Abstract

In this paper, a novel design strategy that integrates good radiation and broadband low radar cross section (RCS) characteristics based on the concept of metasurface is proposed. The metasurface element adopts an etched cross patch and it directly behaves as a radiating structure. After that, a metasurface-based thinned array antenna A1 and a checkerboard metasurface antenna A2 are designed. The -10 dB operating bandwidth of these two antennas is 13.08–14.92 GHz (13.1%). Compared with the conventional rectangular grid array, A1 and A2 have similar radiation performance along with in-band and out-of-band RCS reduction (RCSR) in any polarized normal incidence. Reasons and merits of different arrangements are analyzed. Simulated and measured results verify the effectiveness of the design strategy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metamaterials refer to a class of artificial structures comprised of periodic or quasi-periodic arrangement of subwavelength units [1]. Since it possesses many novel physical properties that conventional materials do not have, like negative refraction, beam control, and inverse Cherenkov radiation [2], a variety of microwave devices have been invented including perfect metamaterial absorbers (PMA) [3], polarization converters [4], and metamaterial lens [5] during the recent twenty years. Metasurface, as the two-dimensional equivalence of metamaterial, has attracted increasing attention due to its powerful manipulation of electromagnetic waves [68]. Moreover, its merits of low profile, easy fabrication and conformability makes it have enormous application potential and development prospect.

Antenna is a transmission device, which also acts as a transducer between guided wave and free space. Microstrip antenna has the natural characteristic of low profile, so it is easy to be conformal with the platform. Many researches have demonstrated that its integration with metasurface can improve the radiation performance of antenna along with reduce antennas’ influence on aerodynamic performance of the platform [912]. Moreover, current researches on metasurface antennas have expanded from reflective type to transmission one [13,14]. High gain [15,16], low side-lobe level (SLL) [17,18], broadband [19] and other extraordinary characteristics have also been explored in terms of metasurface antennas.

Nowadays, the low RCS platform design has been attached great importance in modern war. As an essential part of the wireless communication system, antenna is the main contributor of the overall RCS [20]. Especially on some platforms with special needs, the simultaneous regulation of radiation and scattering is urgent in need. In the early stage of the research, absorbers [21] or diffuse scattering metasurfaces [22] were placed around the microstrip antenna for RCS reduction. And a gain enhancement was achieved meantime in [22]. Besides, a low RCS antenna was designed by integrating one-dimensional high impendence surface to suppress surface wave [23]. Holographic metasurface could not only be regarded as the radiation parasitic patch, but was also applied to suppress RCS by redirecting the wave propagation [24]. Later in [2527], the integration of radiation and scattering was realized in a true sense. Many novel configurations and strategies were proposed to advance the wireless communication systems and stealth technology.

The researches mentioned above have indeed inspired our thought to some extent, while there are still two problems urged to be solved. One is that in-band RCS reduction has a few sustainable solutions. At present, out-of-band RCS can be largely reduced by the use of FSS radomes [28], but in-band stealth problem is still a relatively tougher one without affecting antenna radiation performance. The other is that once utilizing the theory of phase cancellation, periodic structures are needed, resulting in an increased aperture size and there are few researches on quasi-periodic ones. Thinned array antenna, which is achieved through the elimination of some elements from the regular uniform antenna array according to a certain proportion, or the connection of those elements to the matched load, can not only reduce the weight and cost of the array, but also obtain the narrow beam equivalent to the full array [29]. Thus, it has been successfully applied in satellite and radar systems. As a result, it has great potential in integrating with metasurfaces.

In this paper, a novel design strategy that integrates good radiation and broadband low RCS characteristics in one metasurface is proposed. Different from previous designs, which arrange metasurface units around the antenna, the proposed method is inspired by thinned array so as to integrate radiation and scattering performances simultaneously in one surface. To verify the design strategy, two topologies with different quasi-periodic cell arrangements are presented as examples. Each element acts as a microstrip antenna when fed by a coaxial probe. When illuminated by normal incident waves, the metasurface array antenna exhibits a broadband low RCS characteristic due to the 180° phase difference between the metasurface cell and the dielectric cell. Hence, two antennas we designed realize the RCS reduction in a wideband along with low side-lobe in the radiation performance brought by the thinned array distribution.

2. Results and discussions

2.1 Unit design and array antenna distributions

As a non-rotational symmetric structure, the unit is composed of a top etched cross shaped metal patch layer, a middle dielectric layer and a bottom metal layer. The dielectric is F4B, whose dielectric constant is 2.65, and loss tangent is 0.001. The unit periodic is P=10 mm, and its thickness h=3 mm.Using ANSYS HFSS software to optimize the parameters, values are tabulated in Table 1. The radiation characteristics of the element are analyzed under the radiation boundary and the lumped port feeding mode. The reason why that linear polarized unit cells are employed is because the slot along y-axis has little effect on cross-polarized phase in broadband. As shown in Fig. 1, the impendence bandwidth of |S11| is 13.1% (13.08–14.92 GHz), and the realized gain in the working frequency band is 5.26–6.62 dBi. It is also observed that the deepest resonant frequency lies in 14.0 GHz, so λ0 is defined as the wavelength in the free space at 14.0 GHz.

 figure: Fig. 1.

Fig. 1. Schematic geometry of antenna element. (a) Perspective and (b) top views. (c) Simulated radiation performance: reflection coefficient and realized gain.

Download Full Size | PPT Slide | PDF

Tables Icon

Table 1. Geometrical parameters of the proposed unit

From Fig. 2(a), it can be figured out that the fundamental mode of the patch is (1, 0) mode [30], and the current intensity is strong on the edge of metallic patch as well as the etched bars parallel to the y-axis, which means the current flows as assumed. Figure 2(b) shows the radiation pattern of the unit in 14.0 GHz, which indicates the element has a well-behaved radiation characteristic.

 figure: Fig. 2.

Fig. 2. Simulated radiation patterns of antenna element: (a) current distribution on the radiation patch and (b) E-plane and H-plane radiation patterns at 14.0 GHz. Simulated reflection performance of “0” and “1” unit: (c) reflectance (d) reflective phases under x- and y-polarized incidence.

Download Full Size | PPT Slide | PDF

Because thinned array arrangement is utilized, the grounded substrate between antenna element is a good participant for designing an out-of-phase unit. Therefore, the grounded substrate is regarded as “0” unit, and the element can be seen as “1” unit for phase cancellation. Reflection performances of “0” and “1” unit are shown in Fig. 2(c) and (d). According to the scattering cancellation principle to achieve 10 dB RCS reduction, the phase difference satisfies 180°±37° in the interval of 8.8 GHz–18.0 GHz under the y-polarized incident wave as Fig. 2(d) depicts.

Under the same antenna aperture, thinned array antenna is formed by eliminating some of the elements compared with the full array, so F(θ, φ) can be expressed as Eq. (1) using array theory [31]

$$\textrm{F(}\theta \textrm{,}\varphi \textrm{) = }\sum\limits_{\textrm{n = 0}}^{\textrm{N - 1}} {\sum\limits_{m = 0}^{M - 1} {{e^{j\frac{{2\pi }}{\lambda }[{d_m}(\cos \theta \sin \varphi - \cos {\theta _0}\sin {\varphi _0}) + {d_n}(\sin \theta - \sin {\theta _0}))]}}} } \cdot {f_{mn}},$$
where φ represents the azimuthal direction, and θ represents the elevation direction. fmn refers to 0 when the element is eliminated, or 1 when it is reserved.

Thus, the condition to avoid the emergence of grating lobe can be indicated as

$${d_x},{d_y} < \frac{{\sqrt 2 }}{2}\frac{\lambda }{{1\textrm{ + |}\sin \theta \textrm{|}}}.$$

Here, θ refers to 0°. The unit tile periodicities in x and y directions are dx = dy = 0.467λ0 which are smaller than the value of 0.732λ0. So, the grating lobe suppression is easier for thinned arrays to satisfy. Based on the units above, three configurations of array antennas are designed as Fig. 3 shows. All of them have the same aperture of 60 mm×60 mm (2.80λ0×2.80λ0) with the unit numbers of N1=18, N2=20 and N3=36, respectively.

A1 is designed in the form of metasurface-based thinned array antenna and A2 is designed as a checkerboard coding metasurface-based one. A conventional rectangular grid with the same diameters as A1 and A2 is set as a reference array antenna (RA), so that the strength of the thinned array can be compared and analyzed in the following section.

2.2 Simulation analysis of the radiation performance of metasurface array antennas

Figure 4 depicts the simulated reflection coefficients of the three array antennas. The working frequency band of RA. A1 and A2 is 12.12–13.99 GHz, 12.23–13.77 GHz, and 12.47–14.01 GHz, respectively. As shown in Fig. 5, the radiation performances of the three arrays are simulated. Figure 5(a) plots the realized gain in the broadside direction. As can be seen, the maximum gain of A1, A2 and RA is 18.2 dBi, 16.9 dBi and 18.5 dBi, respectively. The gain of A1 is quite close to RA within the working band, and A2 has no more than 2 dB lower gain compared with RA. As depicted in Fig. 5(b), they all have similar radiation performances in the frequency of 13.5 GHz, and the radiation beam of A1 has a good directivity with 19.8° of half-power beamwidth (HPBW). In addition, it can be noticed that A1 has a lower side-lobe than others due to its advantage of the thinned array. 3-D radiation patterns of A1, A2 and RA are shown in Fig. 5(c)-(e). It can be investigated that the energy which A1 radiates is more concentrated than others. Having understood the advantages of thinned array distribution when radiating, it can be concluded that the distances between adjacent cells in RA are 0.47λ0 so that the decreasing gain is not brought by the excuse of gate lobe. Furthermore, under the condition that all arrays have the same radiation aperture, A1 and A2 can realize similar radiation performance with fewer elements. And for the reason that A2 has an obvious in-band RCS reduction, it has no more than 2 dB gain difference compared with RA, rather than 3 dB in theory.

 figure: Fig. 3.

Fig. 3. The schematic layout of metasurface antennas arrays distributions of A1, A2 and RA.

Download Full Size | PPT Slide | PDF

 figure: Fig. 4.

Fig. 4. Simulated reflection coefficients of the proposed array antennas and reference array antenna.

Download Full Size | PPT Slide | PDF

 figure: Fig. 5.

Fig. 5. The comparison of radiation performances among three array antennas: (a) boresight realized gain and (b) the simulated E-plane radiation patterns. 3-D radiation patterns of (c) A1, (d) A2 and (e) RA at 13.5 GHz.

Download Full Size | PPT Slide | PDF

Therefore, the comparison shows that the radiation performances of array antenna A1 and RA are similar, and the realized gain difference between them is less than 0.8 dB in the operating frequency band. The distinction is that A1 and A2 decrease 50% and 44.4% number of the units and feed structures, respectively. In a word, thinned array antenna can realize high stable gain and more effective radiating with fewer units.

2.3 Simulation analysis of the scattering performance of metasurface array antennas

Figure 6 makes a contrast of monostatic RCS (MRCS) performance among A1, A2 and RA ranging from 12 to 20 GHz. A1 can reduce MRCS from 12.4–20.0 GHz in x-polarization and 12.0–20.0 GHz in y-polarization, while A2 reaches MRCS reduction from 12.3–20.0 GHz in x-polarization and 12.0–20.0 GHz in y-polarization, resulting in in-band and out-of-band RCS reductions simultaneously for both polarizations.

 figure: Fig. 6.

Fig. 6. Monostatic RCSs under (a) x-polarization (θinc=0°, φinc=0°). (b) y-polarization (θinc=0°, φinc=90°). (c)TE and TM polarizations (θinc=0°, φinc=60°) from 12 GHz to 20 GHz. Simulated 3D scattering patterns under (d) x-polarization at 17.0 GHz and (e) y-polarization at 18.0 GHz.

Download Full Size | PPT Slide | PDF

Figure 6(a) suggests the RCS performance under x-polarized incident wave. It is observed that more than 6 dB RCSR is obtained from 14.7 GHz to 19.5 GHz (BW=28.1%) by A1, and from 12.9 to 19.1 GHz (BW=38.8%) by A2. The peak RCS reduction values are 16.4 dB and 16 dB, respectively. The RCSR is the combined result of phase cancellation along with the absorbing. For y-polarized wave, A1 has no less than 6 dB RCSR ranging from 15 to 15.9 GHz and from 17.3 to 19.7 GHz. A2 has 6 dB RCSR in the whole frequency band as shown in Fig. 6(b). At 17.4 GHz, A2 reaches the maximum RCSR up to 41.9 dB. It is noticed in the Fig. 2 that the unit has a structure resonant frequency around 18 GHz. A2 has a better performance in RCS reduction than A1 because it is constituted with periodic structures, avoiding the fringe effect. However, the quasi-periodic A1 can also reduce RCS with a peak value 18.5 dB.

Above all, it can be concluded that the array antennas proposed have the polarization-insensitive characteristic as shown in Fig. 6(c), the low broadband RCS performance when inclined polarization (θinc=0°, φinc=60°) under incidence confirms that the deduction is still kept. 3D scattering patterns are given at two typical frequencies in Fig. 6(d) and (e). The reflective energy from A2 is mainly divided into four directions while the energy from A1 is diffused into multiple directions, so it conveys that thinned arrangement is another method to achieve RCS reduction.

In order to illustrate the strength of A1, the bistatic RCSs at xoz plane and yoz plane are given in Fig. 7. The distributions lead A1 and A2 to manipulate the scattering field in different ways. As Fig. 7 shown, a focused scattering beam is obtained with the peak pointing to normal direction by RA, while A1 diffuses the energy into multiple directions, and A2 mainly reflects incident wave into four spatial directions. As the main merit of A1 in contrary to checkerboard structure A2, the normally impinging plane wave is scattered into random multiple directions. Thus, there is no evident power peak value over the space, leading to an effective suppression of backward reflection. After the analysis on the Fig. 6 and Fig. 7, we can draw the conclusion that the proposed array antennas have stable RCS reduction ability to any incident wave polarization.

 figure: Fig. 7.

Fig. 7. Simulated bistatic RCS under x-polarization (θinc=0°, φinc=0°) (a) xoz plane (b) yoz plane at 17 GHz and under y-polarization (θinc=0°, φinc=90°) (c) xoz plane (d) yoz plane at 18 GHz.

Download Full Size | PPT Slide | PDF

The radiation and scattering performances of the proposed design are compared with similar works in Table 2. Compared with the F-P antenna [15] and the grooved ground antenna [32], the proposed design achieves a wideband RCS reduction by using an integrated strategy without increasing the antenna profile. In [33], only in-band RCS is reduced. Furthermore, the antenna proposed can reduce 50% number of array elements so as to reduce the weight and cost of the devices, while others cannot. Besides, in current literatures, there are many works on uniform arrays rather than quasi-periodic ones.

Tables Icon

Table 2. Comparison with metasurface antennas proposed by similar works

Overall, composed of same elements, the array antennas designed have comparable radiation gain under the same antenna aperture size. Compared with conventional full array, A1 and A2 have fewer cell numbers and enable to reduce in-band and out-of-band RCSs which cover the X-band and Ku-band simultaneously.

3. Experiments and results

To verify the correctness and feasibility of the above designs, two types of improved metasurface array antennas, along with the reference array antenna, are fabricated. The three types of array antennas’ radiation patterns and RCS performance are measured in an anechoic chamber, as demonstrated in Fig. 8. During the measurement, three power dividers are used for the excitation of arrays.

 figure: Fig. 8.

Fig. 8. The basic measurement setup and the fabricated array antennas in an anechoic chamber.

Download Full Size | PPT Slide | PDF

As shown in Fig. 9(a) and (b), the measured normalized radiation patterns of proposed antennas at 14 GHz are consistent with the simulations. The small discrepancy between measured and simulated patterns is attributed to substrate parameters deviations and fabrication errors. Generally, they indicate a high agreement between the experiment and the simulations, except for some directions where the signals are rather weak to detect. In addition, Fig. 9(c) and (d) show the measured RCSR under x- and y-polarized normal incident wave for the proposed antenna A1, A2 relative to RA. Restrict to the experiment condition, the RCSR of A1 and A2 is measured within 12.3–17.6 GHz. There is a consistency between simulation and measurement in Fig. 9 and Fig. 6: obvious in-band and out-of-band RCS reductions are obtained. Compared with the simulated monostatic RCSR, the trend of the overall curves is basically consistent, though it moves to the lower frequency slightly.

 figure: Fig. 9.

Fig. 9. E-plane normalized radiation patterns: (a) measured and (b) simulated at 14.0 GHz. Measured monostatic RCSR: (c) under x-polarization and (d) under y-polarization.

Download Full Size | PPT Slide | PDF

4. Conclusion

Thinned array antenna can save the cost of devices and simplify the antenna structure by using the same aperture size with fewer array elements to achieve higher resolution. Metasurface-based thinned array antennas with wideband low RCS are designed for this reason. The cell designed has the merit of good radiation ability and stable phase difference in scattering performance. The experiment compares the differences among three kinds of array antennas, analyzes the advantages of the thinned antenna arrangement and then fabricates and measures them. As a result, A1 and A2 are demonstrated wideband low scattering ability under any polarized normal incidence along with the comparable radiation performance. To conclude, this paper has a guiding significance to the design of array antenna on the stealth platform in the future.

Funding

Natural Science Basic Research Program of Shaanxi Province (No.2019JQ-103, No.20200108, No.2020022, No.2020JM-350); National Postdoctoral Program for Innovative Talents (No.2019M653960, No.BX20180375); National Natural Science Foundation of China (No.61801508, No.6217012409).

Disclosures

The authors declare no conflicts of interest.

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

1. T. Cui, “Electromagnetic metamaterials—from effective media to field programmable systems,” Sci. Sin.-Inf. 50(10), 1427–1461 (2020). [CrossRef]  

2. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017). [CrossRef]  

3. J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020). [CrossRef]  

4. S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020). [CrossRef]  

5. M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015). [CrossRef]  

6. X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021). [CrossRef]  

7. L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021). [CrossRef]  

8. Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016). [CrossRef]  

9. S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019). [CrossRef]  

10. Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020). [CrossRef]  

11. Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021). [CrossRef]  

12. A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021). [CrossRef]  

13. S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020). [CrossRef]  

14. J. Noh, Y. Nam, S. So, C. Lee, S. Lee, Y. Kim, T. Kim, J. Lee, and J. Rho, “Design of a transmissive metasurface antenna using deep neural networks,” Opt. Mater. Express 11(7), 2310–2317 (2021). [CrossRef]  

15. L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017). [CrossRef]  

16. Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020). [CrossRef]  

17. H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019). [CrossRef]  

18. M. Boyarsky, M. Imani, and D. Smith, “Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer,” Opt. Express 28(16), 23991–24004 (2020). [CrossRef]  

19. R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019). [CrossRef]  

20. W. Wiesbeck and E. Heidrich, “Influence of antennas on the radar cross-section of camouflaged aircraft,” in Proc. Radar 92. Int. Conf. 365, 122–125 (1992).

21. S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018). [CrossRef]  

22. Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015). [CrossRef]  

23. N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020). [CrossRef]  

24. Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019). [CrossRef]  

25. H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021). [CrossRef]  

26. T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021). [CrossRef]  

27. S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021). [CrossRef]  

28. Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).

29. P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014). [CrossRef]  

30. H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017). [CrossRef]  

31. J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).

32. S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021). [CrossRef]  

33. Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021). [CrossRef]  

References

  • View by:

  1. T. Cui, “Electromagnetic metamaterials—from effective media to field programmable systems,” Sci. Sin.-Inf. 50(10), 1427–1461 (2020).
    [Crossref]
  2. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [Crossref]
  3. J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
    [Crossref]
  4. S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
    [Crossref]
  5. M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
    [Crossref]
  6. X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
    [Crossref]
  7. L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
    [Crossref]
  8. Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
    [Crossref]
  9. S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
    [Crossref]
  10. Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
    [Crossref]
  11. Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
    [Crossref]
  12. A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
    [Crossref]
  13. S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
    [Crossref]
  14. J. Noh, Y. Nam, S. So, C. Lee, S. Lee, Y. Kim, T. Kim, J. Lee, and J. Rho, “Design of a transmissive metasurface antenna using deep neural networks,” Opt. Mater. Express 11(7), 2310–2317 (2021).
    [Crossref]
  15. L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
    [Crossref]
  16. Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
    [Crossref]
  17. H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
    [Crossref]
  18. M. Boyarsky, M. Imani, and D. Smith, “Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer,” Opt. Express 28(16), 23991–24004 (2020).
    [Crossref]
  19. R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019).
    [Crossref]
  20. W. Wiesbeck and E. Heidrich, “Influence of antennas on the radar cross-section of camouflaged aircraft,” in Proc. Radar 92. Int. Conf. 365, 122–125 (1992).
  21. S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
    [Crossref]
  22. Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
    [Crossref]
  23. N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
    [Crossref]
  24. Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
    [Crossref]
  25. H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
    [Crossref]
  26. T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
    [Crossref]
  27. S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
    [Crossref]
  28. Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).
  29. P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014).
    [Crossref]
  30. H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
    [Crossref]
  31. J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).
  32. S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
    [Crossref]
  33. Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
    [Crossref]

2021 (10)

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
[Crossref]

J. Noh, Y. Nam, S. So, C. Lee, S. Lee, Y. Kim, T. Kim, J. Lee, and J. Rho, “Design of a transmissive metasurface antenna using deep neural networks,” Opt. Mater. Express 11(7), 2310–2317 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

2020 (8)

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

M. Boyarsky, M. Imani, and D. Smith, “Grating lobe suppression in metasurface antenna arrays with a waveguide feed layer,” Opt. Express 28(16), 23991–24004 (2020).
[Crossref]

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

T. Cui, “Electromagnetic metamaterials—from effective media to field programmable systems,” Sci. Sin.-Inf. 50(10), 1427–1461 (2020).
[Crossref]

J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

2019 (4)

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019).
[Crossref]

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

2018 (1)

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

2017 (3)

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

2016 (1)

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

2015 (2)

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

2014 (1)

P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014).
[Crossref]

Bian, B.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

Boyarsky, M.

Cao, Q.

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

Cao, X.

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

Chen, C.

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

Chen, K.

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Chen, X.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Chen, Z.

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

Cheng, F.

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

Cheng, Q.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Cui, T.

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

T. Cui, “Electromagnetic metamaterials—from effective media to field programmable systems,” Sci. Sin.-Inf. 50(10), 1427–1461 (2020).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Fang, S

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Gao, J.

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

Ghosh, S.

A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
[Crossref]

Gong, S.

J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
[Crossref]

Gong, S.-X.

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

Gu, H.

Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).

Guo, Q.

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Guo, Y. J.

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

Guo, Z.

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Han, B.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

He, Z.

J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).

Heidrich, E.

W. Wiesbeck and E. Heidrich, “Influence of antennas on the radar cross-section of camouflaged aircraft,” in Proc. Radar 92. Int. Conf. 365, 122–125 (1992).

Huang, Y.

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

Huang, Z.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

Imani, M.

Jia, Y.

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Jiang, W.

J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
[Crossref]

Jidi, L.

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

Keizer, P.

P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014).
[Crossref]

Kim, T.

Kim, Y.

J. Noh, Y. Nam, S. So, C. Lee, S. Lee, Y. Kim, T. Kim, J. Lee, and J. Rho, “Design of a transmissive metasurface antenna using deep neural networks,” Opt. Mater. Express 11(7), 2310–2317 (2021).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Kong, X.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

Lee, C.

Lee, J.

Lee, S.

Li, H.

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Li, K.

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

Li, L.

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Li, M.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Li, N.

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

Li, P.

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

Li, Q.

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

Li, R.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

Li, S.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

Li, T.

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Li, W.

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

Li, X.

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Li, Y.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

Li, Z.

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Liang, S.

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

Liu, S.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Liu, Y.

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

Liu, Z.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

Luo, Z.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

Ma, H.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Ma, J.

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

Meng, Z.

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Mishra, R. K.

R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019).
[Crossref]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Mu, Z.

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

Nam, Y.

Nie, N.

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

Noh, J.

Pan, B.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Qi, M.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Qu, S.

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Rho, J.

Sharma, A.

A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
[Crossref]

Smith, D.

So, S.

Song, J.

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Srivastava, K.

A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
[Crossref]

Su, J.

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Sui, Y.

Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).

Sun, D.

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

Sun, H.

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Sun, Y.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Swain, R.

R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019).
[Crossref]

Tang, W.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Tao, Z.

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Tian, J.

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

Wan, X.

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Wang, B.

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

Wang, J.

J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).

Wang, S.

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

Wang, Y.

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Wang, Z.

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Wei, W.

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Wiesbeck, W.

W. Wiesbeck and E. Heidrich, “Influence of antennas on the radar cross-section of camouflaged aircraft,” in Proc. Radar 92. Int. Conf. 365, 122–125 (1992).

Will,

P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014).
[Crossref]

Wu, H.

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Xu, L.

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

Xu, S.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Yan, S.

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Yang, C.

Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).

Yang, F.

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Yang, H.

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

Yang, S.

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Yang, X.

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

Yin, J.

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Yu, J.

J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
[Crossref]

Zhang, C.

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Zhang, L.

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Zhang, P.

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

Zhang, Q.

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Zhang, S.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Zhang, W.

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

Zhang, X.

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Zhao, X.

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

Zhao, Y.

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

Zheng, W.

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Zheng, Y.

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).

Zhou, Z.

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Adv. Mater. (1)

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, and S. Zhang, “A reconfigurable active Huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref]

Adv. Photonics Res. (1)

S. Li, Y. Li, R. Li, Q. Cheng, and T. Cui, “Digital-coding-feeding metasurfaces for differently polarized wave emission, orbit angular momentum generation, and scattering manipulation,” Adv. Photonics Res. 1(1), 1–11 (2020).
[Crossref]

Ann. Phys. (1)

S. Li, Y. Li, H. Li, Z. Wang, C. Zhang, Z. Guo, R. Li, X. Cao, Q. Cheng, and T. Cui, “A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously,” Ann. Phys. 532(5), 2000020 (2020).
[Crossref]

Antennas Wirel. Propag. Lett. (6)

S. Yan, Z. Meng, W. Wei, W. Zheng, and L. Li, “Characteristic mode cancellation method and its application for antenna RCS reduction,” Antennas Wirel. Propag. Lett. 18(9), 1784–1788 (2019).
[Crossref]

Y. Wang, J. Su, Z. Li, Q. Guo, and J. Song, “A prismatic conformal metasurface for radar cross-sectional reduction,” Antennas Wirel. Propag. Lett. 19(4), 631–635 (2020).
[Crossref]

Y. Wang, K. Chen, Y. Li, and Q. Cao, “Design of nonresonant metasurfaces for broadband RCS reduction,” Antennas Wirel. Propag. Lett. 20(3), 346–350 (2021).
[Crossref]

A. Sharma, S. Ghosh, and K. Srivastava, “A polarization-insensitive band-notched absorber for radar cross section Reduction,” Antennas Wirel. Propag. Lett. 20(2), 259–263 (2021).
[Crossref]

Y. Liu, N. Li, Y. Jia, W. Zhang, and Z. Zhou, “Low RCS and high-gain patch antenna based on a holographic metasurface,” Antennas Wirel. Propag. Lett. 18(3), 492–496 (2019).
[Crossref]

S Fang, S. Qu, S. Yang, X. Li, H. Sun, and Z. Zhou, “Low scattering patch array antenna based on grooved ground,” Antennas Wirel. Propag. Lett. 20(3), 308–312 (2021).
[Crossref]

Chin. Phys. B (1)

S. Wang, J. Gao, X. Cao, Y. Zheng, and T. Li, “Design of multi-band metasurface array antenna with low RCS performance,” Chin. Phys. B 27(10), 104102 (2018).
[Crossref]

IEEE Access (1)

H. Yang, T. Li, L. Xu, X. Cao, J. Gao, J. Tian, H. Yang, and D. Sun, “A new strategy to design microstrip array antenna with low side-lobe level and high gain,” IEEE Access 7, 152715–152721 (2019).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

J. Yu, W. Jiang, and S. Gong, “Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction,” IEEE Antennas Wireless Propag. Lett. 19(7), 1058–1062 (2020).
[Crossref]

IEEE Trans. Antennas Propag. (8)

Y. Jia, Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Trans. Antennas Propag. 64(1), 179–188 (2016).
[Crossref]

L. Zhang, X. Wan, S. Liu, J. Yin, Q. Zhang, H. Wu, and T. Cui, “Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface,” IEEE Trans. Antennas Propag. 65(7), 3374–3383 (2017).
[Crossref]

Z. Liu, S. Liu, X. Zhao, X. Kong, Z. Huang, and B. Bian, “Wideband gain enhancement and RCS reduction of Fabry–Perot antenna using hybrid reflection method,” IEEE Trans. Antennas Propag. 68(9), 6497–6505 (2020).
[Crossref]

H. Yang, T. Li, L. Xu, X. Cao, L. Jidi, Z. Guo, P. Li, and J. Gao, “Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method,” IEEE Trans. Antennas Propag. 69(3), 1239–1248 (2021).
[Crossref]

T. Li, H. Yang, Q. Li, L. Jidi, X. Cao, and J. Gao, “Broadband low-RCS and high-gain microstrip antenna based on concentric ring-type metasurface,” IEEE Trans. Antennas Propag. 69(9), 5325–5334 (2021).
[Crossref]

P. Keizer and Will, “Synthesis of thinned planar circular and square arrays using density tapering,” IEEE Trans. Antennas Propag. 62(4), 1555–1563 (2014).
[Crossref]

H. Yang, F. Yang, X. Cao, S. Xu, J. Gao, X. Chen, M. Li, and T. Li, “A 2017-element dual-frequency electronically reconfigurable reflectarray at X/Ku bands,” IEEE Trans. Antennas Propag. 65(6), 3024–3032 (2017).
[Crossref]

N. Nie, X. Yang, Z. Chen, and B. Wang, “A low-profile wideband hybrid metasurface array antenna for 5G and WiFi systems,” IEEE Trans. Antennas Propag. 68(2), 665–671 (2020).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

X. Zhang, L. Li, W. Zhang, and Y. Huang, “Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer,” IEEE Trans. Microwave Theory Tech. 69(3), 1518–1528 (2021).
[Crossref]

L. Li, P. Zhang, F. Cheng, and T. Cui, “An optically transparent near-field focusing metasurface,” IEEE Trans. Microwave Theory Tech. 69(4), 2015–2027 (2021).
[Crossref]

Int. J. RF Microw. Comput. Aided Eng. (2)

Z. Mu, J. Ma, Y. Zhao, S. Liang, and C. Chen, “Wideband, low radar cross section circularly polarized array antenna based on metasurface and sequential phase feed,” Int. J. RF Microw. Comput. Aided Eng. 31(7), 1–9 (2021).
[Crossref]

R. Swain and R. K. Mishra, “Metasurface cavity antenna for broadband high-gain circularly polarized radiation,” Int. J. RF Microw. Comput. Aided Eng. 29(3), e21609 (2019).
[Crossref]

Laser Photonics Rev. (1)

S. Li, Y. Li, L. Zhang, Z. Luo, B. Han, R. Li, X. Cao, Q. Cheng, and T. Cui, “Programmable controls to scattering properties of a radiation array,” Laser Photonics Rev. 15(2), 2000449 (2021).
[Crossref]

Microwave and Optical Technology Lett. (1)

Y. Zheng, J. Gao, X. Cao, S. Li, and W. Li, “Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate,” Microwave and Optical Technology Lett. 57(7), 1738–1741 (2015).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Sci Rep. (1)

M. Qi, W. Tang, H. Ma, B. Pan, Z. Tao, Y. Sun, and T. Cui, “Suppressing side-lobe radiations of horn antenna by loading metamaterial lens,” Sci Rep. 5(1), 9113 (2015).
[Crossref]

Sci. Sin.-Inf. (1)

T. Cui, “Electromagnetic metamaterials—from effective media to field programmable systems,” Sci. Sin.-Inf. 50(10), 1427–1461 (2020).
[Crossref]

Other (3)

W. Wiesbeck and E. Heidrich, “Influence of antennas on the radar cross-section of camouflaged aircraft,” in Proc. Radar 92. Int. Conf. 365, 122–125 (1992).

Y. Sui, H. Gu, and C. Yang, “Reconfigurable stealth radome using active frequency selective surface technology,” 2017 IEEE International Conference on Computational Electromagnetics (ICCEM), Kumamoto, Japan, 273–275 (2017).

J. Wang, Y. Zheng, and Z. He, Array Antenna Theory and Engineering Application (Publishing House of Electronic Industry, 2015).

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic geometry of antenna element. (a) Perspective and (b) top views. (c) Simulated radiation performance: reflection coefficient and realized gain.
Fig. 2.
Fig. 2. Simulated radiation patterns of antenna element: (a) current distribution on the radiation patch and (b) E-plane and H-plane radiation patterns at 14.0 GHz. Simulated reflection performance of “0” and “1” unit: (c) reflectance (d) reflective phases under x- and y-polarized incidence.
Fig. 3.
Fig. 3. The schematic layout of metasurface antennas arrays distributions of A1, A2 and RA.
Fig. 4.
Fig. 4. Simulated reflection coefficients of the proposed array antennas and reference array antenna.
Fig. 5.
Fig. 5. The comparison of radiation performances among three array antennas: (a) boresight realized gain and (b) the simulated E-plane radiation patterns. 3-D radiation patterns of (c) A1, (d) A2 and (e) RA at 13.5 GHz.
Fig. 6.
Fig. 6. Monostatic RCSs under (a) x-polarization (θinc=0°, φinc=0°). (b) y-polarization (θinc=0°, φinc=90°). (c)TE and TM polarizations (θinc=0°, φinc=60°) from 12 GHz to 20 GHz. Simulated 3D scattering patterns under (d) x-polarization at 17.0 GHz and (e) y-polarization at 18.0 GHz.
Fig. 7.
Fig. 7. Simulated bistatic RCS under x-polarization (θinc=0°, φinc=0°) (a) xoz plane (b) yoz plane at 17 GHz and under y-polarization (θinc=0°, φinc=90°) (c) xoz plane (d) yoz plane at 18 GHz.
Fig. 8.
Fig. 8. The basic measurement setup and the fabricated array antennas in an anechoic chamber.
Fig. 9.
Fig. 9. E-plane normalized radiation patterns: (a) measured and (b) simulated at 14.0 GHz. Measured monostatic RCSR: (c) under x-polarization and (d) under y-polarization.

Tables (2)

Tables Icon

Table 1. Geometrical parameters of the proposed unit

Tables Icon

Table 2. Comparison with metasurface antennas proposed by similar works

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F( θ , φ ) =  n = 0 N - 1 m = 0 M 1 e j 2 π λ [ d m ( cos θ sin φ cos θ 0 sin φ 0 ) + d n ( sin θ sin θ 0 ) ) ] f m n ,
d x , d y < 2 2 λ 1  + | sin θ | .