Abstract

We theoretically investigated the stable plasmonic trapping of sub-50nm targets using integrated gold-graphene V-trench with extremely deep trapping potential well. A hybrid plasmonic trapping model is self-consistently built, which considers the surface plasmons excitation for supporting the scattering and gradient optical forces on the diffraction-limit broken nano-scale. It is demonstrated that trapping of 40 nm gold nano-sphere within the designed hybrid nano-V-trench is achieved via optimal laser intensity in visible spectra. More interestingly, it is observed that the hybrid nano-V-trench forms a vertical potential well having an extremely deep potential well of 85 KBT on the trapped 40 nm gold particle. Formation of an extremely high potential well can be explained by the perspective of localized electric field enhancement inside the nano-V-trench, which was reinforced by the involvement of graphene plasmons in the hybrid plasmonic system. This work can be helpful for well understanding of nanoparticles trapping with high stability, which is useful for the nano-manipulations in the applications of quantum dots lighting, SERS nano-sensor and nano sphere plasmonic lithography.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Smart manipulation and characterizations of nanoscale particles via non-contacted optical route can be highly expected for nano-manipulations in the fields of molecule biosciences and nanosciences [18].Plasmonic optical trapping offers the intrinsic advantage over the conventional optical tweezers when it comes to trapping and manipulation of small targets on subwavelength size [1,2, 9,10] .Until now, much attention has been drawn in to plasmonic nanostructure assisted optical trapping due to their extraordinary capability of offering strong, sub-wavelength energy confinement while creating a high optical gradient [1,11,12].

Physically, the plasmonic trapping is supported by the resonant excitation of the plasmonic nanostructures due to the photon energy matching to that of the surface plasmons. The strong plasmonic trapping can be well-defined at the plasmon resonance state of nano-structures [2,13,14]. A wide range of plasmonic structures like nanoholes, nano-rings and nanorods have been reported for the plasmonic tweezers for the specific applications [1,1517]. Among them, the V-shaped trenches have found huge potential for introducing robust trapping and manipulation under relatively low incident laser power and they are reliable for stable trapping due to its deeper potential wells [1821]. Recently, it is reported that graphene as an atomic layer of graphite with a honey-comb lattice structure have found huge potential in enhancing the plasmonic field enhancement and modifying the resonance spectrum [2226]. Our recent works also proved that not only does graphene intrinsic plasmons that are tunable and adjustable, but a hybrid graphene-gold V-trench promises a variety of exciting phenomena like enhancement of electric field gradients. [24,27,28].As a result, the enhanced e-field gradients can be greatly beneficial for the stable trapping due to the narrowing trapping potentials from the space localized hotspot [29]. Nevertheless, as the trapping particle goes to even smaller on molecule or quantum scales, the thermal fluctuation originating from Brownian motion still becomes dominant in deteriorating the trapping stability [2,9,10,30]. An alternative method to overcoming the Brownian motion is to increase the laser power of the trapping geometry. In fact, high optical power trapping leads to possible optical damage of the trapped specimen and this could highly subjective when trapping and manipulating biological cells or flexible electronic devices [9,31]. It is still a challenging for exploring the highly stable plasmonic nano-trapping on sub-50 nm scale from both theoretical and practical aspects due to the potential interest in stably arranging the nanodots for applications in the fields of quantum dots lighting, SERS nano-sensor and nano sphere plasmonic lithography etc. [3235].

In this paper, we theoretically investigated the stable trapping of 40 nm gold particle and flexible manipulation of other sized nanoparticles made of engineering materials from metal to semiconductor by designing the integrated gold-graphene plasmonic V-trench. The trapping forces and potential well within the V-trench are modeled and numerically analyzed in details using finite element method (FEM). By considering the hybrid nano-V-trench architecture composed of gold and graphene, we have shown the stable optical trapping of 40 nm gold nanoparticle immersed in water, which is well achieved with the peak potential well depths of 85 KBT. Formation of extremely high potential well is explained as the localized electric field enhancement inside the graphene hybrid nano-V-trench.

2. Structure design and modelling

Proposed gold- graphene integrated hybrid plasmonic nano V-trench optical trap is illustrated in Fig. 1. A 2D plasmonic simulation model which is depicted in Fig. 1 (b) is designed and investigated to study the plasmonic optical trapping characteristics and stable optical trapping. The 240 nm wide plasmonic nano V-trench optical trap having a 70° slope is fabricated out of a 350 nm thin gold (Au) film which is deposited on a monolayer (0.335 nm thin) of graphene. The entire hybrid plasmonic V-trench optical trap nanostructure is fabricated on a silica (SiO2) substrate. The geometry of the optical trap is kept a constant throughout the investigation. Whole nanostructure is immersed in liquid which serves as the medium for trapping particles and the V-trench geometry is irradiated with a focused laser beam vertically from above as shown in the Fig. 1(a) such that the polarization direction of light is perpendicular to the plane of incident light which matches the momentum of plasmons. A perfect matching layer (PML) is defined surrounding the whole nano trench geometry and the immersed liquid environment.

 figure: Fig. 1.

Fig. 1. (a) 3D schematic of the hybrid gold-graphene V-trench plasmonic nanotrap with gold sphere inside the trench being trapped with trapping laser from the top, (b) 2D simulation schematic of the hybrid gold-graphene V-trench plasmonic nanotrap.

Download Full Size | PPT Slide | PDF

Triangular FEM mesh with definite nano-scale geometry has been selected to carryout accurate FEM process during the simulation. Near-field scattering phenomena in the nano-trench is modeled by the Helmholtz electromagnetic equation where we obtained the numerical solutions of the Helmholtz equation via solving the built matrix. Analytical dielectric function of gold and other materials used in the simulation model are extracted from the experimental datum via numerical fitting [36]. 3D schematic of the proposed hybrid plasmonic nano V-trench optical trap is illustrated in Fig. 1 (a). Chemical vapor deposition (CVD) technique and the graphene transfer methods is used to coat a monolayer of graphene on the silica (SiO2) substrate. Furthermore, using electron beam evaporation technique, a gold film is coated on top of the graphene layer where the nano V-trench is milled on the gold film using a focused ion-beam (FIB) milling technique [37,38].

The surface plasmon can be resonantly excited depending on the material used in the plasmonic structure, shape and sizes of the structure, incident laser wavelength and the effects of interactions between particles in the ensemble. Plasmonic coupling causes the localized electric field enhancement, which augments the trapping force. But unlike non-graphene plasmonic optical tweezers, localized field enhancement can be flexible-tuned by finely altering the Fermi level of the graphene layer. Fermi energy (EF) of graphene is given by [39];

$${\textrm{E}_\textrm{F}} = \hbar {\textrm{v}_\textrm{F}}{\textrm{k}_\textrm{F}} = \hbar {{\mathbf v}_{\mathbf F}}\sqrt {\mathrm{\pi }{\textrm{n}_{\textrm{g},2\textrm{D}}}} $$
where $\hbar$= Modified Planck’s constant = 6.582 × 10−16 eV.s, vF = Fermi velocity ≈ 1× 106 m/s, kF = Fermi wave vector, ng,2D= carrier concentration in two-dimensional graphene sheet.

Rayleigh approximation has been taken in to account throughout the investigation for all trapped particles which are smaller than the wavelength of the incident trapping laser. Plasmonicly enhanced local electric field is confined within the near-field of the trap generating a considerably strong field gradients and large local field intensities, in return augmenting optical forces acting on the trapped particle to create a strong stable optical trap. Optical forces are calculated based on the dipole approximation which can be determined as follows by considering a nanosphere of radius “a” [40,41];

$${\boldsymbol F} = \frac{1}{4}{\varepsilon _0}Re\{{{\alpha_0}} \}\nabla {|{\boldsymbol E} |^2} + \frac{{n\sigma }}{{2c}}\{{{\boldsymbol E} \times {{\boldsymbol H}^\ast }} \}+ \frac{\sigma }{2}Re\left\{ {i\frac{{{\varepsilon_0}}}{{{{\boldsymbol k}_0}}}({{\boldsymbol E}.\nabla } ){{\boldsymbol E}^\ast }} \right\}$$
where ε0 = Vacuum dielectric permittivity, α0 = Polarizability of a point-like particle, E = Incident electric field, n = Refractive index of surrounding medium, σ = Total cross-section of the particle = k Im (α0), c = Speed of light, H = Incident magnetic field, k0 = Wave vector in free space.

The trapping potential resulting from the optical forces is a key factor that determines the stability of the optical trap, and it can be obtained by [9];

$$U({{{\boldsymbol r}_0}} )= \mathop \smallint \nolimits_\infty ^{{r_0}} {\boldsymbol F}({\boldsymbol r} ).dr$$

FEM with a fine triangular mesh was used in the core numerical analysis for the investigation of plasmonic optical trapping characteristics. The interaction between the particle trap system and the trapping laser leads the way to the generation of optical forces on the particle. Under the investigation we focused on local electric field behavior inside the trench and trapping force characteristics, trapping potential characteristics and trapping force variations for different immersed mediums. Furthermore it can be pointed out that, wide range of nanospheres can be well manipulated while the proposed hybrid gold-graphene V-trench plasmonic nanotrap being immersed in water and specifically 40 nm gold nanosphere can be stably trapped within the geometry.

3. Results and discussion

As shown in Fig. 2 electric field distribution color maps inside hybrid plasmonic V-trench optical trap with 40 nm gold nanoparticle which is being manipulated at 280 nm trap depth with different incident wavelengths, an evident localized electric field enhancement can be observed at resonance wavelength. Color-map representing the resonance condition undoubtedly demonstrates a local electric field enhancement inside the graphene based nano-V-trench. Localized field enhancement can apparently be characterized as optical bondage in the nanogap [42]. Incident light with the resonance wavelength causes the excitation of localized surface plasmons inside the hybrid nano-V-trench| particle system where a strong light scattering occurs in an appearance of a local electromagnetic field enhancement [43].

 figure: Fig. 2.

Fig. 2. Electric field distribution color maps inside the nanotrench while 40 nm gold nanoparticle being kept at y = 280 nm position with respect to variation in the wavelength of the incident light beam.

Download Full Size | PPT Slide | PDF

When the Localized Surface Plasmon Resonance (LSPR) condition is satisfied, the electric fields in the vicinity of the particle’s surface are greatly enhanced [16] and moreover in the presence of visible light irradiation the gap-mode excitation comes in to the action at the resonance wavelength which leads to gap-mode transitions resulting remarkable enhancement in the electromagnetic field of the incident light inside the trapping nano-V-trench. At 690 nm incident wavelength a clear localized electric field enhancement can be seen. The electric field spatial distribution inside the V-trench region and the region near to the surface of the trapped 40 nm gold-particle are strongly concentrated. These regions where stronger electric field enhancements exist are often known as hot spots. Previous studies have proven that metallic nanostructures such as nanogap, nano-junction, nanoantenna, nanobowtie, can act as small light sources in the nanospace [42]. Gap-mode field localization supported electric field gradient inside the V trench can be significantly enhanced irrespective of the diffraction-limit at nanoscale, which is greatly beneficial for nanoscale optical trapping.

In comparison to a homogeneous gold (Au) nano-V-trench plasmonic optical trap with same dimensions and irradiation conditions, proposed hybrid gold-graphene V-trench trap exhibits an obvious augmentation in local electric field enhancement (|E/E0|) inside the V-trench (Fig. 3) . An electric field enhancement of more than 3.5 times can be clearly observed for the graphene based nano-V-trench optical trap in visible spectral range from 630 nm to 700 nm. At 690 nm both field enhancements reach their maximum values, 5.25 for graphene integrated hybrid plasmonic optical tweezer and 4.625 for homogeneous gold plasmonic optical tweezer respectively. It is a 13.6% local electric field enhancement in hybrid gold-graphene V-trench with respect to the homogeneous gold V-trench based plasmonic optical tweezer. It should be mentioned that the Fermi level of the graphene monolayer of hybrid gold-graphene V-trench is constantly maintained at 0.2 eV during the field enhancement comparison in the given spectra. Significant electric field enhancement is caused due to the presence of graphene plasmons which alters the plasmonic environment of the hybrid gold-graphene V-trench optical tweezer.

 figure: Fig. 3.

Fig. 3. Comparison of local electric field enhancement (|E/E0|) inside the nano-V-trench between gold (Au) based plasmonic nano-V-trench optical tweezer and gold and graphene based hybrid plasmonic nano-V-trench optical tweezer with monolayer of graphene (thickness 0.335nm). Laser power intensity = 4 × 109 W/m2, immersed medium = water (refractive index (n) = 1.33).

Download Full Size | PPT Slide | PDF

Graphene with its high intrinsic electron mobility which can be high as 200,000 cm2/Vs adds an extra boost to the total plasmonic field inside the nano-V-trench. Furthermore it is a well-known fact that electron mobility of graphene can be altered by changing the Fermi level which could be useful to achieve tunable plasmonic environment for nanoscale optical traps [23]. The vertical trapping force (Fy) as a function of the vertical (y-axis) displacement locus of a 40 nm gold particle immersed in oil with respect to different graphene Fermi levels is illustrated in Fig. 4 (a). Maximum trapping forces can be achieved at 237 nm above the bottom of the V-trench by tuning the Fermi level at resonance wavelength 670 nm. More importantly, it can be observed that alteration in Graphene Fermi energy leads to changes in vertical trapping forces inside the V-trench. This clearly indicates that trapping force for manipulating the 40 nm gold sphere inside the trench can be actively tuned by alteration in Fermi energy of monolayer graphene which can be made possible with electrostatic gating of graphene [24,25]. Tunability of the vertical trapping force exhibits the remarkable ability of graphene plasmons to alter the local electric field inside the trap. Changes of the Fermi energy would lead to a simultaneous change in the interband threshold and the interband transition owing to the unique linear dispersion relation of graphene. As a result, tunable Fermi energy leads to tunable surface optical conductivity, which includes the contributions from intraband transitions and interband transitions of excited graphene [44]. This phenomena in the nano V-trench optical trap can be attributed as the plasmonic hybridization in to the total plasmonic environment by graphene and gold plasmons. It occurs with the coupling between charge carriers in monolayer of graphene and gold V-trench which results in LSPR that is considerably stronger than the LSPR of homogeneous gold nano V-trench of same dimension [45].Fig. 4 (b) illustrates the vertical trapping force acting on the particle as a function of trapping particle size with respect to different types of nanoparticles. Plasmonic coupling associated between the particle and the optical trap, deviates based on the particle size and particle refractive index. Strongest trapping force can be predicted for a 38 nm size gold nanoparticle with the magnitude of 9.2 pN. Compared to dielectric nanoparticles, gold exhibits strongest plasmonic coupling due to its high conductivity and polarizability and influence of LSP enhanced local electric-field in the vicinity of the particle [2].

 figure: Fig. 4.

Fig. 4. (a) Vertical trapping force as a function of particle’s vertical displacement locus (y-axis) with respect to three different Fermi energy levels of the monolayer graphene (thickness = 0.335 nm). Immersed medium: oil (n=1.518). Laser power intensity = 4 × 109 W/m2. Particle = 40 nm gold nanoparticle. (b) Evolution of the vertical trapping force Fy for particles made of different materials (Gold (Au), silica glass (SiO2; n = 1.54), polystyrene (PS; n = 1.59), Sapphire (n = 1.77), silicon nitride (Si3N4; n = 2.2) and titanium dioxide (TiO2; n = 2.7)) as a function of particle size. Particle is kept stationary at 280 nm vertical position while being immersed in water and irradiated by 4 × 109 W/m2 incident laser power at 670 nm fixed wavelength

Download Full Size | PPT Slide | PDF

In the other hand, strong trapping forces acting on the particle are associated with the resonance condition within the plasmonic optical trap. Resonance is determined by absorption and scattering which are dependent on the shape, size and the dielectric constant of the trapped particle and plasmonic trap itself. Surface geometry of the trapped nanoparticle changes with the change in the shape or size of it. The change in surface geometry causes a shift in the electric field density on the particle surface which in return causes a change in the oscillation frequency of the electrons, generating different cross-sections for the optical properties including absorption and scattering [46]. Figure 5 shows trapping force acting on 40 nm gold particle in different immersed mediums (water (n = 1.33), blood plasma (n = 1.351), ethanol (n = 1.361), formamide (n = 1.428), glycerin (n = 1.473) to oil (n = 1.518)). The vertical trapping force spectra of gold nano particle in all surrounding immersed mediums have valley that indicates maximum trapping force. The maximum trapping force position of the 40 nm gold nano particle is found to be redshift as the surrounding refractive index of the immerse medium increases. As the refractive index increases from 1.33 (water) to 1.518 (oil) the maximum vertical trapping force on the particle gradually increase from 16.01 pN to 20.6 pN. This fascinating phenomena can be well explained by focusing on the factors that determines LSPR. For a single plasmonic nanoparticle, the localized plasmonic peak position, absorption and scattering yields and the plasmon field intensity and distribution are determined by its shape, size, material, and dielectric constant of the surrounding immerse medium.

 figure: Fig. 5.

Fig. 5. Vertical trapping force acting on a 40 nm gold particle as a function of incident trapping laser spectra for different surrounding mediums of the optical trap; Water n=1.33, Blood Plasma n=1.351, Ethanol n = 1.361, Formamide n = 1.428, Glycerin n = 1.473 and Oil n = 1.518. Trapping laser power intensity 4 × 109 W/m2.

Download Full Size | PPT Slide | PDF

When the immerse medium (dielectric medium) inside the hybrid gold-graphene V-trench is changed, the plasmon field is distorted, and the plasmonic absorption and scattering spectra could shift differently. In other words LSPR frequency can be shifted through alteration of surrounding medium. These shifts are basically due to the electromagnetic interactions between the localized modes which are generally of a dipolar nature [47], [48]. The red-shift of the maximum trapping force with increasing refractive index of the immersed medium is caused due to the coupling of the localized surface plasmon with the polarization dipoles in the dielectric surrounding medium inside the nano-V-trench. Higher refractive index dielectric materials have higher electric dipole polarization density, therefore resulting in stronger coupling to surface plasmons with red-shift in the incident laser spectra [49]. Many of potential applications of the tunable force via different environment mediums lies in the fields of microbiology and genetic engineering. For an example the test liquid Formamide used in this experiment is mostly used in ds-DNA manipulation. So tunable force via different environment in the proposed optical trap can be employed to compare interaction kinetics between ds-DNA and Formamide and other liquids [50].

To better illustrate the stable trapping capability of an extremely small target particle with proposed hybrid gold-graphene V-trench plasmonic optical trap, it is essential to demonstrate the existence of an equilibrium position at 2D space with deep trapping potential well. Figure 6 illustrates trapping force acting on a 40 nm gold particle and corresponding potential well in both x and y directions inside the V-trench. Trapping force and potential have been calculated considering locus of the target particle inside the 2D space of the optical trap. Figure 6 (a) shows the vertical trapping force acting on the particle at different positions of its locus in the y-axis and the corresponding trapping potential-well. Related displacement locus is shown in Fig. 6 (b). It is noted that all the trapping forces and potential wells are calculated with 4 × 109 W/m2 laser power intensity at 670 nm incident wavelength. Results show that 40 nm gold particle can be stably trapped at 260 nm above the bottom of the V-trench where the trapping potential reaches its maximum potential well depth of 85 KBT (where KB is the Boltzmann’s constant, and T = 300 °K which is the trapping temperature). Generally an optical trap with potential depth larger than 10 KBT can be considered as stable [2,9]. Such deep potential wells are essential to damp the Brownian motion induced by the liquid immerse medium inside the trap [2,9]. It should be noted that similarly high potential-well depths had been recorded with other literatures for stable optical trapping [47]. Moreover at 260 nm y-position a clear vertical equilibrium can be seen on the trapped particle as there’s no vertical trapping force (Fy=0) acting on it. The transverse trapping force acting on the particle at different positions of its locus in the x-axis and the corresponding trapping potential-well are shown in Fig. 6 (c). It can be observed that the deepest potential well for the particle moving along the x-axis reaches at x=0 with a potential depth of 48 KBT which also exceeds the 10 KBT stable trapping margin [2,9].Strong trapping forces in piconewton range and extremely deep potential wells are caused by plasmonic hybridization effect, which occurs between the Gap-Surface Plasmons (GSPs) that are confined between the sidewalls of the gold-graphene integrated V-trench and the Localized Surface Plasmons (LSPs) confined at the bottom of the V-trench and LSPs on the trapped 40 nm gold particle. This leads to hybridization enhanced electric fields inside the nano V-trench optical trap and the narrow gap between the trapped particle and the V-trench, which in return induces strong trapping forces and extremely deep potential well on the trapped 40 nm gold particle [51].Furthermore 40 nm gold particle is at equilibrium state with no transverse trapping force (Fx = 0) when it reaches to the deepest potential-well at x=0. With the results obtained from both Fig. 6 (a) and Fig. 6 (c), it can be clearly concluded that the hybrid gold-graphene V-trench can perform a stable optical trapping (Fx = 0, Fy = 0 and potential well deeper than 10 KBT) on a 40 nm gold particle at an equilibrium position located at the center of the transverse direction (x=0) 260 nm above the bottom of the V-trench. And more interestingly, incident laser intensity (4 × 109 W/m2) used to demonstrate stable trapping in this research is several orders lower than intensities used in conventional optical traps and some plasmonic optical traps [1,52], which would be a plus point in trapping soft target particles vulnerable to laser induced heating.

 figure: Fig. 6.

Fig. 6. (a): The vertical trapping force exerted on the 40 nm gold particle and the potential energy distribution as a function particle’s displacement locus along the y-axis of the hybrid gold-graphene V-trench optical trap working at 670 nm wavelength. (b): Illustration of the displacement locus of the particle along y-axis. (c) The transverse trapping force exerted on the particle and the potential energy distribution as a function particle’s displacement locus along the x-axis of the V-trench optical trap. (d): Illustration of the displacement locus of the particle along x-axis. (Input power intensity is 4 × 109 W/m2, nanoparticle is immersed in water and Fermi level of graphene monolayer is 0.2 eV.)

Download Full Size | PPT Slide | PDF

4. Conclusion

In summary, we propose a novel hybrid gold-graphene V-trench plasmonic optical trap that is capable of stable manipulating different types of sub-50 nm nanoparticles by hybridization of graphene with gold nano-V-trench, we observed a 13.6% increase in electric field enhancement with respect to homogeneous gold nano-V-trench. It is revealed that 40 nm gold particle was stably trapped in an equilibrium position inside gold-graphene V-trench with extremely large potential-well depth (85 KBT) under relatively lower laser power intensity. Tunability of trapping forces was also achieved by varying the Fermi level graphene layer. The proposed hybrid gold-graphene V-trench plasmonic optical trap extremely deep potential well would be promising for integration of practical applications such as lab-on-chip devices for manipulation and analysis of biological entities, such as vesicles and viruses. .

Funding

National Key Research and Development Program of China (2017YFB1104700); National Natural Science Foundation of China (61775177, 61875158); Shaanxi Province National Science Foundation (2019JM-070); The International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies, the Fundamental Research Funds for the Central Universities.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019). [CrossRef]  

2. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]  

3. X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013). [CrossRef]  

4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef]  

5. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011). [CrossRef]  

6. O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009). [CrossRef]  

7. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proceedings of the National Academy of Sciences86(20), 7914–7918 (1989).

8. A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990). [CrossRef]  

9. A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012). [CrossRef]  

10. L. Wang, Y. Cao, T. Zhu, R. Feng, F. Sun, and W. Ding, “Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity,” Opt. Express 25(24), 29761 (2017). [CrossRef]  

11. D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019). [CrossRef]  

12. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012). [CrossRef]  

13. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]  

14. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003). [CrossRef]  

15. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007). [CrossRef]  

16. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011). [CrossRef]  

17. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011). [CrossRef]  

18. A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013). [CrossRef]  

19. C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015). [CrossRef]  

20. M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018). [CrossRef]  

21. Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014). [CrossRef]  

22. X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016). [CrossRef]  

23. J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016). [CrossRef]  

24. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016). [CrossRef]  

25. G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015). [CrossRef]  

26. H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019). [CrossRef]  

27. M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011). [CrossRef]  

28. R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019). [CrossRef]  

29. T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014). [CrossRef]  

30. T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702 (2007). [CrossRef]  

31. T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020). [CrossRef]  

32. C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018). [CrossRef]  

33. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef]  

34. E. Mcleod and C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640 (2009). [CrossRef]  

35. Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011). [CrossRef]  

36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]  

37. S.X. Xia, X. Zhai, Y. Huang, J.Q. Liu, L.L. Wang, and S.C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052 (2017). [CrossRef]  

38. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28(7), 1596 (2011). [CrossRef]  

39. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015). [CrossRef]  

40. M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).

41. G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707 (2015). [CrossRef]  

42. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010). [CrossRef]  

43. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]  

44. Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

45. Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014). [CrossRef]  

46. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006). [CrossRef]  

47. G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017). [CrossRef]  

48. V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).

49. J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24(15), 17259 (2016). [CrossRef]  

50. A. Bhattacharyya, “Single molecule study of the reaction between DNA and formamide,” Talanta. 55(5), 943–949 (2001). [CrossRef]  

51. W.H. Huang, S.F. Li, H.T. Xu, Z.X. Xiang, Y.B. Long, and H.-D. Deng, “Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202 (2018). [CrossRef]  

52. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014). [CrossRef]  

References

  • View by:

  1. D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).
    [Crossref]
  2. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  3. X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
    [Crossref]
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref]
  5. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
    [Crossref]
  6. O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
    [Crossref]
  7. A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proceedings of the National Academy of Sciences86(20), 7914–7918 (1989).
  8. A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
    [Crossref]
  9. A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref]
  10. L. Wang, Y. Cao, T. Zhu, R. Feng, F. Sun, and W. Ding, “Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity,” Opt. Express 25(24), 29761 (2017).
    [Crossref]
  11. D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
    [Crossref]
  12. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref]
  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [Crossref]
  14. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003).
    [Crossref]
  15. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [Crossref]
  16. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref]
  17. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011).
    [Crossref]
  18. A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013).
    [Crossref]
  19. C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
    [Crossref]
  20. M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018).
    [Crossref]
  21. Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
    [Crossref]
  22. X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
    [Crossref]
  23. J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
    [Crossref]
  24. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
    [Crossref]
  25. G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015).
    [Crossref]
  26. H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
    [Crossref]
  27. M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
    [Crossref]
  28. R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
    [Crossref]
  29. T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
    [Crossref]
  30. T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702 (2007).
    [Crossref]
  31. T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020).
    [Crossref]
  32. C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018).
    [Crossref]
  33. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
    [Crossref]
  34. E. Mcleod and C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640 (2009).
    [Crossref]
  35. Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
    [Crossref]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  37. S.X. Xia, X. Zhai, Y. Huang, J.Q. Liu, L.L. Wang, and S.C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42(15), 3052 (2017).
    [Crossref]
  38. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28(7), 1596 (2011).
    [Crossref]
  39. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
    [Crossref]
  40. M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).
  41. G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707 (2015).
    [Crossref]
  42. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
    [Crossref]
  43. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  44. Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).
  45. Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
    [Crossref]
  46. S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref]
  47. G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
    [Crossref]
  48. V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).
  49. J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24(15), 17259 (2016).
    [Crossref]
  50. A. Bhattacharyya, “Single molecule study of the reaction between DNA and formamide,” Talanta. 55(5), 943–949 (2001).
    [Crossref]
  51. W.H. Huang, S.F. Li, H.T. Xu, Z.X. Xiang, Y.B. Long, and H.-D. Deng, “Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202 (2018).
    [Crossref]
  52. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref]

2020 (1)

T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020).
[Crossref]

2019 (4)

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
[Crossref]

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).
[Crossref]

D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
[Crossref]

2018 (3)

M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018).
[Crossref]

C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018).
[Crossref]

W.H. Huang, S.F. Li, H.T. Xu, Z.X. Xiang, Y.B. Long, and H.-D. Deng, “Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity,” Opt. Express 26(5), 6202 (2018).
[Crossref]

2017 (3)

2016 (4)

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

J. Guo, Z. Li, and H. Guo, “Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing,” Opt. Express 24(15), 17259 (2016).
[Crossref]

2015 (4)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707 (2015).
[Crossref]

G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015).
[Crossref]

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

2014 (4)

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

2013 (2)

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013).
[Crossref]

2012 (2)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

2011 (8)

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011).
[Crossref]

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28(7), 1596 (2011).
[Crossref]

2010 (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

2009 (2)

E. Mcleod and C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640 (2009).
[Crossref]

O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
[Crossref]

2008 (1)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

2007 (2)

T. J. Davis, “Brownian diffusion of nano-particles in optical traps,” Opt. Express 15(5), 2702 (2007).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

2006 (1)

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

2003 (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003).
[Crossref]

2001 (1)

A. Bhattacharyya, “Single molecule study of the reaction between DNA and formamide,” Talanta. 55(5), 943–949 (2001).
[Crossref]

1990 (1)

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Acimovic, S. S.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

Alharbi, R.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
[Crossref]

Arnold, C. B.

Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
[Crossref]

E. Mcleod and C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640 (2009).
[Crossref]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

Ashkin, A.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proceedings of the National Academy of Sciences86(20), 7914–7918 (1989).

Berthelot, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

Bhattacharyya, A.

A. Bhattacharyya, “Single molecule study of the reaction between DNA and formamide,” Talanta. 55(5), 943–949 (2001).
[Crossref]

Block, S. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Boltasseva, A.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

Bouloumis, T. D.

T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).

Bozhevolnyi, S. I.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Dispersion of strongly confined channel plasmon polariton modes,” J. Opt. Soc. Am. B 28(7), 1596 (2011).
[Crossref]

Cao, Y.

Cheah, C. C.

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

Chen, C.H.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Chen, C.M.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Chen, F.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Chen, K.-P.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Chen, Z. X.

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Cheng, C.-W.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Chormaic, S. N.

T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020).
[Crossref]

D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).
[Crossref]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chuang, C.H.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Chung, Y.-C.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Craciun, M.

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Cui, Y.

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707 (2015).
[Crossref]

Davis, T. J.

Deng, H.-D.

Devaux, E.

Ding, W.

Dionne, J. A.

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

Dong, Y.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Du, G.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Du, Y.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Dziedzic, J. M.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proceedings of the National Academy of Sciences86(20), 7914–7918 (1989).

Ebbesen, T. W.

El-Sayed, M. A.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref]

Emani, N. K.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

Eustis, S.

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref]

Euteneuer, U.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Fardel, R.

Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
[Crossref]

Fazal, F. M.

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Feng, R.

Ferri, F.

V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Gu, B.

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
[Crossref]

Guo, H.

Guo, J.

Gwo, S.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Habibzadeh-Sharif, A.

M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Han, Z.

Hong, K.-B.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Hou, X.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Hsu, C.-Y.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Hu, S.

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

Huang, W.H.

Huang, Y.

Huang, Z.-T.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Irannejad, M.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
[Crossref]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, P. H.

O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
[Crossref]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Käll, M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

Kildishev, A. V.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

Kim, J. D.

J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Kotsifaki, D. G.

D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
[Crossref]

D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).
[Crossref]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

Kristensen, A.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011).
[Crossref]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Lankanath, D.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

Lee, C.W.

C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018).
[Crossref]

Lee, Y.-G.

J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

Letters, Chinese Optics

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Li, H.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Li, J.-H.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Li, S.F.

Li, X.

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

Li, Z.

Lin, T.-R.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Liu, J.Q.

Liu, W.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Liu, Y.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

Long, Y.B.

Lu, T.-C.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Lu, Y.-Q.

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Ma, Y.

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

Maes, B.

G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015).
[Crossref]

Makropoulou, M.

D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Maragò, O. M.

O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
[Crossref]

Marega, E.

V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Mcleod, E.

E. Mcleod and C. B. Arnold, “Array-based optical nanolithography using optically trapped microlenses,” Opt. Express 17(5), 3640 (2009).
[Crossref]

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

Ming, Y.

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Mortensen, N. A.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011).
[Crossref]

Qin, S.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Qu, Y.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Quidant, R.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rivera, V.

V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).

Rosolen, G.

G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Rui, G.

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

G. Rui, X. Wang, and Y. Cui, “Manipulation of metallic nanoparticle with evanescent vortex Bessel beam,” Opt. Express 23(20), 25707 (2015).
[Crossref]

Russo, S.

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Sahafi, M.

M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018).
[Crossref]

Saleh, A. A.

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

Schliwa, M.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

Schutze, K.

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

Searfetinides, A. A.

D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
[Crossref]

Shalaev, V. M.

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

Shalin, A. S.

A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013).
[Crossref]

Shi, L.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

Shoji, T.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Smith, C. L. C.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003).
[Crossref]

Stenger, N.

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

Sukhov, S. V.

A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013).
[Crossref]

Sun, D.

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

Sun, F.

Sutherland, D. S.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Tarucha, S.

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

Tsai, Y.C.

Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
[Crossref]

Tseng, F.G.

C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018).
[Crossref]

Tsuboi, Y.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Uddin, N.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Volkov, V. S.

Wang, L.

Wang, L.L.

Wang, X.

Wang, Z.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

Wen, S.C.

Wu, Z. J.

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Xia, S.X.

Xiang, Z.X.

Xu, H.T.

Xu, X.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

Yamamoto, M.

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Yang, J.-H.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Yang, Q.

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

Yavuz, M.

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
[Crossref]

Yu, M.-W.

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

Yuan, X.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003).
[Crossref]

Zenin, V. A.

Zhai, X.

Zhan, Q.

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Zhang, X.

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

Zhang, X.-J.

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Zhao, Y.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Zhu, T.

Zhu, Y.

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

Zhu, Z.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

AIP Advances (1)

Z. X. Chen, Z. J. Wu, Y. Ming, X.-J. Zhang, and Y.-Q. Lu, “Hybrid plasmonic waveguide in a metal V-groove,” AIP Advances 4(1), 017103 (2014).
[Crossref]

Analytica Chimica Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review,” Analytica Chimica Acta 706(1), 8–24 (2011).
[Crossref]

Appl. Phys. Lett. (1)

Y.C. Tsai, R. Fardel, and C. B. Arnold, “Nanopatterning on rough surfaces using optically trapped microspheres,” Appl. Phys. Lett. 98(23), 233110 (2011).
[Crossref]

Appl. Sci. (1)

T. D. Bouloumis and S. N. Chormaic, “From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping,” Appl. Sci. 10(4), 1375 (2020).
[Crossref]

Automatica (1)

X. Li, C. C. Cheah, S. Hu, and D. Sun, “Dynamic trapping and manipulation of biological cells with optical tweezers,” Automatica 49(6), 1614–1625 (2013).
[Crossref]

Biomicrofluidics (1)

C.W. Lee and F.G. Tseng, “Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis,” Biomicrofluidics 12(1), 011502 (2018).
[Crossref]

Carbon (1)

J. D. Kim and Y.-G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref]

Chem. Soc. Rev. (1)

S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

D. G. Kotsifaki, M. Makropoulou, and A. A. Searfetinides, “Nanometric plasmonic optical trapping on gold nanostructures,” Eur. Phys. J. Appl. Phys. 86(3), 30501 (2019).
[Crossref]

J. Mater. Chem. C (1)

Y. Du, Y. Zhao, Y. Qu, C.H. Chen, C.M. Chen, C.H. Chuang, and Y. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C 2(23), 4683–4691 (2014).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5(4), S16 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

M. Sahafi and A. Habibzadeh-Sharif, “Robust increase of the optical forces in waveguide-based optical tweezers using V-groove structure,” J. Opt. Soc. Am. 35(8), 1905 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (2)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]

Nano Lett. (4)

H. Li, J.-H. Li, K.-B. Hong, M.-W. Yu, Y.-C. Chung, C.-Y. Hsu, J.-H. Yang, C.-W. Cheng, Z.-T. Huang, K.-P. Chen, T.-R. Lin, S. Gwo, and T.-C. Lu, “Plasmonic nanolasers enhanced by hybrid graphene–insulator–metal structures,” Nano Lett. 19(8), 5017–5024 (2019).
[Crossref]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]

A. A. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref]

Nano Today (1)

M. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, “Tuneable electronic properties in graphene,” Nano Today 6(1), 42–60 (2011).
[Crossref]

Nanophotonics (1)

D. G. Kotsifaki and S. N. Chormaic, “Plasmonic optical tweezers based on nanostructures: fundamentals, advances and prospects,” Nanophotonics 8(7), 1227–1245 (2019).
[Crossref]

Nanophotonics. (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics. 4(1), 214–223 (2015).
[Crossref]

Nanoscale (1)

C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, “Gap and channeled plasmons in tapered grooves: a review,” Nanoscale 7(21), 9355–9386 (2015).
[Crossref]

Nat. Nanotechnol. (3)

E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a Twist,” Nat. Nanotechnol. 5(6), 343–348 (2011).

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics 5(6), 318–321 (2011).
[Crossref]

Nature (1)

A. Ashkin, K. Schutze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B. (1)

G. Rosolen and B. Maes, “Asymmetric and connected graphene dimers for a tunable plasmonic response,” Phys. Rev. B. 92(20), 205405 (2015).
[Crossref]

Plasmonics (1)

A. S. Shalin and S. V. Sukhov, “Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon,” Plasmonics 8(2), 625–629 (2013).
[Crossref]

Scanning Probe Microscopy in Nanoscience and Nanotechnology (1)

O. M. Maragò, P. G. Gucciardi, and P. H. Jones, “Photonic force microscopy: from Femtonewton force sensing to ultra-sensitive spectroscopy,” Scanning Probe Microscopy in Nanoscience and Nanotechnology 1, 23–56 (2009).
[Crossref]

Sci. Rep. (3)

X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang, “Enhanced optical gradient forces between coupled graphene sheets,” Sci. Rep. 6(1), 28568 (2016).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

G. Rui, Y. Ma, B. Gu, Q. Zhan, and Y. Cui, “Plasmonic trapping of nanoparticles by metaholograms,” Sci. Rep. 7(1), 1 (2017).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref]

Sensors (1)

R. Alharbi, M. Irannejad, and M. Yavuz, “A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance,” Sensors 19(4), 862 (2019).
[Crossref]

Talanta. (1)

A. Bhattacharyya, “Single molecule study of the reaction between DNA and formamide,” Talanta. 55(5), 943–949 (2001).
[Crossref]

Other (3)

V. Rivera, F. Ferri, and E. Marega, “Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” Plasmonics - Principles and Applications (Intech, 2012).

Y. Dong, Q. Yang, G. Du, F. Chen, N. Uddin, D. Lankanath, X. Hou, and Chinese Optics Letters, vol. 17, no. 7, p. 072501, 2019, T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano. 8(2), 1086–1101 (2014).

A. Ashkin and J. M. Dziedzic, “Internal cell manipulation using infrared laser traps,” Proceedings of the National Academy of Sciences86(20), 7914–7918 (1989).

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) 3D schematic of the hybrid gold-graphene V-trench plasmonic nanotrap with gold sphere inside the trench being trapped with trapping laser from the top, (b) 2D simulation schematic of the hybrid gold-graphene V-trench plasmonic nanotrap.
Fig. 2.
Fig. 2. Electric field distribution color maps inside the nanotrench while 40 nm gold nanoparticle being kept at y = 280 nm position with respect to variation in the wavelength of the incident light beam.
Fig. 3.
Fig. 3. Comparison of local electric field enhancement (|E/E0|) inside the nano-V-trench between gold (Au) based plasmonic nano-V-trench optical tweezer and gold and graphene based hybrid plasmonic nano-V-trench optical tweezer with monolayer of graphene (thickness 0.335nm). Laser power intensity = 4 × 109 W/m2, immersed medium = water (refractive index (n) = 1.33).
Fig. 4.
Fig. 4. (a) Vertical trapping force as a function of particle’s vertical displacement locus (y-axis) with respect to three different Fermi energy levels of the monolayer graphene (thickness = 0.335 nm). Immersed medium: oil (n=1.518). Laser power intensity = 4 × 109 W/m2. Particle = 40 nm gold nanoparticle. (b) Evolution of the vertical trapping force Fy for particles made of different materials (Gold (Au), silica glass (SiO2; n = 1.54), polystyrene (PS; n = 1.59), Sapphire (n = 1.77), silicon nitride (Si3N4; n = 2.2) and titanium dioxide (TiO2; n = 2.7)) as a function of particle size. Particle is kept stationary at 280 nm vertical position while being immersed in water and irradiated by 4 × 109 W/m2 incident laser power at 670 nm fixed wavelength
Fig. 5.
Fig. 5. Vertical trapping force acting on a 40 nm gold particle as a function of incident trapping laser spectra for different surrounding mediums of the optical trap; Water n=1.33, Blood Plasma n=1.351, Ethanol n = 1.361, Formamide n = 1.428, Glycerin n = 1.473 and Oil n = 1.518. Trapping laser power intensity 4 × 109 W/m2.
Fig. 6.
Fig. 6. (a): The vertical trapping force exerted on the 40 nm gold particle and the potential energy distribution as a function particle’s displacement locus along the y-axis of the hybrid gold-graphene V-trench optical trap working at 670 nm wavelength. (b): Illustration of the displacement locus of the particle along y-axis. (c) The transverse trapping force exerted on the particle and the potential energy distribution as a function particle’s displacement locus along the x-axis of the V-trench optical trap. (d): Illustration of the displacement locus of the particle along x-axis. (Input power intensity is 4 × 109 W/m2, nanoparticle is immersed in water and Fermi level of graphene monolayer is 0.2 eV.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E F = v F k F = v F π n g , 2 D
F = 1 4 ε 0 R e { α 0 } | E | 2 + n σ 2 c { E × H } + σ 2 R e { i ε 0 k 0 ( E . ) E }
U ( r 0 ) = r 0 F ( r ) . d r

Metrics