor presence of edge-shared [GeSe4/2] tetrahedra and to reduce the number of corner-shared [GeSe4/2] tetrahedra within the network, in agreement with Petit’s study [26]. Glasses rich in Sb2Se3 thus contain a large number of Ge2Se8/2 entities. Furthermore, number of Se-Se bonds slowly increases compare to Ge-Se bonds from edge and corner-shared tetrahedra [Fig. 5]. Intensity ratio of Ge-Ge vibrational mode located at ~170 cm−1 ([Ge2Se6/2] entities) to the sum of edge and corner-shared Ge-based tetrahedra also slightly increases when Sb2Se3 content is higher than 30%. Introduction of Sb2Se3 will then favor formation of homopolar Ge-Ge and Se-Se bonds at the expense of Ge-Se bonds. Intensity ratio of Raman 270 cm−1 feature (assigned to Ge-GemSe4-m structural motifs) to 170 cm−1 feature (attributed to Ge2Se6/2 entities) decreases with increasing content of Sb, leading to the conclusion that the formation of [Ge2Se6/2] entities may be preferred when introducing Sb into glassy structure. Note that for higher Sb2Se3 content in the glasses, calculated intensities of individual contributions suffer due to higher uncertainties coming from global shape of the spectra. Finally, intensity ratio of Raman 155 cm−1 band (Sb-Sb bonds vibrations) to 190 cm−1 feature (Sb-Se vibrations) slightly increases when increasing Sb2Se3 content [Fig. 5]. Thus, Sb-Sb bonds may be preferentially formed at high Sb concentrations in (GeSe2)100-x(Sb2Se3)x glasses.

 

Fig. 5 Intensity ratios for various Raman active vibration modes. ISe-Se corresponds to the sum of ~230 and ~260 cm−1 contributions from homopolar Se-Se bonds. IES and ICS are intensities of A1c and A1 bands, respectively (ES is for edge-shared and CS for corner-shared tetrahedra). ISb-Sb and ISb-Se correspond to ~155 cm−1 and ~190 cm−1 contributions, respectively.

Download Full Size | PPT Slide | PDF

To conclude, GeSe2 glassy network is composed mainly of GeSe4/2 units linked by corner or edge. Introduction of Sb2Se3 in the amorphous matrix seems to induce a progressive change in the network, first favoring edge-shared [GeSe4/2] entities. Then, at intermediate Sb2Se3 contents, glassy network contains significant number of [SbSe3/2] pyramids. Finally, at high Sb concentration in (GeSe2)100-x(Sb2Se3)x glasses, Se2Sb-SbSe2 structural motifs seems to be present.

Evolution of n2 values in a system can be related to structure of the glass. As proposed by Harbold, nonlinear refractive index is not only dependent on lone pair electron concentration but mainly also on bandgap energy [19]. One can assume that change in nonlinear properties depends on the composition and structure of the glass, related to bandgap energy variation from one glass to another one. Petit et al. first demonstrated that in Ge-Sb sulfo-selenide glasses, the increase in nonlinear refractive index could be attributed to the increase of number of Sb-Se and Ge-Se bonds [47]. A more recent study of ternary Ge-Sb-Se glasses [26] reported that n2 of Se over-stoichiometric glasses, from Ge23Sb7Se70 to Ge16Sb14Se70, increases when Sb/Ge ratio increases for a Se fixed composition.

It should be mentioned that the number of Se-Se bonds is slightly increasing when the Sb/Ge increases, which can also play a secondary role for n2. Nevertheless, in case of Ge(13 + x)Sb7Se80-x (x = 0, 10, 15, 22) glass set, the Ge/Sb ratio increase induces an increase of n2 until the composition becomes Se under-stoichiometric, for which the presence of Ge-Ge homopolar bonds starts to be not negligible and the [GeSe4/2] edge linked tetrahedra content stops to increase. The two main effects of Ge/Sb increase in discussed over-stoichiometric glass set is the increase of [GeSe4/2] tetrahedra number connected by edges compare to those connected by corners and the decrease of number of Se-Se bonds. It was also shown that n2 value is related to the number of heteropolar bonds within the glassy matrix and is more influenced by the increase of Sb-Se bonds number than by the increase of Ge-Se ones [26].

3.3 Nonlinear optical properties

Nonlinear characterization of studied Ge-Sb-Se glasses are first studied in picosecond regime using the Z-scan technique at 1.064 µm. Results are summarized in Table 3 together with results obtained at 1.55 µm in femtosecond regime. For a comparison, nonlinear characteristics of classical chalcogenide compositions (As2S3, As2Se3, and Ge28Sb12Se60 glasses) measured by other authors are included in Table 3 as well. Linear refractive indices (calculated by VASE) are also shown.

Tables Icon

Table 3. Linear (n0) and nonlinear (n2) refractive indices, n2/n2(SiO2) ratios, two photon absorption coefficients (β), nonlinear figures of merit (FOM) of (GeSe2)100-x(Sb2Se3)x glasses determined at 1.064 and 1.550 µm. For a comparison, data for Ge28Sb12Se60, As2Se3, and As2S3 glasses taken from other authors are given. Note that literature data could differ from this work in measurement method and measurement wavelength (MZI is for Mach-Zehnder interferometry, SRTBC is for spectrally resolved two-beam coupling).

Qualitatively, substitution of sulfur by selenium in chalcogenide glasses leads to a significant increase of n2 values. The values of n2 presented in this work are in good agreement with data measured by Petit et al. at 1.064 µm for Ge28Sb7Se65 glass using a similar picosecond laser source [26]. Concerning the determination of two photon absorption coefficient at 1.064 µm, it is globally growing in studied (GeSe2)100-x(Sb2Se3)x glasses with increasing content of antimony which is in accordance with the shift of the bandgap to lower energies. One can find large discrepancies between individual values of two photon absorption coefficient (Table 3): β~0.2-2.0 and ~4.4-19.0 cm.GW−1 at 1.064 µm for As2S3 and As2Se3 glasses, respectively. Among studied (GeSe2)100-x(Sb2Se3)x glasses, the highest FOM was found for (GeSe2)90(Sb2Se3)10 composition, reaching value of ~1.2, which is significantly larger comparing with other Ge-Sb-Se glasses measured at 1.064 µm. Nevertheless, the measured β values seem to be overestimated compared to value obtained at 1.55 µm, decreasing strongly the FOM at 1.064 µm.

Nonlinear properties of studied glasses at 1.55 µm have been investigated using the setup described above. TPA coefficients have first been evaluated by fitting the measured samples transmission T as a function of the input beam intensity I0 using Eq. (1):

T=exp(αL)1+βI0(1exp(βL)α).
In Eq. (1), α is the linear absorption coefficient and L is the sample thickness. Deduced values for β are reported in Table 3. Note that, as expected, TPA is lower than at 1.06 µm.

The technique to evaluate the Kerr coefficient at 1.55 µm is based on the analysis of the beam profile variation when the nonlinear effect is present. In linear regime, beam size enlarges due to diffraction over propagation while in nonlinear regime, i.e. at high laser power, the Kerr effect can either further defocus the beam (n2<0) or gives some focusing (n2>0).

For the experiment, the laser beam from the OPO tuned at 1.55 µm is focused to (typically) 26 µm FWHM spot at the entrance face of the sample to be analyzed. In the studied Ge-Sb-Se glasses, a clear decrease of the beam size diameter is observed at the output face at high power compare to low power, as illustrated in Fig. 6.It shows unambiguously that n2 is positive.

 

Fig. 6 Measured evolution of beam FWHM at the output of a 2.21 mm long (GeSe2)60(Sb2Se3)40 sample when input light beam intensity is switched from linear regime to nonlinear regime (I0 = 1.4 GW/cm2) at t = 10 s. Inserts show two corresponding observed images.

Download Full Size | PPT Slide | PDF

Furthermore, n2 values at 1.55 µm are determined by comparison of experimental beam self-focusing observations with predictions obtained by numerical solution of the nonlinear Schrödinger equation. As an illustration, Fig. 7 shows the calculated beam size (FWHM) at the exit face of a 2.26 mm long chalcogenide glass as a function of the n2 coefficient for a 25.7 µm FWHM input beam for two different input intensities.

 

Fig. 7 Calculated output beam FWHM as a function of the nonlinear refractive index n2 for two different input light intensities I0. Parameters: (GeSe2)95(Sb2Se3)5 glass, input FWHM = 25.7 µm, sample length = 2.26 mm, linear refractive index = 2.42, λ = 1550 nm, α = 0.15 cm−1, β = 0.44 cm/GW.

Download Full Size | PPT Slide | PDF

For studied glasses, significant beam size change is thus predicted between linear (n2 = 0) and nonlinear regime. To accurately determine n2, linear loss and evaluated TPA are also taken into account in the simulations. The deduced n2 values are presented in Table 3. It shows that Kerr effect is stronger in glass with higher Sb2Se3 content and β coefficient follows the same trend. FOM as high as 1.9-2.0 can be reached for intermediate compositions. For (GeSe2)x(Sb2Se3)100-x glasses with 5<x<50, estimated values of n2 coefficient vary from 6.5⋅10−18 to 2.0⋅10−17 m2.W−1 at 1.55 µm. This is in good agreement with data measured for Ge28Sb12Se60 glass by Lenz et al. at 1.5 µm using a similar femtosecond laser source [5]. The n2 of Ge-Sb-Se glasses are at least 20% larger than those of Ge-As-Se glasses of analogous stoichiometric composition; that is to say Ge25As10Se65 and Ge12.5As25Se62.5 (n2 = 6.0⋅10−18 and 1.7⋅10−17 m2.W−1) [19, 25]. Note that an accurate n2 value could not be measured in glass with the highest Sb2Se3 content due to poor reproducibility of the measurements. Within Ge-Sb-Se system, we show that an increase of antimony clearly leads to increasing values of the nonlinear refractive indices; n2 at 1.55 μm is estimated to be up to ~750 times the value of fused silica (n2(SiO2)~0.027⋅10−18 m2.W−1) [49]. Regarding structural evolution of Ge-Sb-Se glasses with addition of antimony, one can associate the increase in nonlinear refractive index values, as observed by Petit et al. [26], mainly to the increase in Sb-Se bonds number.

Damage peak intensity thresholds of studied glasses have also been assessed using the same optical set-up at 1.55 µm with pulses duration of 200 fs. It spans to about 2.5 GW.cm−2 for low Sb content glasses down to 1.6 GW.cm−2 for (GeSe2)40(Sb2Se3)60.

From the values reported in Table 3, we note that there are usually large discrepancies between n2 values obtained for the same glass composition (for example 14-30⋅10−18 m2.W−1 in case of As2Se3 glass) obtained by different measurement techniques (Z-scan, Mach-Zehnder interferometry or spectrally resolved two-beam coupling). The uncertainty of the measurement techniques and probably the different glass purities (which may affect transmission and bandgap energy) can also induce discrepancies in n2 values. Moreover, the deduced n2 and β values also depend on the incident intensity due to several features such as free carrier refraction and absorption changes [50] and possible higher order nonlinearities as intensity rises. These are sources of errors when evaluating nonlinear coefficients. Experimentally it is demonstrated that there is a decrease of the effective nonlinear coefficients with increasing intensity. This behavior has also been seen in crystalline semiconductors [51].

3.4 Photoinduced effects

Additionally to the instantaneous self-focusing due to the Kerr effect, a slow and irreversible variation of the output beam size can be observed for some glass compositions at high intensity when illumination time is long. To quantify this effect, the same optical arrangement as for the evaluation of the Kerr coefficient is used. Figure 8 shows the time evolution of the output beam FWHM normalized to the initial FWHM in different (GeSe2)100-x(Sb2Se3)x glasses when illuminated with intensities of about half the peak intensity damage threshold.

 

Fig. 8 Evolution of output beam size with time for (GeSe2)100-x(Sb2Se3)x glasses for intensities I0 of about 1.8 GW/cm2 (x = 5), 1.5 GW/cm2 (x = 10 and x = 20), 1.3 GW/cm2 (x = 30), and 1.1 GW/cm2 (x = 40).

Download Full Size | PPT Slide | PDF

In the (GeSe2)95(Sb2Se3)5 glass, the output beam FWHM does not evolve significantly over the observation time of 80 minutes. The absence of photosensitivity is not surprising due to the large energy bandgap of this composition compare to the photon energy. To the contrary, for (GeSe2)90(Sb2Se3)10 and (GeSe2)80(Sb2Se3)20 glasses, a gradual self-focusing is clearly observed. In the latter composition, it even leads to a 15 µm FWHM spot at the output face of the sample which is remarkably smaller than the one at the entrance face (26 µm). This photosensitivity is thus associated with an increase of the index of refraction in the illuminated area. At the end of the photoinduced process, the beam size slightly enlarges when the laser beam power is reduced but a permanent self-focusing persists. This irreversible self-focusing effect is attributed to a permanent photoinduced refractive index change that adds up to the Kerr effect. Remarkably, as the Sb2Se3 content is further increased, the permanent self-focusing tends to disappear and even changes to a defocusing effect for highest Sb2Se3 content. For instance, (GeSe2)70(Sb2Se3)30 composition shows no discernible change in beam size while experiments with (GeSe2)60(Sb2Se3)40 glass reveal an increasing output beam FWHM over time which is the sign of a defocusing effect due to the photosensitivity. We also note that the irreversible index change becomes weaker and appears slower in any composition for lower laser power. Beam size change is unnoticeable at an average power lower than 50 mW (intensity of about 0.3 GW.cm−2). Moreover, it is important to note that no photosensitivity is observed if a CW source with the same average power of 200 mW and the same wavelength as the femtosecond laser is used. This leads to the conclusion that the photosensitivity is not related to thermal effects but to optical nonlinearities.

We thus observed an evolution of the output beam size in nonlinear regime for long interaction time (80 min) which is very dependent on glass composition. The experiments suggest that the irreversible index variations are related to nonlinear absorption that gives either photodarkening in self-focusing medium or photobleaching in self-defocusing medium. To confirm this hypothesis, samples transmission T in nonlinear regime is studied over time. The experimental setup is slightly modified with the insertion of two powermeters, one to monitor the input power and the other one for the output power. Evolution of the transmission, normalized to the initial one (T0), of three characteristic glass compositions is presented in Fig. 9for peak intensities similar to Fig. 8.

 

Fig. 9 Evolution of normalized transmission of (GeSe2)80(Sb2Se3)20, (GeSe2)70(Sb2Se3)30, and (GeSe2)50(Sb2Se3)50 glasses. Intensities I0 are 1.5 GW/cm2 (x = 20), 1.3 GW/cm2 (x = 30), and 0.9 GW/cm2 (x = 50).

Download Full Size | PPT Slide | PDF

First, we observe that a fast dynamic is present at the beginning of the transmission curves. Indeed, in few seconds after switching on irradiating laser, a fast increase of the transmission is observed. These fast transmission variations could be due to defects leading to charge carrier trapped in localized levels; after the first few seconds, localized levels could no longer lead to a two-photon absorption limiting transmission. After described fast transmission increase, weak variations of transmission are also observed on a longer time scale. A decrease in transmission is observed in the case of self-focusing samples (for example (GeSe2)80(Sb2Se3)20 glass) while an increase of transmission is observed in the case of self-defocusing sample ((GeSe2)50(Sb2Se3)50). This is consistent with a photodarkening effect frequently associated with an increase of the refractive index whereas photobleaching is usually accompanied with a decrease of the index. Note that for the focusing samples, burning of the input glass surface is observed experimentally when illumination time approaches 80 min. This damage is certainly due to the increase of absorption connected with photodarkening. At last, intermediate compositions close to (GeSe2)70(Sb2Se3)30 do not show any significant slow transmission evolution with time [Fig. 9] which is in agreement with observations made for beam profile analysis [Fig. 8] where only weak change in beam size (if any) was observed. Note that the double kinetic observed in our sample transmission has also been recently reported in Ge-As-Se thin films. A fast transient photodarkening and a slower photobleaching effect were reported [52]. To better understand the behavior observed in our samples, a more complete study on structural properties of irradiated samples is under progress.

4. Conclusion

Physico-chemical properties of (GeSe2)100-x(Sb2Se3)x chalcogenide glasses as well as their structural properties are reported. Raman spectra are presented for various glassy compositions and reveal a progressive change when increasing Sb2Se3 content in the system, first favoring edge-shared [GeSe4/2] edge linked entities. Sb2Se3 rich compositions appear to contain slightly higher number of Sb-Sb, Ge-Ge and Se-Se structural motifs.

Nonlinear properties of (GeSe2)100-x(Sb2Se3)x chalcogenide glasses are studied both at 1064 nm and at 1.55 µm. Evolution of n2 and β are measured for different x values. Globally, nonlinear refractive index increases with increasing antimony content and figure of merit as high as 1.9-2.0 can be obtained at 1.55 µm. Furthermore, photosensitivity attributed to TPA is shown to be very dependent on composition. It is noteworthy that for glasses with intermediate Sb2Se3 content (at x = 30-40), photosensitivity is strongly reduced. At high power, a striking time varying transmission is also reported which is described with two dissimilar time constants. For instance, a fast photobleaching along with a slow photodarkening is observed in glasses with low Sb2Se3 content.

Acknowledgments

Czech Science Foundation (Project No. 13-05082S) and Ministry of Education, Youth, and Sports of the Czech Republic (Project CZ.1.07/2.3.00/30.0058 “Development of Research Teams at the University of Pardubice“) and the CNRS PICS (Projet International de Cooperation Scientifique) program financially supported this work. It was also realized in the framework of the French Labex “Action” and was partly supported by the RENATECH network and its FEMTO-ST technological facility. The authors thank prof. C. Focsa (Université de Lille) for Raman scattering spectra measurements.

References

1. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15(12), 2946–2950 (1998). [CrossRef]  

2. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). [CrossRef]  

3. N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett. 28(12), 965–967 (2003). [CrossRef]   [PubMed]  

4. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010). [CrossRef]   [PubMed]  

5. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000). [CrossRef]   [PubMed]  

6. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]  

7. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]  

8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008). [CrossRef]  

9. S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008). [CrossRef]  

10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

11. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011). [CrossRef]   [PubMed]  

12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011). [CrossRef]   [PubMed]  

13. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]  

14. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991). [CrossRef]  

15. M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.

16. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).

17. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5-6), 896–900 (2007). [CrossRef]  

18. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990). [CrossRef]  

19. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002). [CrossRef]  

20. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]   [PubMed]  

21. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999). [CrossRef]  

22. G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals 10, 255–267 (2003). [CrossRef]  

23. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998). [CrossRef]  

24. S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004). [CrossRef]  

25. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004). [CrossRef]  

26. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009). [CrossRef]  

27. R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011). [CrossRef]  

28. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).

29. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994). [CrossRef]  

30. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105(10), 103106 (2009). [CrossRef]  

31. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967). [CrossRef]  

32. M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972). [CrossRef]  

33. T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982). [CrossRef]  

34. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983). [CrossRef]  

35. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B 35(3), 1345–1361 (1987). [CrossRef]   [PubMed]  

36. O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990). [CrossRef]  

37. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999). [CrossRef]  

38. L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005). [CrossRef]  

39. J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983). [CrossRef]  

40. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010). [CrossRef]  

41. L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006). [CrossRef]  

42. P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000). [CrossRef]  

43. V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011). [CrossRef]  

44. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003). [CrossRef]  

45. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006). [CrossRef]  

46. P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009). [CrossRef]  

47. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007). [CrossRef]  

48. J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003). [CrossRef]  

49. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998). [CrossRef]   [PubMed]  

50. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003). [CrossRef]  

51. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. V. Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992). [CrossRef]  

52. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012). [CrossRef]   [PubMed]  

References

  • View by:
  • |
  • |
  • |

  1. C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15(12), 2946–2950 (1998).
    [Crossref]
  2. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
    [Crossref]
  3. N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett. 28(12), 965–967 (2003).
    [Crossref] [PubMed]
  4. P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
    [Crossref] [PubMed]
  5. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
    [Crossref] [PubMed]
  6. C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
    [Crossref]
  7. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  8. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  9. S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
    [Crossref]
  10. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  11. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011).
    [Crossref] [PubMed]
  12. T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
    [Crossref] [PubMed]
  13. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [Crossref]
  14. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [Crossref]
  15. M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.
  16. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).
  17. K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5-6), 896–900 (2007).
    [Crossref]
  18. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
    [Crossref]
  19. J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
    [Crossref]
  20. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
    [Crossref] [PubMed]
  21. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
    [Crossref]
  22. G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals 10, 255–267 (2003).
    [Crossref]
  23. F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
    [Crossref]
  24. S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
    [Crossref]
  25. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
    [Crossref]
  26. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
    [Crossref]
  27. R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
    [Crossref]
  28. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).
  29. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
    [Crossref]
  30. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105(10), 103106 (2009).
    [Crossref]
  31. G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
    [Crossref]
  32. M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
    [Crossref]
  33. T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
    [Crossref]
  34. K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
    [Crossref]
  35. S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B 35(3), 1345–1361 (1987).
    [Crossref] [PubMed]
  36. O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
    [Crossref]
  37. K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
    [Crossref]
  38. L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
    [Crossref]
  39. J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
    [Crossref]
  40. V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
    [Crossref]
  41. L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
    [Crossref]
  42. P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
    [Crossref]
  43. V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
    [Crossref]
  44. Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
    [Crossref]
  45. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
    [Crossref]
  46. P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
    [Crossref]
  47. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
    [Crossref]
  48. J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
    [Crossref]
  49. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37(3), 546–550 (1998).
    [Crossref] [PubMed]
  50. G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
    [Crossref]
  51. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. V. Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9(3), 405–414 (1992).
    [Crossref]
  52. P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
    [Crossref] [PubMed]

2012 (1)

2011 (5)

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011).
[Crossref] [PubMed]

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

2010 (3)

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

2009 (3)

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105(10), 103106 (2009).
[Crossref]

2008 (2)

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

2007 (2)

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5-6), 896–900 (2007).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

2006 (2)

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

2005 (1)

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

2004 (2)

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

2003 (6)

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals 10, 255–267 (2003).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

N. Hô, J. M. Laniel, R. Vallée, and A. Villeneuve, “Photosensitivity of As2S3 chalcogenide thin films at 1.5 microm,” Opt. Lett. 28(12), 965–967 (2003).
[Crossref] [PubMed]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

2002 (2)

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

2001 (1)

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

2000 (2)

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25(4), 254–256 (2000).
[Crossref] [PubMed]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

1999 (2)

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

1998 (3)

1995 (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

1994 (1)

1992 (1)

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

1990 (2)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
[Crossref]

1987 (1)

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B 35(3), 1345–1361 (1987).
[Crossref] [PubMed]

1983 (2)

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

1982 (1)

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
[Crossref]

1972 (1)

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
[Crossref]

1967 (1)

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Adam, J. L.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Adam, J.-L.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Adarsh, K. V.

Agarwal, A.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Aggarwal, I. D.

Aitken, B. G.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Baker, N. J.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Barik, A. R.

Barthelemy, A.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Beatty, R.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Boudebs, G.

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105(10), 103106 (2009).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

Boycheva, S. V.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

Brandily-Anne, M.-L.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

Briley, A.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

Bulla, D.

Bulla, D. A.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Campbell, B.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Cardinal, T.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Cardona, M.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
[Crossref]

Carlie, N.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Cathelinaud, M.

Cernoskova, E.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

Charpentier, F.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Charrier, J.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Chen, H.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Cheong, S. W.

Cherukulappurath, S.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

Choi, D. Y.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Couderc, V.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

De Angelis, C.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Debbarma, S. K.

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Espinosa, G. P.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

Fedus, K.

Ferreira, B.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Frumar, M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Frumarová, B.

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Fuflyigin, V. N.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Fukunaga, T.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
[Crossref]

Gaylord, S.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Golovchak, R.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

Gopinath, J. T.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Griffiths, J. E.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

Grillet, C.

Grossman, S.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

Guignard, M.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

Guin, J. P.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Guin, J.-P.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

Guo, Y.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Hagan, D. J.

Harbold, J. M.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Hô, N.

Hu, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Humeau, A.

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Hwang, H. Y.

Ilday, F. O.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

Inoue, K.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
[Crossref]

Iovu, M.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

Ippen, E. P.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Ivanova, Z. G.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

Jackson, K.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

Jain, H.

P. Khan, A. R. Barik, E. M. Vinod, K. S. Sangunni, H. Jain, and K. V. Adarsh, “Coexistence of fast photodarkening and slow photobleaching in Ge19As21Se60 thin films,” Opt. Express 20(11), 12416–12421 (2012).
[Crossref] [PubMed]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

Jurdyc, A. M.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Kamiya, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

Katsufuji, T.

Keezer, R. C.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Khan, P.

Kimerling, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

King, W. A.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Kobayashi, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

Kolobov, A.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Kovalskiy, A.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

Krauss, T. F.

Kubodera, K.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

Lamont, M. R. E.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Laniel, J. M.

Le Foulgoc, K.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Leblond, H.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

Leneindre, L.

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Lenz, G.

Lhermite, H.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Lines, M. E.

Luan, F.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Lucas, J.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Lucovsky, G.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Luther-Davies, B.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Madden, S.

C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett. 36(15), 2818–2820 (2011).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

Madden, S. J.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Marchand, C.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

Martin, S.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Massera, J.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

Matsuda, O.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
[Crossref]

Meneghini, C.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

C. Meneghini and A. Villeneuve, “As2S3 photosensitivity by two-photon absorption: holographic gratings and self-written channel waveguides,” J. Opt. Soc. Am. B 15(12), 2946–2950 (1998).
[Crossref]

Milam, D.

Miller, A. C.

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

Monat, C.

Monteil, A.

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

Mooradian, A.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Moreac, A.

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

Moréac, A.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

Murase, K.

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
[Crossref]

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
[Crossref]

Nakamura, M.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

Nasu, H.

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

Nazabal, V.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

Nemec, P.

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

O’Faolain, L.

Pant, R.

Pavlista, M.

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

Pederson, M. R.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

Pelusi, M. D.

T. D. Vo, R. Pant, M. D. Pelusi, J. Schröder, D. Y. Choi, S. K. Debbarma, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip-based all-optical XOR gate for 40 and 160 Gbit/s DPSK signals,” Opt. Lett. 36(5), 710–712 (2011).
[Crossref] [PubMed]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Petit, L.

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Phillips, J. C.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

Porezag, D. V.

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

Prikryl, J.

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Quemard, C.

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Remeika, J. P.

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

Richardson, K. A.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Richardson, K. C.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Said, A. A.

Sanchez, F.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

Sanghera, J. S.

Sangunni, K. S.

Schröder, J.

Schulte, A.

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

Sheik-Bahae, M.

Shim, H.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Shimakawa, K.

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Shpotyuk, O.

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

Shurgalin, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Slusher, R. E.

Smektala, F.

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

Soljacic, M.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

Spalter, S.

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals 10, 255–267 (2003).
[Crossref]

Spälter, S.

Spurny, M.

Stryland, E. W. V.

Sugai, S.

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B 35(3), 1345–1361 (1987).
[Crossref] [PubMed]

Taeed, V. G.

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Tanaka, K.

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5-6), 896–900 (2007).
[Crossref]

Tanaka, Y.

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
[Crossref]

Tauc, J.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
[Crossref]

Taylor, W.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Troles, J.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

Vallée, R.

Van Stryland, E. W.

Vanstryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

Vassilev, V. S.

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

Viens, J. F.

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

Villeneuve, A.

Villeneuve, R.

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

Vinod, E. M.

Vo, T. D.

Wang, J.

Wei, T. H.

Wihl, M.

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
[Crossref]

Wise, F. W.

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002).
[Crossref] [PubMed]

Wright, G. B.

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Yakushiji, K.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

Yoshimi, T.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

Young, J.

Yunoki, I.

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, S.

P. Němec, S. Zhang, V. Nazabal, K. Fedus, G. Boudebs, A. Moreac, M. Cathelinaud, and X.-H. Zhang, “Photo-stability of pulsed laser deposited GexAsySe100-x-y amorphous thin films,” Opt. Express 18(22), 22944–22957 (2010).
[Crossref] [PubMed]

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Zhang, X.-H.

Zimmermann, J.

Adv. Phys. (1)

K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995).
[Crossref]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Vanstryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[Crossref]

J. M. Harbold, F. O. Ilday, F. W. Wise, and B. G. Aitken, “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching,” IEEE Photon. Technol. Lett. 14(6), 822–824 (2002).
[Crossref]

Int. J. Appl. Ceram. Technol. (1)

V. Nazabal, F. Charpentier, J.-L. Adam, P. Nemec, H. Lhermite, M.-L. Brandily-Anne, J. Charrier, J.-P. Guin, and A. Moréac, “Sputtering and pulsed laser deposition for near- and mid-infrared applications: A comparative study of Ge25Sb10S65 and Ge25Sb10Se65 amorphous thin films,” Int. J. Appl. Ceram. Technol. 8(5), 990–1000 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, and K. Kamiya, “3rd-harmonic generation from some chalcogenide glasses,” J. Am. Ceram. Soc. 73(6), 1794–1796 (1990).
[Crossref]

J. Appl. Phys. (3)

G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105(10), 103106 (2009).
[Crossref]

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys. 96(11), 6931–6933 (2004).
[Crossref]

P. Nemec, A. Moreac, V. Nazabal, M. Pavlista, J. Prikryl, and M. Frumar, “Ge-Sb-Te thin films deposited by pulsed laser: An ellipsometry and Raman scattering spectroscopy study,” J. Appl. Phys. 106(10), 103509 (2009).
[Crossref]

J. Non-Cryst. Solids (9)

L. Petit, N. Carlie, R. Villeneuve, J. Massera, M. Couzi, A. Humeau, G. Boudebs, and K. Richardson, “Effect of the substitution of S for Se on the structure and non-linear optical properties of the glasses in the system Ge0.18Ga0.05Sb0.07S0.70−xSex,” J. Non-Cryst. Solids 352(50-51), 5413–5420 (2006).
[Crossref]

P. Nemec, B. Frumarová, and M. Frumar, “Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses,” J. Non-Cryst. Solids 270(1-3), 137–146 (2000).
[Crossref]

R. Golovchak, O. Shpotyuk, M. Iovu, A. Kovalskiy, and H. Jain, “Topology and chemical order in As(x)Ge(x)Se(1-2x) glasses: A high-resolution X-ray photoelectron spectroscopy study,” J. Non-Cryst. Solids 357(19-20), 3454–3460 (2011).
[Crossref]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As-S-Se,” J. Non-Cryst. Solids 257, 353–360 (1999).
[Crossref]

F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[Crossref]

M. Wihl, M. Cardona, and J. Tauc, “Raman scattering in amorphous Ge and III–V compounds,” J. Non-Cryst. Solids 8–10, 172–178 (1972).
[Crossref]

K. Murase, T. Fukunaga, K. Yakushiji, T. Yoshimi, and I. Yunoki, “Investigation of stability of (Ge, Sn)-(S, or Se)4/2 cluster vibrational spectra,” J. Non-Cryst. Solids 59–60(Part 2), 883–886 (1983).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Solids (3)

L. Petit, N. Carlie, K. Richardson, Y. Guo, A. Schulte, B. Campbell, B. Ferreira, and S. Martin, “Effect of the substitution of S for Se on the structure of the glasses in the system Ge0.23Sb0.07S0.70−xSex,” J. Phys. Chem. Solids 66(10), 1788–1794 (2005).
[Crossref]

C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001).
[Crossref]

K. Tanaka, “Nonlinear optics in glasses: How can we analyze?” J. Phys. Chem. Solids 68(5-6), 896–900 (2007).
[Crossref]

J. Solid State Chem. (1)

L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, and K. Richardson, “Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses,” J. Solid State Chem. 182(10), 2756–2761 (2009).
[Crossref]

Mater. Chem. Phys. (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Mater. Lett. (1)

Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, and S. V. Boycheva, “Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses,” Mater. Lett. 57(5-6), 1025–1028 (2003).
[Crossref]

Mater. Res. Bull. (1)

L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, and K. Richardson, “Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses,” Mater. Res. Bull. 42(12), 2107–2116 (2007).
[Crossref]

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Nonlinear Photonic Crystals (1)

G. Lenz and S. Spalter, “Chalcogenide glasses,” Nonlinear Photonic Crystals 10, 255–267 (2003).
[Crossref]

Opt. Commun. (2)

S. Cherukulappurath, M. Guignard, C. Marchand, F. Smektala, and G. Boudebs, “Linear and nonlinear optical characterization of tellurium based chalcogenide glasses,” Opt. Commun. 242(1-3), 313–319 (2004).
[Crossref]

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez, “Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,” Opt. Commun. 219(1-6), 427–433 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (1)

J. Troles, F. Smektala, G. Boudebs, and A. Monteil, “Third order nonlinear optical characterization of new chalcohalogenide glasses containing lead iodine,” Opt. Mater. 22(4), 335–343 (2003).
[Crossref]

Opt. Photonics News (1)

S. J. Madden, D. Y. Choi, M. R. E. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photonics News 19(2), 18–23 (2008).
[Crossref]

Phys. Rev. B (3)

S. Sugai, “Stochastic random network model in Ge and Si chalcogenide glasses,” Phys. Rev. B 35(3), 1345–1361 (1987).
[Crossref] [PubMed]

K. Jackson, A. Briley, S. Grossman, D. V. Porezag, and M. R. Pederson, “Raman-active modes of a-GeSe2 and a-GeS2: A first-principles study,” Phys. Rev. B 60(22), 14985–14989 (1999).
[Crossref]

J. E. Griffiths, G. P. Espinosa, J. C. Phillips, and J. P. Remeika, “Raman spectra and athermal laser annealing of Ge(SxSe1-x)2 glasses,” Phys. Rev. B 28(8), 4444–4453 (1983).
[Crossref]

Solid State Commun. (3)

O. Matsuda, K. Inoue, and K. Murase, “Resonant Raman study on crystalline GeSe2 in relation to amorphous states,” Solid State Commun. 75(4), 303–308 (1990).
[Crossref]

T. Fukunaga, Y. Tanaka, and K. Murase, “Glass formation and vibrational properties in the (Ge, Sn)-Se system,” Solid State Commun. 42(7), 513–516 (1982).
[Crossref]

G. Lucovsky, A. Mooradian, W. Taylor, G. B. Wright, and R. C. Keezer, “Identification of the fundamental vibrational modes of trigonal, α - monoclinic and amorphous selenium,” Solid State Commun. 5(2), 113–117 (1967).
[Crossref]

Thin Solid Films (1)

V. Nazabal, P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films 518(17), 4941–4947 (2010).
[Crossref]

Other (3)

M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic Publishers, Dordrecht, 2000).

M. Sheik-Bahae and E. W. Van Stryland, “Optical nonlinearities in the transparency region of bulk semiconductors,” in “Nonlinear Optics in Semiconductors I,” vol. 58 of Semiconductors and Semimetals, E. Garmire and A. Kost, eds. (Elsevier, 1998), chap. 4, pp. 257–318.

S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ternary diagram of Ge-Sb-Se system showing glass forming regions for different cooling rates (solid curve: water quenching, dashed curve: quenching on air, dotted curve: slow cooling), adopted from Popescu [28]. Synthesized (GeSe2)100-x(Sb2Se3)x samples are depicted by numbers, i.e. Nr. 1-8 stand for samples where x = 5, 10, 20, 30, 40, 50, 60, and 70. Samples Nr. 1-7 form glasses; sample Nr. 8 is of crystalline nature.
Fig. 2
Fig. 2 Compositional dependences of glass transition temperature (Tg) and density of (GeSe2)100-x(Sb2Se3)x glasses (x = 5-60).
Fig. 3
Fig. 3 Raman scattering spectra of bulk (GeSe2)100-x(Sb2Se3)x glasses (x = 0-60). Dotted lines correspond to contributions coming from Ge-Se structural entities, solid lines correspond to contributions due to introduction of antimony.
Fig. 4
Fig. 4 Raman scattering spectra of (GeSe2)90(Sb2Se3)10 (a), (GeSe2)70(Sb2Se3)30 (b), and (GeSe2)50(Sb2Se3)50 (c) glasses, and their respective decomposition in Gaussian curves (colored dashed lines). Full red curves correspond to the sum of Gaussian contributions.
Fig. 5
Fig. 5 Intensity ratios for various Raman active vibration modes. ISe-Se corresponds to the sum of ~230 and ~260 cm−1 contributions from homopolar Se-Se bonds. IES and ICS are intensities of A1c and A1 bands, respectively (ES is for edge-shared and CS for corner-shared tetrahedra). ISb-Sb and ISb-Se correspond to ~155 cm−1 and ~190 cm−1 contributions, respectively.
Fig. 6
Fig. 6 Measured evolution of beam FWHM at the output of a 2.21 mm long (GeSe2)60(Sb2Se3)40 sample when input light beam intensity is switched from linear regime to nonlinear regime (I0 = 1.4 GW/cm2) at t = 10 s. Inserts show two corresponding observed images.
Fig. 7
Fig. 7 Calculated output beam FWHM as a function of the nonlinear refractive index n2 for two different input light intensities I0. Parameters: (GeSe2)95(Sb2Se3)5 glass, input FWHM = 25.7 µm, sample length = 2.26 mm, linear refractive index = 2.42, λ = 1550 nm, α = 0.15 cm−1, β = 0.44 cm/GW.
Fig. 8
Fig. 8 Evolution of output beam size with time for (GeSe2)100-x(Sb2Se3)x glasses for intensities I0 of about 1.8 GW/cm2 (x = 5), 1.5 GW/cm2 (x = 10 and x = 20), 1.3 GW/cm2 (x = 30), and 1.1 GW/cm2 (x = 40).
Fig. 9
Fig. 9 Evolution of normalized transmission of (GeSe2)80(Sb2Se3)20, (GeSe2)70(Sb2Se3)30, and (GeSe2)50(Sb2Se3)50 glasses. Intensities I0 are 1.5 GW/cm2 (x = 20), 1.3 GW/cm2 (x = 30), and 0.9 GW/cm2 (x = 50).

Tables (3)

Tables Icon

Table 1 Theoretical and real chemical composition (evaluated by EDS) of fabricated (GeSe2)100-x(Sb2Se3)x glasses ( ± 0.5 at.%), their cut-off wavelengths determined as wavelengths at which absorption coefficient is equal to 10 and 1000 cm−1, and optical bandgap (Eg, ± 0.01 eV) values extracted by Cody-Lorentz model from VASE data and as energy where α = 1000 cm−1 (Eg03).

Tables Icon

Table 2 Contributions of different structural entities to Raman scattering spectra in Ge-Sb-Se glasses according to past studies.

Tables Icon

Table 3 Linear (n0) and nonlinear (n2) refractive indices, n2/n2(SiO2) ratios, two photon absorption coefficients (β), nonlinear figures of merit (FOM) of (GeSe2)100-x(Sb2Se3)x glasses determined at 1.064 and 1.550 µm. For a comparison, data for Ge28Sb12Se60, As2Se3, and As2S3 glasses taken from other authors are given. Note that literature data could differ from this work in measurement method and measurement wavelength (MZI is for Mach-Zehnder interferometry, SRTBC is for spectrally resolved two-beam coupling).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T= exp( αL ) 1+β I 0 ( 1exp(βL) α ) .

Metrics