Abstract

Plasmons in patterned graphene have attracted much interest because of possible applications in sensing, nanophotonics, and optoelectronics. We perform mid and far-infrared optical studies of electrically doped graphene nanoribbon arrays as a function of the filling factor and compare results with the unpatterned graphene. We demonstrate that an increase in both the filling factor of nanoribbon arrays and the free carrier concentration intensifies the plasmon-plasmon and plasmon-radiation interactions. As a result, the free-carrier dynamics manifested itself in the strong plasmon redshift and increased radiative damping compared to non-interacting models for the transverse magnetic polarization. Similarly, signatures of interactions are identified for plasmons in transverse electric polarization. The obtained experimental and theoretical results provide the basis for better understanding and controlling graphene-based structures’ spectral properties, thus facilitating applications’ development.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The graphene's unique optical and electronic properties are strongly related to its 2D nature and honeycomb lattice providing a gapless electronic spectrum with linear dispersion law at the Fermi energy [13]. Electrons in graphene act as massless Dirac fermions manifesting phenomena as universal optical absorption [4,5]. Unusual high-frequency properties and collective behavior of the 2D electron and hole systems in graphene-based heterostructures open a variety of possible applications in photodetection [6], bio- [7] and gas [8] sensing, optoelectronics [912], and photonics [1317]. Recently, plasmons in graphene nanoribbons were considered for quantum qubit applications [18] due to their tunability and long plasmon lifetimes.

One of the most straightforward patterned graphene structures, graphene nanoribbon arrays (GNRs), have attracted increased attention in sensing applications [1921]. The confined plasmonic modes in such structures have the local density of optical states more than 106 larger than in free space [22]. Therefore, it leads to enormously increased light−matter interactions in the infrared spectral range, where it is mostly required to detect vibrational fingerprint modes of molecules [23,24].

In unpatterned graphene, the extinction spectrum exhibits a peak centered at zero frequency [25,26] or a Drude peak. Similar spectra are observed in a GNR with the transverse electric (TE) light polarization when the incident radiation electric field is directed along with the ribbons. In these cases, the absorption spectra can well be described by a Lorentzian representing a Drude-type frequency dependence of conductivity ${\sigma _{AC}}(\omega )= {{i{D_0}} / {\pi ({\omega + i\nu } )}}$, where ω is the light frequency, ν is the carrier scattering rate, and D0 is the Drude weight. The latter in canonical approach is based on a semiclassical Boltzmann transport theory: ${D_0} = {{{e^2}{E_F}} / {{\hbar ^2}}} = ({{{{v_F}{e^2}} / \hbar }} )\sqrt {\pi |n |} $, where EF is the Fermi energy, vF is the Fermi velocity, n is the carrier concentration, e is the electron charge [25,27,28]. In the transverse magnetic (TM) mode, when the incident electric field is perpendicular to the ribbon's direction, the collective free carrier density oscillations, called plasmons, are excited by the light at finite frequency [29]. A damped oscillator model can accurately describe the plasmon extinction spectrum's shape as ${\mathop{\rm Im}\nolimits} ({{{ - \omega } / {{\omega^2} - \omega_p^2 + i\omega {\Gamma _p}}}} )$, where Гр is the plasmon width, and ωp is the plasmon frequency [30].

That canonical picture of graphene plasmons in GNRs has been qualitatively confirmed by many spectral measurements of the Drude-like and plasmon extinction in the infrared spectral range [14,25,31,32]. However, the electron-electron interactions [33] have been shown to cause plasmon energy shift not accounted for by the canonical dispersion relation. Moreover, the strong plasmon-phonon interactions lead to plasmon broadening [34]. Recently, plasmon-radiation interaction has been proposed to lead to additional spectra broadening [35]. Interactions among plasmon modes in neighboring strips have been shown to cause charge density redistribution across ribbons leading to a redshift of the plasmon frequency with respect to the canonical model predictions [36]. Numerical simulations using the finite-difference time-domain (FDTD) method have revealed enhancement of coupling strength between the plasmon modes due to the filling factor increasing [37]. Also, they have shown how one can control the plasmon coupling strength by severally varying the Fermi level of neighboring ribbons. The plasmon-plasmon renormalization effect is the most pronounced when the filling factor is approaching unity, as it was shown in Ref. [35] by solving Maxwell’s equations in a Fourier expansion of the electrical current, electrical E-fields and displacement D-fields at the graphene plane. The proposed various mechanisms of interactions in GNR arrays describe well deviations of both plasmon and Drude-like extinction from its canonical picture. However, it still lacks experimental verification from the point of view of functional dependencies on the GNR doping level and geometrical parameters. In this work, we perform extensive spectral studies of unpatterned graphene and graphene nanoribbon arrays of various filling factors, electrical doping levels for both TE and TM modes in mid- and far-infrared ranges, and compare the results with the interacting theory [35].

2. Materials and methods

The samples are fabricated on a 285 nm thick SiO2 substrate on a highly resistive silicon wafer (> 5000 Ω·cm), which is polished on the backside to avoid scattering due to surface roughness. The graphene ribbons’ design is chosen to ensure that the lowest energy SiO2 optical phonon at 60 meV lies above the plasmon's energy to avoid interaction between the plasmon and the surface polar phonon [34]. CVD-grown monolayer graphene films with a size of around 10×10 mm2 are transferred using a wet transfer technique. The graphene was patterned using electron-beam lithography and reactive ion etching (RIE) to define grating and test device areas, as shown in Figs. 1(a), (b). Contacts are deposited using electron-beam lithography and metallization of titanium (5 nm) and gold (60 nm). Finally, four different gratings with L = 0.25, 1, 1.5, and 4 µm gap widths are patterned on 2×2 mm2 spot size using electron-beam lithography and RIE. The ribbon width was kept the same for all gratings at W = 1 µm, such that the resulting filling factors have values r = W/(W + L) = 0.8, 0.5, 0.4, and 0.2. The samples are annealed at 300°C for around 20 hours to ensure that all residuals due to the fabrication are removed.

All GNR samples and the unpatterned graphene are electrically characterized using a constant source-drain current 10 µA. Figure 1(c) shows a typical dependence of the source-drain resistances, Rsd, as a function of the applied gate-source voltage, Vg, in the sample with the filling factor of 0.8. The maximum value of Rsd corresponds to the charge neutrality point (CNP). The metal-graphene contact resistivity was estimated to be ρc ≈ 15 kΩ·µm based on transport measurements of test devices with various channel length [38]. Therefore, the contact resistance in 2 mm wide samples can be neglected when analyzing transport data. To estimate mobility, we fit the obtained Rsd(Vg) dependencies using the following expression:

$${R_{sd}} = \frac{{{L_{GNR}}}}{{r \cdot {W_{GNR}}}}\frac{1}{{e\mu \sqrt {n_{CNP}^2 + C_{ox}^2{{{{({{V_g} - {V_{CNP}}} )}^2}} / {{e^2}}}} }},$$
where VCNP and nCNP are the gate voltage and free carrier concentration at the CNP, µ is the free carrier mobility (here we consider the same mobility for electrons and holes), LGNR and WGNR are the length and the width of the graphene channel, and Cox = 1.211×10−8 F/cm2 is the SiO2 layer capacitance per unit area. The resulting mobilities varied in the range of 2200 ± 900 cm2/Vs.

 figure: Fig. 1.

Fig. 1. (a) A schematic picture of studied samples fabricated in configuration of a field-effect transistor. The directed along the source-drain axis graphene ribbons form the channel, the gate contact is applied via the semi-insulating Si wafer with SiO2 coating layer serving as the gate dielectric. W and L are the ribbon and the interribbon gap widths, correspondingly, LGNR and WGNR are the total length and width of the GNR channel (including gaps), correspondingly; (b) An optical image of the chip with several sample gratings, including source and drain contacts, test devices, and the common gate contact for all samples. The inset shows the graphene ribbons’ orientation; (c) Source-drain resistance of the graphene ribbon array with the filling factor r = 0.2 as a function of gate-source voltage, black circles are the experimental data. The red line is the fit using (1).

Download Full Size | PPT Slide | PDF

The transmission spectra are acquired using a Fourier-Transform Infrared (FTIR) spectrometer Bruker IFS 125 HR with a Si bolometer as a detector in the far-infrared (FIR) spectral range and with a pyroelectric DLaTGS detector in the mid-infrared (MIR) range. The extinction spectra Ext.(ωVg) of the samples are obtained as follows:

$$Ext.({\omega ,\Delta {V_g}} )\textrm{ } = \textrm{ }1\textrm{ }-{-}\textrm{ }Tr({\omega ,\Delta {V_g}} )/Tr({\omega ,{V_{CNP}}} ),$$
where Tr(ωVg) is a transmission spectrum at the gate-source voltage, ΔVg = VgVCNP, Tr(ω,VCNP) is the transmission spectrum at the gate-source voltage corresponding to the charge neutral point, VCNP, defined by the maximum of the source-drain resistance, and ω is the radiation frequency. The gate-source voltage swing values are ΔVg = -50, -30, -10, 10, 30, 50 V. Tr(ωVg) and Tr(ω,VCNP) spectra are measured subsequently with no manipulations in the optical path and no sample chamber venting. The corresponding Tr(ω,VCNP) spectrum is measured for each Tr(ωVg) spectrum. This procedure allowed us to avoid spectra distortions caused by a change in the optical path.

3. Results

Since the interband transitions in graphene are blocked up to twice the Fermi energy [39], i.e. 2|EF|, by the Pauli principle, we can obtain EF values from the MIR spectra analysis [40]. All the measured MIR transmission spectra (Fig. 2) have a step-like shape that can be described by

$$Tr({\omega ,\Delta {V_g}} )/Tr({\omega ,{V_{CNP}}} )= A\tanh \left( { - \frac{{\hbar \omega - 2|{{E_F}} |}}{C}} \right) + B,$$
where A and B represent the height and the background level of the step, respectively. The width of the slope is given by C, which is of an order of a few kT. We fit the MIR spectra by (3) to obtain the EF values that we will use below.

 figure: Fig. 2.

Fig. 2. The MIR measurements of Tr(ω,ΔVg)/Tr(ω,VCNP) of GNRs with the filling factor r = 0.8 at values of the gate-source voltages ΔVg = 10 V (green), 30 V (violet) and 50 V (blue). The red curve shows a fit by (3) for ΔVg = 50 V with EF = 166 meV.

Download Full Size | PPT Slide | PDF

The extinction spectra of the sample with the filling factor r = 0.5 are shown in Fig. 3(a) for TE polarization. The black lines show the fits of the spectra to the following Lorentzian curve centered at zero frequency:

$$Ext.(\omega )= \frac{{2{D_D}}}{\pi }\frac{{{\Gamma _D}}}{{{\hbar ^2}{\omega ^2} + \Gamma _D^2}} + {y_0},$$
where ${D_D}$ is the Drude oscillator strength, and y0 is the background level, which is small in our case, being less than 10−2% of the peak maximum.

 figure: Fig. 3.

Fig. 3. Far-infrared extinction spectra, 1 – T/TCNP, of the graphene nanoribbon array with the filling factor r = 0.5 measured (a) for TE and (b) for TM polarizations for EF = 226 meV (red), EF = 288 meV (green), EF = 303.4 meV (blue) on the holes side. In the TE modes, the extinction spectra exhibit Drude-like dependences and are fitted to (4) (black curves). In the TM modes, the extinction spectra are fitted to (5) (black curves).

Download Full Size | PPT Slide | PDF

The plasmon extinction spectra for TM polarization for the same sample are shown in Fig. 3(b). A damped oscillator model fitted the plasmon line shape:

$$Ext.(\omega )= \frac{{2{D_p}}}{\pi }\frac{{{\omega ^2}{\Gamma _p}}}{{{\hbar ^2}{{({{\omega^2} - \omega_p^2} )}^2} + {\omega ^2}\Gamma _p^2}} + {y_0},$$
where Dp is the plasmon oscillator strength.

In what follows, we analyze both TE and TM FIR extinction spectra parameters for each filling factor as functions of the Fermi energy that we extracted from the MIR spectra and compare those dependencies with the theoretical predictions, which consider the influence of the plasmon-radiation and long-range plasmon-plasmon Coulomb interactions.

4. Discussion

 figure: Fig. 4.

Fig. 4. (a) Drude peak widths, Г, and (b) Drude oscillator strengths, D, as functions of EF obtained from the extinction spectra of the unpatterned graphene (violet) and GRAs with the filling factor r = 0.2 (black), 0.4 (red), 0.5 (blue) and 0.8 (green).

Download Full Size | PPT Slide | PDF

We obtained the Drude widths (Fig. 4(a)) and oscillator strengths (Fig. 4(b)) from the extinction spectra in the TE mode using (4). In the case of extinction of GNRs placed on the SiO2 substrate, a canonical value of the Drude oscillator strength can be written ${D_{can}} = {{r2\pi \alpha {E_F}} / {{n_{01}}}}$. Here, α is the fine structure constant, and n01 = (n0 + n1)/2 = 1.5 is the averaged refractive index with n0 = 1 and n1 = 2 being the refractive indexes of the air and that of SiO2 layer, consequently. The peak width in the non-interacting picture stays independent of both the filling factor and the Fermi energy: ${\Gamma _{can}} = \hbar \nu $.

To correctly interpret experimental data and determine the influence of plasmon-plasmon and plasmon-radiative interactions, we analyze the integral of extinction (see Eq. (2)):

$${D_{int}} = \mathop \smallint \nolimits_0^\infty \left( {1 - \frac{{T({{E_F},\nu ,\omega } )}}{{{T_0}(\omega )}}} \right)d\omega ,$$
where $T({{E_F},\nu ,\omega } )$ and ${T_0}(\omega )$ are the Poynting vector's transmission to the SiO2 substrate in the presence of graphene with Fermi energy EF and scattering rate ν, and of its absence, correspondingly. A similar integral calculated from absorption in graphene instead of extinction gives a physical value called spectral weight. This value characterizes conductivity in graphene and appears in such a fundamental relation as the sum rule. However, only extinction is available from the experiments. Analogously to Ref. [35], where the spectral weight was analytically calculated for plain graphene with conductivity given by the Drude model [41], we can get obtain a corresponding analytical expression for Eq. (6). It was shown in Ref. [35] that in the case of plain graphene, substituting EF with $r \cdot {E_F}$ in analytical expression for plain graphene reproduces the spectral weight of numerically calculated absorption spectra of GNRs for both TE and TM polarizations. To make sure that the same is true for the integral of extinction, we obtain an analogous phenomenological expression for Eq. (6):
$${D_{{\mathop{\rm int}} }} = r\frac{{2\pi \alpha }}{{{n_{01}}}}{E_F}\frac{{\hbar \nu + \alpha {{{E_F}r} / {{n_{01}}}}}}{{\hbar \nu + 2\alpha {{{E_F}r} / {{n_{01}}}}}}.$$
Note, the extinction peak width for TE mode remains the same as for the case of the absorption spectra considered in Ref. [35]:
$${\Gamma _{{\mathop{\rm int}} }} = \hbar \nu + r\frac{{2\alpha }}{{{n_{01}}}}{E_F}.$$
Note that for the TM mode, the width is about twice as small.

For each sample, we fit the experimentally obtained values of the Drude peak widths as a function of the Fermi energy by linear dependencies. Then, we compare the obtained slopes with the theoretical values, which would be zero in the canonical non-interacting picture and ${{2r\alpha } / {{n_{01}}}}$ in the interacting one (Fig. 5(a)). We find that within the error bars, the experimental slopes follow the interacting theory predictions. Next, for each r we adjust ℏν such that (8) would fit the experimental data and use the resulting values of ℏν in (7) to fit the Drude oscillator strengths as functions of Fermi energies.

 figure: Fig. 5.

Fig. 5. The derivatives of the Drude peak width (a) and that of the Drude oscillator strength (b) with respect to the Fermi energy as functions of the filling factor (black squares with error bars), the canonical model predictions (blue lines), and the interacting theory (red circles).

Download Full Size | PPT Slide | PDF

Since the GNR transmission spectrum at the CNP is influenced by the electron and hole puddles [42], the measured values of the Drude oscillator strength, ΔD, differs from one that to be compared with theoretical values D, by a constant value DC. The latter is the Drude oscillator strength at the CNP, and it remains to be the same for all spectra in each sample,

$$\Delta D({{E_F},r} )= D({{E_F},r} )- {D_C}(r ).$$
The direct measurement of DC requires a pure SiO2 substrate transmission spectrum to be used as the background. That measurement would require a movement of the sample between the background and the sample measurements. That would lead to the change in the optical path and, hence, to the spectral distortions.

On the other hand, the partial derivative of the Drude oscillator strength with respect to the Fermi energy isn't affected by DC, since DC is a constant for a given sample. So, it can be determined experimentally without involving the direct measurement of the DC. In the canonical picture, the derivative depends on the filling factor only:

$${{\partial ({\Delta D} )} / {\partial {E_F}}} = {{r2\pi \alpha } / {{n_{01}}}}.$$
While in the interacting model, the Drude oscillator strength derivative with respect to EF takes a more complicated form:
$$\frac{{\partial ({\Delta D} )}}{{\partial {E_F}}} = r\frac{{2\pi \alpha }}{{{n_{01}}}}\frac{{{{({\hbar \nu } )}^2} + 2\hbar \nu \alpha {{{E_F}r} / {{n_{01}}}} + 2{{({\alpha {{{E_F}r} / {{n_{01}}}}} )}^2}}}{{{{({\hbar \nu + 2\alpha {{{E_F}r} / {{n_{01}}}}} )}^2}}},$$
which is a slowly varying function of the Fermi energy. Indeed, the maximal deviation from the averaged derivative over the experimentally studied Fermi energy range reaches 0.34% of the averaged value for r = 0.8. For other samples the maximal deviations are 0.15% (r = 1), 0.28% (r = 0.5), 0.11% (r = 0.4) and 0.21% (r = 0.2). Based on this, we estimate the Drude oscillator strength derivative's experimental values with respect to the Fermi energy for each filling factor as the slope of the linear fit of the measured ΔD(EF) dependence.

Analysis of the derivative ${{\partial ({\Delta D} )} / {\partial {E_F}}}$ as a function of the filling factor demonstrates that the difference between the predictions of the canonical and the interacting theories is not so strict as in the case of ${{\partial \Gamma } / {\partial {E_F}}}$. However, at large filling factors, the interacting theory predicts lower values of ${{\partial ({\Delta D} )} / {\partial {E_F}}}$ than the canonical one, which is seen in the experiment. Moreover, for the unpatterned graphene, the lowering of ${{\partial ({\Delta D} )} / {\partial {E_F}}}$ is even more pronounced than it is expected due to the interactions.

In the interacting theory, plasmon dispersion law has the form [35]:

$$\frac{{{\omega _p}}}{{i\sigma }} = \Lambda (r )\frac{{2\pi q}}{\kappa },$$
where q is the plasmon wavevector, κ = (ε0 + ε1)/2 is the averaged dielectric constant with ε0 = 1 and ε1 = 4 being the dielectric constants of the air and the SiO2 layer, respectively. A dimensionless parameter $\mathrm{\Lambda }(r )$ is associated with the Coulomb interaction of charge density within a given graphene stripe and between different stripes in the GNRs array. It was shown in Ref. [35] that a phenomenological expression $\Lambda (r )= 0.734 \cdot {({1 - {r^{1.75}}} )^{0.331}}$ perfectly reproduces the main peak positions of numerical absorption and extinction TM spectra. Note that Eq. (12) also follows from the quasistatic approximation in the absence of plasmon-radiation interactions. For the studied samples here, Λ(r) varies from 0.505 (r = 0.8) to 0.719 (r = 0.2). Using q = π/W and $\sigma = {e^2}{E_F}/\pi {\hbar ^2}({i{\omega_p} + \nu } )$ one can reduce Eq. (12) to:
$$\hbar {\omega _p} = \sqrt {2\pi \frac{{{e^2}\Lambda (r )}}{{W\kappa }}{E_F} - {\hbar ^2}{\nu ^2}} .$$
The non-interacting plasmon dispersion law follows from Eq. (13) by merely replacing Λ(r) = 1 for all filling factors.

 Figure 6 shows the measured plasmon frequency values and their fits by Eq. (13) with various Λ(r) values as Fermi energy functions. One can see that the plasmon energies’ experimental values are better accounted for by the interacting theory than the canonical theory.

 figure: Fig. 6.

Fig. 6. Plasmon as a function of EF for GRAs (square symbols) with the filling factor r = 0.8 for electrons (orange) or holes (violet), r = 0.5 for holes (green), r = 0.4 for electrons (blue), r = 0.2 for electrons (gray) or holes (red). The solid curves show predictions of the canonical (red) and interacting (black) theories. The shadow area represents different values of parameter Λ(r) in (13) corresponding to r varying from 0.2 to 0.8.

Download Full Size | PPT Slide | PDF

5. Conclusions

We performed extensive spectral studies of graphene plasmons in nanoribbon arrays for TE and TM polarizations and compared the results against the canonical non-interacting theory and the interacting theory accounting for the plasmon-plasmon and plasmon-radiative interactions. In particular, we find the plasmon energies’ redshifts, flattering of the Drude and plasmon weights, broadening plasmon and Drude peaks with increasing free carrier concentration. The interacting theory much better accounts for the measured dependencies. The demonstrated qualitative agreement with the theoretical predictions emphasizes the role of interactions, which is essential for quantitative predictions and designs of the graphene-based plasmonic devices.

Funding

Office of the Vice President for Research and Economic Development, University at Buffalo (75023).

Acknowledgments

The authors would like to acknowledge the LPI Shared Facilities Center for providing research equipment for FTIR measurements [43]. V.P. acknowledges support from the Vice President for Research and Economic Development (VPRED) and the Center for Computational Research at the University at Buffalo [44]. S.S. and T.M. acknowledge funding by the Graphene Flagship.

Disclosures

The authors declare no conflicts of interest.

References

1. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007). [CrossRef]  

2. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011). [CrossRef]  

3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007). [CrossRef]  

4. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008). [CrossRef]  

5. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012). [CrossRef]  

6. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014). [CrossRef]  

7. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015). [CrossRef]  

8. H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019). [CrossRef]  

9. X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020). [CrossRef]  

10. C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020). [CrossRef]  

11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]  

12. H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014). [CrossRef]  

13. M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018). [CrossRef]  

14. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014). [CrossRef]  

15. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014). [CrossRef]  

16. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012). [CrossRef]  

17. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016). [CrossRef]  

18. I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019). [CrossRef]  

19. X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018). [CrossRef]  

20. Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014). [CrossRef]  

21. D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016). [CrossRef]  

22. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013). [CrossRef]  

23. H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016). [CrossRef]  

24. K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020). [CrossRef]  

25. J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011). [CrossRef]  

26. K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019). [CrossRef]  

27. T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn. 75(7), 074716 (2006). [CrossRef]  

28. N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007). [CrossRef]  

29. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012). [CrossRef]  

30. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011). [CrossRef]  

31. W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013). [CrossRef]  

32. M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013). [CrossRef]  

33. L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013). [CrossRef]  

34. H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013). [CrossRef]  

35. V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018). [CrossRef]  

36. J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013). [CrossRef]  

37. S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015). [CrossRef]  

38. F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017). [CrossRef]  

39. F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008). [CrossRef]  

40. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008). [CrossRef]  

41. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008). [CrossRef]  

42. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008). [CrossRef]  

43. Shared Facility Centre at P.N. Lebedev Physical Institute of the Russian Academy of Scienceshttp://sites.lebedev.ru/en/cac/

44. Center for Computational Research, University at Buffalo, http://hdl.handle.net/10477/79221.

References

  • View by:
  • |
  • |
  • |

  1. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
    [Crossref]
  2. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
    [Crossref]
  3. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref]
  4. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref]
  5. K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
    [Crossref]
  6. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
    [Crossref]
  7. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref]
  8. H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
    [Crossref]
  9. X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
    [Crossref]
  10. C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
    [Crossref]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  12. H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
    [Crossref]
  13. M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
    [Crossref]
  14. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  15. F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  16. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref]
  17. H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
    [Crossref]
  18. I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
    [Crossref]
  19. X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
    [Crossref]
  20. Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
    [Crossref]
  21. D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
    [Crossref]
  22. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
    [Crossref]
  23. H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
    [Crossref]
  24. K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
    [Crossref]
  25. J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
    [Crossref]
  26. K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
    [Crossref]
  27. T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn. 75(7), 074716 (2006).
    [Crossref]
  28. N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
    [Crossref]
  29. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  30. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref]
  31. W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
    [Crossref]
  32. M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
    [Crossref]
  33. L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
    [Crossref]
  34. H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  35. V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
    [Crossref]
  36. J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
    [Crossref]
  37. S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
    [Crossref]
  38. F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017).
    [Crossref]
  39. F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref]
  40. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
    [Crossref]
  41. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  42. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
    [Crossref]
  43. Shared Facility Centre at P.N. Lebedev Physical Institute of the Russian Academy of Sciences http://sites.lebedev.ru/en/cac/
  44. Center for Computational Research, University at Buffalo, http://hdl.handle.net/10477/79221 .

2020 (3)

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
[Crossref]

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

2019 (3)

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

2018 (3)

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

2017 (1)

F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017).
[Crossref]

2016 (3)

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

2015 (2)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

2014 (5)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

2013 (6)

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
[Crossref]

L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

2012 (3)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

2011 (3)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (5)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

2007 (3)

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref]

N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
[Crossref]

2006 (1)

T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn. 75(7), 074716 (2006).
[Crossref]

Adam, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Ajayan, P. M.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Akerman, N.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Alonso Calafell, I.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Ando, T.

T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn. 75(7), 074716 (2006).
[Crossref]

Atwater, H. A.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

Avouris, P.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Basov, D. N.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Bechtel, H. A.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Biswas, S. R.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bostwick, A.

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

Brar, V. W.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

Buljan, H.

M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
[Crossref]

Centeno, A.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Chan, W.-M.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Chen, C. F.

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Chen, X. Q.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Cho, J. H.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Choi, E. J.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Cox, J. D.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Crommie, M.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Crommie, M. F.

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

D’Errico, A.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Dai, Q.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Das Sarma, S.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

de Abajo, F. J. G.

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Di Bartolomeo, A.

F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017).
[Crossref]

dos Santos, J. M. B. L.

N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
[Crossref]

Dubey, M.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Fal’ko, V. I.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Farmer, D. B.

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

Feigelman, M. V.

L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
[Crossref]

Ferrari, A. C.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Freitag, M.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Galli, P.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Gao, L.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Gao, W. L.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

García de Abajo, F. J.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Geng, B. S.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Girit, C.

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Giubileo, F.

F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Guo, H.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Guo, X. D.

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

Han, S. J.

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, Z.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Heinz, T. F.

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Horn, K.

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

Horng, J.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Hu, D. B.

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Hu, H.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Hu, W. D.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Huang, Z.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Huang, Z.-R.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Huyghebaert, C.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Hwang, E. H.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Jablan, M.

M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
[Crossref]

Jang, M. S.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Jeon, J.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Jin, Z. H.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Ju, L.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Kevek, J. W.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Khaliji, K.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

Kim, B. J.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Kim, J.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Kono, J.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Koppens, F. H. L.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Levitov, L. S.

L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
[Crossref]

Li, H.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Li, H.-J.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Li, J. Y.

C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
[Crossref]

Li, X. S.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Li, Y. L.

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Liang, X. G.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Lin, H. T.

C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
[Crossref]

Lin, Q.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Liu, K. H.

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Liu, R. N.

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Lohmann, T.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Long, M. S.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

Low, T.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lui, C. H.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Mak, K. F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Manolatou, C.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Martin, J.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Martin, M.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

McEuen, P. L.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Meng, X.

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

Midrio, M.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Mueller, T.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Nene, P.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Neumaier, D.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref]

Oh, C. W.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Oh, S. H.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

Ohta, T.

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

Osgood, R. M.

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

Perebeinos, V.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Peres, N. M. R.

N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
[Crossref]

Polini, M.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Qin, S. C.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Radonjic, M.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Ramasubramaniam, A.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rana, F.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

Romagnoli, M.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Rossi, E.

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Rotenberg, E.

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

Rozema, L. A.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Saavedra, J. R. M.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Schuler, S.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Schwab, M. G.

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Semenenko, V.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Seyller, T.

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Shehzad, K.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Shen, Y. R.

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

Shi, G.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Shi, Y.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Shtyk, A. V.

L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
[Crossref]

Shu, J.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Smet, J. H.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Soljacic, M.

M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
[Crossref]

Sorianello, V.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Stauber, T.

N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
[Crossref]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Strait, J. H.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Sun, B.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sun, Z. P.

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Templ, W.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Tian, C. S.

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Tiwari, S.

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Ulbricht, G.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Vajtai, R.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Vitiello, M. S.

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

Von Klitzing, K.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Walther, P.

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Wang, F.

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Wang, F. Q.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Wang, H.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, L.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Wang, L.-L.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Wang, X. M.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Wang, X. R.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Wen, S.-C.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Wu, Y. Q.

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, F. N.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xia, S.

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Xiao, D.

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xu, Q. F.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Xu, Y.

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Yacoby, A.

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Yan, H. G.

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yang, X. X.

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Yoon, Y.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Yu, K.

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Zettl, A.

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Zhai, F.

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

Zhai, X.

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Zhang, H.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Zhang, Q.

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Zhang, Y. B.

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Zhong, C. Y.

C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
[Crossref]

Zhu, W. J.

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zurutuza, A.

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

ACS Nano (1)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

ACS Photonics (2)

D. B. Farmer, P. Avouris, Y. L. Li, T. F. Heinz, and S. J. Han, “Ultrasensitive plasmonic detection of molecules with graphene,” ACS Photonics 3(4), 553–557 (2016).
[Crossref]

V. Semenenko, S. Schuler, A. Centeno, A. Zurutuza, T. Mueller, and V. Perebeinos, “Plasmon-plasmon interactions and radiative damping of graphene plasmons,” ACS Photonics 5(9), 3459–3465 (2018).
[Crossref]

Adv. Mater. (2)

X. X. Yang, Z. P. Sun, T. Low, H. Hu, X. D. Guo, F. J. G. de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy,” Adv. Mater. 30(20), 1704896 (2018).
[Crossref]

X. Q. Chen, K. Shehzad, L. Gao, M. S. Long, H. Guo, S. C. Qin, X. M. Wang, F. Q. Wang, Y. Shi, W. D. Hu, Y. Xu, and X. R. Wang, “Graphene hybrid structures for integrated and flexible optoelectronics,” Adv. Mater. 32(27), 1902039 (2020).
[Crossref]

Appl. Phys. Express (1)

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Appl. Phys. Lett. (1)

K. Yu, J. Jeon, J. Kim, C. W. Oh, Y. Yoon, B. J. Kim, J. H. Cho, and E. J. Choi, “Infrared study of carrier scattering mechanism in ion-gated graphene,” Appl. Phys. Lett. 114(8), 083503(2019).
[Crossref]

Front. Optoelectron. (1)

C. Y. Zhong, J. Y. Li, and H. T. Lin, “Graphene-based all-optical modulators,” Front. Optoelectron. 13(2), 114–128 (2020).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn. 75(7), 074716 (2006).
[Crossref]

Nano Lett. (3)

Y. L. Li, H. G. Yan, D. B. Farmer, X. Meng, W. J. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14(3), 1573–1577 (2014).
[Crossref]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators,” Nano Lett. 13(6), 2541–2547 (2013).
[Crossref]

W. L. Gao, G. Shi, Z. H. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. F. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13(8), 3698–3702 (2013).
[Crossref]

Nat. Commun. (2)

H. Hu, X. X. Yang, F. Zhai, D. B. Hu, R. N. Liu, K. H. Liu, Z. P. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7(1), 12334 (2016).
[Crossref]

H. Hu, X. X. Yang, X. D. Guo, K. Khaliji, S. R. Biswas, F. J. G. de Abajo, T. Low, Z. P. Sun, and Q. Dai, “Gas identification with graphene plasmons,” Nat. Commun. 10(1), 1131 (2019).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (2)

F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9(10), 780–793 (2014).
[Crossref]

L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref]

Nat. Photonics (4)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

F. N. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Nat. Phys. (3)

A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nat. Phys. 3(1), 36–40 (2007).
[Crossref]

J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nat. Phys. 4(2), 144–148 (2008).
[Crossref]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4(7), 532–535 (2008).
[Crossref]

Nat. Rev. Mater. (1)

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Npj Quantum Inf. (1)

I. Alonso Calafell, J. D. Cox, M. Radonjić, J. R. M. Saavedra, F. J. García de Abajo, L. A. Rozema, and P. Walther, “Quantum computing with graphene plasmons,” Npj Quantum Inf. 5(1), 37 (2019).
[Crossref]

Opt. Commun. (1)

S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, “Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons,” Opt. Commun. 352, 110–115 (2015).
[Crossref]

Phys. Rev. Appl. (1)

K. Khaliji, S. R. Biswas, H. Hu, X. X. Yang, Q. Dai, S. H. Oh, P. Avouris, and T. Low, “Plasmonic gas sensing with graphene nanoribbons,” Phys. Rev. Appl. 13(1), 011002 (2020).
[Crossref]

Phys. Rev. B (4)

J. Horng, C. F. Chen, B. S. Geng, C. Girit, Y. B. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, “Drude conductivity of Dirac fermions in graphene,” Phys. Rev. B 83(16), 165113 (2011).
[Crossref]

N. M. R. Peres, J. M. B. L. dos Santos, and T. Stauber, “Phenomenological study of the electronic transport coefficients of graphene,” Phys. Rev. B 76(7), 073412 (2007).
[Crossref]

L. S. Levitov, A. V. Shtyk, and M. V. Feigelman, “Electron-electron interactions and plasmon dispersion in graphene,” Phys. Rev. B 88(23), 235403 (2013).
[Crossref]

J. H. Strait, P. Nene, W.-M. Chan, C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, “Confined plasmons in graphene microstructures: Experiments and theory,” Phys. Rev. B 87(24), 241410 (2013).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref]

Proc. IEEE (1)

M. Jablan, M. Soljacic, and H. Buljan, “Plasmons in graphene: fundamental properties and potential applications,” Proc. IEEE 101(7), 1689–1704 (2013).
[Crossref]

Prog. Surf. Sci. (1)

F. Giubileo and A. Di Bartolomeo, “The role of contact resistance in graphene field-effect devices,” Prog. Surf. Sci. 92(3), 143–175 (2017).
[Crossref]

Rev. Mod. Phys. (1)

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83(2), 407–470 (2011).
[Crossref]

Sci. Rep. (1)

H. Li, L. Wang, and X. Zhai, “Tunable graphene-based midinfrared plasmonic wide-angle narrowband perfect absorber,” Sci. Rep. 6(1), 36651 (2016).
[Crossref]

Science (2)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref]

F. Wang, Y. B. Zhang, C. S. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Solid State Commun. (1)

K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, “Optical spectroscopy of graphene: From the far infrared to the ultraviolet,” Solid State Commun. 152(15), 1341–1349 (2012).
[Crossref]

Other (2)

Shared Facility Centre at P.N. Lebedev Physical Institute of the Russian Academy of Sciences http://sites.lebedev.ru/en/cac/

Center for Computational Research, University at Buffalo, http://hdl.handle.net/10477/79221 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) A schematic picture of studied samples fabricated in configuration of a field-effect transistor. The directed along the source-drain axis graphene ribbons form the channel, the gate contact is applied via the semi-insulating Si wafer with SiO2 coating layer serving as the gate dielectric. W and L are the ribbon and the interribbon gap widths, correspondingly, LGNR and WGNR are the total length and width of the GNR channel (including gaps), correspondingly; (b) An optical image of the chip with several sample gratings, including source and drain contacts, test devices, and the common gate contact for all samples. The inset shows the graphene ribbons’ orientation; (c) Source-drain resistance of the graphene ribbon array with the filling factor r = 0.2 as a function of gate-source voltage, black circles are the experimental data. The red line is the fit using (1).
Fig. 2.
Fig. 2. The MIR measurements of Tr(ω,ΔVg)/Tr(ω,VCNP) of GNRs with the filling factor r = 0.8 at values of the gate-source voltages ΔVg = 10 V (green), 30 V (violet) and 50 V (blue). The red curve shows a fit by (3) for ΔVg = 50 V with EF = 166 meV.
Fig. 3.
Fig. 3. Far-infrared extinction spectra, 1 – T/TCNP, of the graphene nanoribbon array with the filling factor r = 0.5 measured (a) for TE and (b) for TM polarizations for EF = 226 meV (red), EF = 288 meV (green), EF = 303.4 meV (blue) on the holes side. In the TE modes, the extinction spectra exhibit Drude-like dependences and are fitted to (4) (black curves). In the TM modes, the extinction spectra are fitted to (5) (black curves).
Fig. 4.
Fig. 4. (a) Drude peak widths, Г, and (b) Drude oscillator strengths, D, as functions of EF obtained from the extinction spectra of the unpatterned graphene (violet) and GRAs with the filling factor r = 0.2 (black), 0.4 (red), 0.5 (blue) and 0.8 (green).
Fig. 5.
Fig. 5. The derivatives of the Drude peak width (a) and that of the Drude oscillator strength (b) with respect to the Fermi energy as functions of the filling factor (black squares with error bars), the canonical model predictions (blue lines), and the interacting theory (red circles).
Fig. 6.
Fig. 6. Plasmon as a function of EF for GRAs (square symbols) with the filling factor r = 0.8 for electrons (orange) or holes (violet), r = 0.5 for holes (green), r = 0.4 for electrons (blue), r = 0.2 for electrons (gray) or holes (red). The solid curves show predictions of the canonical (red) and interacting (black) theories. The shadow area represents different values of parameter Λ(r) in (13) corresponding to r varying from 0.2 to 0.8.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R s d = L G N R r W G N R 1 e μ n C N P 2 + C o x 2 ( V g V C N P ) 2 / e 2 ,
E x t . ( ω , Δ V g )   =   1     T r ( ω , Δ V g ) / T r ( ω , V C N P ) ,
T r ( ω , Δ V g ) / T r ( ω , V C N P ) = A tanh ( ω 2 | E F | C ) + B ,
E x t . ( ω ) = 2 D D π Γ D 2 ω 2 + Γ D 2 + y 0 ,
E x t . ( ω ) = 2 D p π ω 2 Γ p 2 ( ω 2 ω p 2 ) 2 + ω 2 Γ p 2 + y 0 ,
D i n t = 0 ( 1 T ( E F , ν , ω ) T 0 ( ω ) ) d ω ,
D int = r 2 π α n 01 E F ν + α E F r / n 01 ν + 2 α E F r / n 01 .
Γ int = ν + r 2 α n 01 E F .
Δ D ( E F , r ) = D ( E F , r ) D C ( r ) .
( Δ D ) / E F = r 2 π α / n 01 .
( Δ D ) E F = r 2 π α n 01 ( ν ) 2 + 2 ν α E F r / n 01 + 2 ( α E F r / n 01 ) 2 ( ν + 2 α E F r / n 01 ) 2 ,
ω p i σ = Λ ( r ) 2 π q κ ,
ω p = 2 π e 2 Λ ( r ) W κ E F 2 ν 2 .

Metrics