Abstract

We developed a novel technique to evaluate the elasto-optic coefficients of electrooptic (EO) single crystals. Notably, this method uses the deformation of the crystal generated by the space charge formed by the electrons injected into the crystal. For the first time, to our knowledge, the coefficient p12 was quantified separately from p11 for KTa1-xNbxO3(KTN) with this method. Both the coefficients exhibit significant temperature dependence caused by polarization fluctuations. Genuine EO coefficients gg11 and gg12 were calculated by excluding photoelastic contributions from the nominal EO coefficients. gg12 was negligibly small compared to the nominal coefficient before the exclusion. This indicates that the conventional nominal coefficient gn12 is actually composed of strain-induced components but does not reflect the pure effect.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The electrooptic (EO) effect is a phenomenon in which the refractive index of a substance changes according to the voltage applied to it. Various kinds of optical modulators have been developed by using this effect. Most of these devices are intensity modulators or phase modulators. This is because the optical phase modulations produced by the EO material is small. Recently, however, different EO devices than these modulators have been developed by using a crystal material KTa1-xNbxO3(KTN). One of them is an optical beam deflector that scans a beam with a voltage [1] and the other is a varifocal lens [2]. Both of them are capable of bending light rays by utilizing a remarkably large second-order EO effect (Kerr effect) of KTN [3,4]. Their advantage is that they respond faster than other devices due to the response characteristic of oxide EO materials. There is a literature that reports 700-kHz operation of a KTN deflector [5] whereas galvanometer mirror deflectors typically respond up to several kHz. The deflection angle of this type of device is not as large as galvanometer mirrors, but full angles exceeding 160 mrad have been obtained [6]. Wavelength-swept light sources for cross-sectional profiling systems have been developed by using this beam deflector as a key component [7].

When designing these devices, it is essential to simulate spatial distributions of refractive indices. Recently, it was found that the photoelastic effect plays an important role in the index modulation of KTN [2,8]. Therefore, a complete simulation of such a device requires coefficients p11 and p12 of the effect. There are reported values for p11 or (p11 - p12) [9,10]. However, because |p12| is small, this value has been unknown for KTN. Moreover, the conventional EO coefficients g11 and g12 of KTN contain photoelastic influence and pure coefficients that exclude the photoelastic effect are also unheard of.

This paper aims to evaluate p11 and p12 separately for KTN and exclude the effects of these parameters from the EO coefficients. To do this, we developed a novel method for measuring p11 and p12 with the help of a space charge in the crystal. When we inject electrons into a KTN crystal and form a space charge inside, a generated electric field warps the crystal via the electrostrictive effect [11,8]. We measured modulations of the refractive indices of the crystal caused by the EO effect and the distortion via the photoelastic effect. Both p11 and p12 were successfully evaluated from these data with other material parameters such as elastic stiffness coefficients. Although this is the first evaluation of both p11 and p12, to our knowledge, the results were consistent with conventionally reported results. From p11 and p12, we also calculated the genuine EO coefficients gg11 and gg12 excluding the effect of photoelasticity and found that gg12 is negligibly weak compared to the conventional nominal g12. Therefore, we concluded that the conventional g12 basically stems from the electrostrictive effect and the photoelastic effect. This method can be used not only for KTN but also for other EO materials to analyze the EO properties.

2. EO effect, photoelastic effect and measurement theory

This section describes modulations of refractive indices for an EO crystal with a space charge. We deal with crystals without the first order effects such as KTN crystals in the paraelectric phase. Thus, the crystals do not exhibit the Pockels effect and the piezoelectric effect but exhibit the Kerr effect and the electrostrictive effect. First, we compare a conventional EO approach with a new approach incorporating the photoelastic effect and then introduce a theory for evaluating the photoelastic effect.

In the conventional theory of the Kerr effect [3,12], field-induced modulations of the refractive indices are written as follows.

$$\begin{array}{l} \Delta n_x^g ={-} \frac{1}{2}{n_0}^3g_{11}^g{P_x}^2\\ \Delta n_y^g ={-} \frac{1}{2}{n_0}^3g_{12}^g{P_x}^2 \end{array}$$
Δngx is for a light polarization parallel to x-direction and Δngy for y-direction. n0 is the original refractive index and g coefficients are the electro-optic coefficients. We assumed that Px is the only non-zero component of the low-frequency polarization in the crystal block (Fig. 1). Px is approximated by Dx= εEx for materials with huge permittivities such as KTN and other ferroelectric materials. Furthermore, in the block with such a permittivity and a pair of electrodes covering the entire area of two opposing surfaces, it is possible to assume that the polarization is substantially uniform.

 figure: Fig. 1.

Fig. 1. EO crystal block and light polarizations.

Download Full Size | PPT Slide | PDF

However, a spatial distribution of Px appears when a space charge is formed in the block. In fact, by applying a high voltage with appropriate electrodes, we can inject electrons into the crystal block, where they are trapped by localized states and form a space charge. The space charge is stable and is conserved even after the voltage has been removed. Here we assume that the charge density ρ is constant throughout the block and the following equation holds according to Gauss’s law [13].

$${P_x}(x )= \rho x - \frac{{\varepsilon V}}{d}$$
ε is the permittivity, V is the voltage applied between the electrodes and d is the electrode gap or the block thickness. The origin of the coordinate x is placed at the center of the block. With this Px, Eq. (1) can be rewritten as
$$\begin{array}{l} \Delta n_x^g ={-} \frac{1}{2}{n_0}^3g_{11}^g{\rho ^2}{\left( {x - \frac{{\varepsilon V}}{{\rho d}}} \right)^2}\\ \Delta n_y^g ={-} \frac{1}{2}{n_0}^3g_{12}^g{\rho ^2}{\left( {x - \frac{{\varepsilon V}}{{\rho d}}} \right)^2} \end{array} . $$
These equations show that the crystal block exhibits parabolic index distributions and works as a cylindrical lens. As the sign of gg11 is positive, the distribution works as a convex lens for x-polarized light. The index distribution has a peak at εV/(ρd) and moves with V, which explains the beam deflection function of this crystal block [14].

On the other hand, such a material exhibits the electrostrictive effect, that is, the material is strained by voltage application [11]. It is a kind of quadratic effect and the driving force is proportional to the square of the polarization induced by the voltage. However, when the polarization is not spatially uniform, the strains are affected by the elasticity and are not necessarily proportional to the square of the polarization [2]. Recently we reported that a KTN crystal is spherically distorted when there is a space charge in the crystal. Then the faces with the electrodes in Fig. 1 are warped. Assuming that Px varies spatially according to Eq. (2), the strain that accompanies this distortion is given by the following equations [8].

$$\begin{array}{ll} {e_{xx}} &= \left( {{Q_{11}} + 2\frac{{{c_{12}}}}{{{c_{11}}}}{Q_{12}}} \right){\rho ^2}{\left( {x - \frac{{\varepsilon V}}{{\rho d}}} \right)^2} + 2\frac{{{c_{12}}}}{{{c_{11}}}}\frac{{x - {x_c}}}{{{r_a}}}\\ {e_{yy}} &= {e_{zz}} ={-} \frac{{x - {x_c}}}{{{r_a}}} \end{array}$$
Q11 and Q12 are the electrostrictive coefficients. c11 and c12 are the elastic stiffness components. xc is the position where the strain component eyy is zero and the distance between this position and the center of the distortion sphere is ra. These two parameters are obtained by the following equations.
$${x_c} = \frac{{\rho {d^3}}}{{24\varepsilon V}} + \frac{{\varepsilon V}}{{2\rho d}},\quad {r_a} = \frac{d}{{2{Q_{12}}\rho \varepsilon V}}$$
This strain causes spatial modulations of the refractive indices as follows.
$$\begin{array}{l} \Delta n_x^p ={-} \frac{1}{2}{n_0}^3({{p_{11}}{e_{xx}} + {p_{12}}{e_{yy}} + {p_{12}}{e_{zz}}} )\\ \Delta n_y^p ={-} \frac{1}{2}{n_0}^3({{p_{12}}{e_{xx}} + {p_{11}}{e_{yy}} + {p_{12}}{e_{zz}}} )\end{array}$$
We refer to p11 and p12 as elasto-optic coefficients according to Refs. [9] and [15]. The optical path length of the light transmitting through the block is modulated by these index modulations, together with those of the genuine electrooptic effect in Eq. (3). Also, the deformation itself changes the optical path length. Thus, the total optical path length change is expressed as follows.
$$\begin{array}{l} \Delta {s_x} = ({\Delta n_x^g + \Delta n_x^p} )L + ({{n_0} - 1} ){e_{yy}}L\\ \Delta {s_y} = ({\Delta n_y^g + \Delta n_y^p} )L + ({{n_0} - 1} ){e_{yy}}L \end{array}$$
L is the block length. Using Eqs. (3), (4), (5), and (6), we obtain
$$\begin{array}{c} \Delta {s_x} ={-} \frac{1}{2}{n_0}^3L\left[ {({g_{11}^g + g_{11}^e} ){\rho^2}{x^2} - 2xg_{11}^n\rho \frac{{\varepsilon V}}{d} + g_{11}^n\frac{{{\varepsilon^2}{V^2}}}{{{d^2}}} - ({g_{11}^g + g_{11}^e - g_{11}^n} )\frac{{{\rho^2}{d^2}}}{{12}}} \right]\\ \Delta {s_y} ={-} \frac{1}{2}{n_0}^3L\left[ {({g_{12}^g + g_{12}^e} ){\rho^2}{x^2} - 2xg_{12}^n\rho \frac{{\varepsilon V}}{d} + g_{12}^n\frac{{{\varepsilon^2}{V^2}}}{{{d^2}}} - ({g_{12}^g + g_{12}^e - g_{12}^n} )\frac{{{\rho^2}{d^2}}}{{12}}} \right] \end{array}$$
where effective g coefficients are defined as follows.
$$\begin{array}{l} g_{11}^s \equiv {p_{11}}{Q_{11}} + 2{p_{12}}{Q_{12}}\\ g_{12}^s \equiv {p_{12}}{Q_{11}} + ({{p_{11}} + {p_{12}}} ){Q_{12}}\\ g_{11}^e \equiv {p_{11}}[{{Q_{11}} + 2({{{{c_{12}}} \mathord{\left/ {\vphantom {{{c_{12}}} {{c_{11}}}}} \right.} {{c_{11}}}}} ){Q_{12}}} ]\\ g_{12}^e \equiv {p_{12}}[{{Q_{11}} + 2({{{{c_{12}}} \mathord{\left/ {\vphantom {{{c_{12}}} {{c_{11}}}}} \right.} {{c_{11}}}}} ){Q_{12}}} ]\\ g_{11}^n \equiv g_{11}^g + g_{11}^s - 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}}\\ g_{12}^n \equiv g_{12}^g + g_{12}^s - 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}} \end{array}$$
gn11 and gn12 are the nominal electrooptic coefficients that are obtained from the common experimental phase shift data with ρ = 0. Indeed, the following common formulae are obtained by putting ρ = 0 in Eq. (8) [12].
$$\begin{array}{c} { {\Delta {s_x}} |_{\rho = 0}} ={-} \frac{1}{2}{n_0}^3g_{11}^nL{\left( {\frac{{\varepsilon V}}{d}} \right)^2}\\ { {\Delta {s_y}} |_{\rho = 0}} ={-} \frac{1}{2}{n_0}^3g_{11}^nL{\left( {\frac{{\varepsilon V}}{d}} \right)^2} \end{array} . $$
What we can directly obtain by phase shift measurement are gn11 and gn12 that consist of the genuine EO coefficients, the photoelastic components, and the contribution from the electrostrictive deformation. We can obtain the last components by evaluating the deformation caused by voltage application [11, 16]. However, it has not been clear how much fractions of the EO coefficients are the photoelastic contribution. We did not know if the genuine effect really existed or if the EO effect was entirely due to the electrostrictive deformation.

We were successfully able to evaluate the elasto-optic coefficients p11 and p12 by utilizing Eq. (8). The equation can be simplified as follows when V = 0.

$$\begin{array}{c} { {\Delta {s_x}} |_{V = 0}} = {\alpha _x}\frac{{{x^2}}}{{{d^2}}} + \frac{{{\beta _x}}}{{12}}\\ { {\Delta {s_y}} |_{V = 0}} = {\alpha _y}\frac{{{x^2}}}{{{d^2}}} + \frac{{{\beta _y}}}{{12}} \end{array} . $$
The coefficients determining the profile are defined as follows.
$$\begin{array}{l} {\alpha _x} ={-} ({{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}} ){n_0}^3{\rho ^2}{d^2}L[{g_{11}^n + g_{11}^e - g_{11}^s + 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}}} ]\\ {\beta _x} = ({{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}} ){n_0}^3{\rho ^2}{d^2}L[{g_{11}^e - g_{11}^s + 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}}} ]\\ {\alpha _y} ={-} ({{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}} ){n_0}^3{\rho ^2}{d^2}L[{g_{12}^n + g_{12}^e - g_{12}^s + 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}}} ]\\ {\beta _y} = ({{1 \mathord{\left/ {\vphantom {1 2}} \right.} 2}} ){n_0}^3{\rho ^2}{d^2}L[{g_{12}^e - g_{12}^s + 2{Q_{12}}{{({{n_0} - 1} )} \mathord{\left/ {\vphantom {{({{n_0} - 1} )} {{n_0}^3}}} \right.} {{n_0}^3}}} ] \end{array} . $$
Here, g coefficients defined by Eqs. (9) consist of the elasto-optic coefficients, the elastic coefficients and the electrostrictive coefficients. Therefore, if gn11, gn12, c11, c12, Q11, and Q12 are known, we can obtain the values of the elasto-optic coefficients p11 and p12 by measuring the profile shown in Eq. (11) and evaluating the coefficients shown in Eq. (12). The following is the equation used for the evaluation.
$$\begin{array}{l} {p_{11}} = \frac{{{c_{11}}}}{{{c_{11}} - {c_{12}}}}\left[ {\frac{{g_{11}^n}}{{2{Q_{12}}}}\frac{{2{c_{11}}({{{{\beta_y}} \mathord{\left/ {\vphantom {{{\beta_y}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )- ({{c_{11}} - 2{c_{12}}} )({{{{\beta_x}} \mathord{\left/ {\vphantom {{{\beta_x}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )}}{{({{c_{11}} + 2{c_{12}}} )({1 + {{{\beta_x}} \mathord{\left/ {\vphantom {{{\beta_x}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )}} + \frac{{{n_0} - 1}}{{{n_0}^3}}} \right]\\ {p_{12}} = \frac{{{c_{11}}}}{{{c_{11}} - {c_{12}}}}\left[ {\frac{{g_{11}^n}}{{2{Q_{12}}}}\frac{{{c_{11}}({{{{\beta_x}} \mathord{\left/ {\vphantom {{{\beta_x}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )+ 2{c_{12}}({{{{\beta_y}} \mathord{\left/ {\vphantom {{{\beta_y}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )}}{{({{c_{11}} + 2{c_{12}}} )({1 + {{{\beta_x}} \mathord{\left/ {\vphantom {{{\beta_x}} {{\alpha_x}}}} \right.} {{\alpha_x}}}} )}} + \frac{{{n_0} - 1}}{{{n_0}^3}}} \right] \end{array} . $$

3. Experimental

The sample crystals were cut from a Li-doped KTN single crystal boule grown with the top-seeded solution growth method [17,18]. The size was 4 mm x 3.2 mm x 1.2 mm. All the faces were parallel to the crystallographic (100) planes. The direction of light passage was parallel to the 4-mm edge. The transition temperature between the cubic and tetragonal phases was 31 °C, which indicates the approximate composition as K0.95Li0.05Ta0.73Nb0.27O3. Film electrodes were formed on the two 4 mm x 3.2 mm faces. When measuring g11n and g12n, we used platinum film electrodes that form Schottky junctions with the crystal and prevent electron injection into the crystal accompanying voltage application [1,16]. On the other hand, when evaluating profile coefficients such as αx, we used titanium electrodes to form a space charge by applying voltages to the crystal blocks [1]. To realize a uniform charge distribution (constant ρ), we injected electrons from both sides of the block by inverting the voltage sign and regulating the voltage level. We also used a 405 nm light-emitting diode (LED) for controlling the charge density. Uniformly irradiating this violet light reduces the charge density; that is, it excites trapped electrons to discharge them [19]. The permittivity of a KTN crystal changes with the temperature according to Curie-Weiss’ law [18,20]. Therefore, during all measurements, we kept the permittivity constant by controlling the temperature with a thermoelectric cooler (TEC, Peltier device). The temperature was always controlled above the phase transition temperature so that the crystal was in the paraelectric phase.

In this evaluation method, it is necessary to observe the spatial profiles of the optical path length shown in Eq. (11). This can be done by using the phase shift method with a Mach Zehnder interferometer. We monitored the interference between the light output from the crystal block and a plane wave by using a two-dimensional image detector (a charge coupled device) and calculated the spatial profile of the optical path length from the obtained images. Detailed measurement methods are explained in Refs. [10] and [13]. The wavelength was 685 nm. The nominal EO coefficients gn11 and gn12 can also be measured by using the same experimental setup with Eq. (10). Figure 2 shows the results. The original refractive index n0 of this crystal was determined to be 2.237 at this wavelength by the prism coupling method. It is noteworthy in Fig. 2 that gn12 strongly depended on the temperature and approached zero at elevated temperatures, which has not been reported in the literatures that we know.

 figure: Fig. 2.

Fig. 2. Nominal EO coefficients gn11 and gn12 as functions of temperature.

Download Full Size | PPT Slide | PDF

The electrostrictive coefficients Q11 and Q12 can be evaluated simply by applying a voltage to a crystal block and measuring the amount of deformation. In this study, we used the values thus obtained, Q11: 0.070 m4/C2 and Q12: −0.026 m4/C2 [16]. As regards the elastic stiffness, we can use acoustic waves. We measured velocities of transversal and longitudinal waves with propagation directions along crystallographic <100> and <110> axes for obtaining both c11 and c12 [10]. We used an Olympus thickness gauge 38Dl PLUS with a frequency of 5 MHz for this measurement. Figure 3 shows the elastic stiffness coefficients as functions of the temperature. The horizontal axis shows the sample temperature as the difference from the phase transition temperature Tc. The softening, or the reduction of c11 on cooling, is said to be caused by fluctuations of polar nano regions (PNR) [21,22].

 figure: Fig. 3.

Fig. 3. Elastic stiffness components c11 and c12.

Download Full Size | PPT Slide | PDF

4. Results and discussions

Figure 4 shows examples of the optical path length distributions along the x-axis for the two optical polarizations. The origin of the x-axis was at the center of the sample. As described, the thickness of the crystal block was 1.2 mm. The paired electrodes were on the left and right ends of this graph and the left electrode is connected to the ground. The temperature was 35.7 °C. We applied −247 V and then 400 V to the right electrode in order to inject electrons into the crystal and to achieve a uniform charge density. The figure shows the crystal condition immediately after the charging process and voltage removal. The experimental plots are close to the ideal parabolic curves of Eq. (11) shown as the solid lines with the extrema at x = 0. This indicates good ρ uniformity because Eq. (11) was derived by assuming a constant ρ. The data deviated from the parabola in the case of poor injection conditions and poor uniformity. On the other hand, the extrema in Fig. 4 themselves are not zero. These non-zero extrema are not included in Eq. (3) which is based on the conventional EO theory but support the validity of Eqs. (8) and (11), namely βx and βy. Due to the periodic nature of interference, the offsets βx and βy are not automatically deduced from data acquired by the Mach- Zehnder interferometer. However, we gradually reduced |ρ| by discharging the crystal using a 405-nm LED, tracked changes in the curves as in Fig. 4 and corrected periodic jumps in the collected data. We were able to observe that the spatial variation coefficients αx and αy gradually vanished with the offset coefficients βx and βy and that both Δsx and Δsy eventually became zero in the entire crystal, which means that ρ = 0.

 figure: Fig. 4.

Fig. 4. Optical path length profiles along the x-axis at 0 V after electron injection.

Download Full Size | PPT Slide | PDF

Figure 5 shows the values of αx, βx, αy and βy, thus obtained at 35.7 °C. The horizontal axis shows - αx and the vertical axis indicates values of the other parameters. The rightmost data were first acquired immediately after the charging process at the maximum ρ2 and the leftmost data were obtained last at the lowest ρ2. The figure shows good linearity among the four parameters, consistent with Eq. (12). The ratios among them should be determined by coefficients such as gn11, gs11 and ge11. Conversely, by using Eq. (13), we can determine such electrooptic g coefficients and elasto-optic coefficients p11 and p22 from the data in this figure.

 figure: Fig. 5.

Fig. 5. Relations among αx, βx, αy and βy at 35.7 °C.

Download Full Size | PPT Slide | PDF

Before introducing the values of the elasto-optic coefficients, we discuss gn12 / gn11. As described, the nominal EO coefficients gn11 and gn12 as shown in Fig. 2 can be evaluated by measuring Δsx and Δsy at V ≠ 0 and ρ = 0. On the other hand, αx, βx, αy and βy as in Fig. 5 were evaluated at V = 0 and ρ ≠ 0. Therefore these experiments are much different from each other. However there is a relationship between the results of these two experiments according to our theory, that is

$$\frac{{g_{12}^n}}{{g_{11}^n}} = \frac{{{\alpha _y} + {\beta _y}}}{{{\alpha _x} + {\beta _x}}}.$$
 Figure 6 compares the left side of Eq. (14) evaluated at ρ = 0 with the right side of Eq. (14) evaluated at V = 0. The horizontal axis shows the sample temperature. The circles show the left side of Eq. (14) and the squares show the right side. The values obtained from the two different experiments have the same values at all temperatures in this region, confirming our theory.

 figure: Fig. 6.

Fig. 6. gn12 / gn11 compared with (αy + βy) / (αx + βx).

Download Full Size | PPT Slide | PDF

Figure 7 shows the elasto-optic coefficients calculated from the acquired data with Eq. (13). For this plot, we drew lines as shown in Fig. 5 at each temperature and calculated the ratios of βx and βy to αx. Also, we used the data in Figs. 2 and 3. To our knowledge, this is the first paper that presents both p11 and p12 separately for KTN crystals. However, there are a few reports dealing with the photoelastic effect of the crystals. Wemple et al. reported measurement results of (p11 - p12) with a theory of their temperature dependence [9]. According to the authors, KTN crystals have two types of photoelastic effects. One of them is related to interband transitions and is not considered to have significant temperature dependence. The other photoelastic component is caused by lattice-polarization fluctuations. This component strongly depends on the temperature because the permittivity of a KTN crystal drastically changes with temperature at around the phase transition temperature and the polarization fluctuation increases as the permittivity increases. The data shown in Fig. 7 exhibit such a temperature dependence with a tendency to converge to fixed values in the high-temperature region corresponding to the interband transition components. The data is in good agreement with the experimental data presented in their report. Both their experimental (p11 - p12) and our p11 do not show the drastic increase as expected from Curie-Weiss’ law of dielectrics, which Wemple used in their theory. The permittivity of KTN crystals is said to deviate from Curie-Weiss law because of random fields associated with PNRs. In particular, the permittivity is significantly reduced with Li-doped KTNs [23]. This is the reason why the temperature dependence is not as great as Wemple predicted. With respect to Fig. 7, it should be additionally noted that p12 approaches zero with rising temperature and that the contribution of the interband transitions to this component is negligibly small compared to p11.

 figure: Fig. 7.

Fig. 7. Elasto-optic coefficients p11 and p12.

Download Full Size | PPT Slide | PDF

Figure 8 shows gg11 and gg12 obtained using this method together with the elasto-optic coefficients. The scale of the vertical axis is the same as in Fig. 2. We used these EO coefficients to evaluate the pure EO effect excluding the influence of strains. They may be called clamped coefficients but it should be noted that our crystal was not actually mechanically clamped, that is, it was thermodynamically unclamped. Notable in this figure is that gg12 is negligibly weak compared to the nominal EO coefficient gn12. This indicates that gn12 is basically composed of strain-induced components and that the significant temperature dependence of this coefficient is caused by the above-mentioned polarization fluctuations. At this stage, the actual value of gg12 is not clear because it is much weaker than the conventional values. It is unknown whether gg12 has a finite non-zero value or not. This value should have an origin from the interband transitions [24]. Therefore, it is noteworthy that, in relation to the value of gg12, the interband component of p12 is negligibly weak, as shown in Fig. 7. This is one of the next issues for KTN and other related EO crystals along with the origin of the slight temperature dependence of gg11 appearing in Fig. 8.

 figure: Fig. 8.

Fig. 8. Genuine electrooptic coefficients gg11 and gg12.

Download Full Size | PPT Slide | PDF

5. Summary

In this report, we introduced a novel method to evaluate elasto-optic coefficients of electrooptic single crystals with the help of space charges and elasticity. For KTN blocks, we measured index modulations that were induced by space charges via the electrooptic effect and the photoelastic effect. From these data with experimental elastic stiffness and electrostrictive data, we evaluated the coefficients p11 and p12 separately, which is, to our knowledge, the first quantification example of p12 for KTN. As it is for p11, p12 also exhibited a strong temperature dependence related to polarization fluctuations. The genuine EO coefficient gg12 derived from these data was negligibly small compared to the nominal EO coefficient gn12, which is the conventional coefficient. This indicates that the conventional gn12 basically consists of strain originated components. We believe that the method presented can also be applied to other EO materials and will help analyze their EO properties.

Disclosures

The authors declare no conflicts of interest.

References

1. K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008). [CrossRef]  

2. T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012). [CrossRef]  

3. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964). [CrossRef]  

4. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966). [CrossRef]  

5. S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016). [CrossRef]  

6. Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017). [CrossRef]  

7. M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017). [CrossRef]  

8. T. Imai, S. Kawamura, and T. Sakamoto, “Anomalous index modulations in electro-optic KTa1-xNbxO3 single crystals in relation to electrostrictive effect,” Opt. Express 23(22), 28784–28791 (2015). [CrossRef]  

9. S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970). [CrossRef]  

10. J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013). [CrossRef]  

11. K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982). [CrossRef]  

12. A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University, (1997).

13. T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014). [CrossRef]  

14. T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017). [CrossRef]  

15. T. S. Narasimhamurty, Photelastic and electro-optic properties of crystals, Plenum Press, New York, (1981).

16. S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017). [CrossRef]  

17. W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

18. T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

19. T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014). [CrossRef]  

20. S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959). [CrossRef]  

21. L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995). [CrossRef]  

22. R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011). [CrossRef]  

23. M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018). [CrossRef]  

24. M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969). [CrossRef]  

References

  • View by:

  1. K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
    [Crossref]
  2. T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
    [Crossref]
  3. J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
    [Crossref]
  4. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
    [Crossref]
  5. S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
    [Crossref]
  6. Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
    [Crossref]
  7. M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
    [Crossref]
  8. T. Imai, S. Kawamura, and T. Sakamoto, “Anomalous index modulations in electro-optic KTa1-xNbxO3 single crystals in relation to electrostrictive effect,” Opt. Express 23(22), 28784–28791 (2015).
    [Crossref]
  9. S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
    [Crossref]
  10. J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
    [Crossref]
  11. K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
    [Crossref]
  12. A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University, (1997).
  13. T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
    [Crossref]
  14. T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
    [Crossref]
  15. T. S. Narasimhamurty, Photelastic and electro-optic properties of crystals, Plenum Press, New York, (1981).
  16. S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
    [Crossref]
  17. W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).
  18. T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).
  19. T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014).
    [Crossref]
  20. S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
    [Crossref]
  21. L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
    [Crossref]
  22. R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
    [Crossref]
  23. M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
    [Crossref]
  24. M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
    [Crossref]

2018 (1)

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

2017 (4)

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
[Crossref]

S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
[Crossref]

2016 (1)

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

2015 (1)

2014 (2)

2013 (1)

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

2012 (1)

2011 (1)

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

2008 (1)

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

2007 (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

1995 (1)

L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
[Crossref]

1982 (1)

K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
[Crossref]

1970 (1)

S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[Crossref]

1969 (1)

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[Crossref]

1966 (1)

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

1965 (1)

W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

1964 (1)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

1959 (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Al Helal, M.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

Ariizumi, T.

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

Bonner, W.

W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

Chen, F. S.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Cross, L. E.

K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
[Crossref]

Dearborn, E. F.

W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

DiDomenico, M.

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[Crossref]

DiDomenico Jr, M.

S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[Crossref]

Fujimoto, M.

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Fujiura, K.

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Geusic, J. E.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Imai, T.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
[Crossref]

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Kawamura, and T. Sakamoto, “Anomalous index modulations in electro-optic KTa1-xNbxO3 single crystals in relation to electrostrictive effect,” Opt. Express 23(22), 28784–28791 (2015).
[Crossref]

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014).
[Crossref]

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Kawamura, S.

S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
[Crossref]

T. Imai, S. Kawamura, and T. Sakamoto, “Anomalous index modulations in electro-optic KTa1-xNbxO3 single crystals in relation to electrostrictive effect,” Opt. Express 23(22), 28784–28791 (2015).
[Crossref]

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

Knauss, L. A.

L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
[Crossref]

Kobayashi, J.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014).
[Crossref]

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

Kojima, S.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

Kurtz, S. K.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Miyazu, J.

T. Imai, J. Miyazu, and J. Kobayashi, “Measurement of charge density distributions in KTa1-xNbxO3 optical beam deflectors,” Opt. Mater. Express 4(5), 976–981 (2014).
[Crossref]

T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014).
[Crossref]

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Naganuma, K.

Nakamura, K.

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Narasimhamurty, T. S.

T. S. Narasimhamurty, Photelastic and electro-optic properties of crystals, Plenum Press, New York, (1981).

Nomura, S.

K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
[Crossref]

Ohta, R.

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

Rahaman, M. M.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

Sakamoto, T.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
[Crossref]

S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Kawamura, and T. Sakamoto, “Anomalous index modulations in electro-optic KTa1-xNbxO3 single crystals in relation to electrostrictive effect,” Opt. Express 23(22), 28784–28791 (2015).
[Crossref]

Sasaki, Y.

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

Sasaura, M.

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Skinner, J. G.

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

Sugai, E.

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

Tatsumi, S.

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

Toulouse, J.

L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
[Crossref]

Toyoda, S.

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

Triebwasser, S.

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Tsukada, S.

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

Uchino, K.

K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
[Crossref]

Ueno, M.

T. Imai, M. Ueno, Y. Sasaki, and T. Sakamoto, “Analyses of optical rays in KTN optical beam,” Appl. Opt. 56(25), 7277–7285 (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

Van Uitert, L. G.

W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Wang, X. M.

L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
[Crossref]

Wemple, S. H.

S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[Crossref]

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[Crossref]

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

Yagi, S.

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

T. Imai, S. Yagi, S. Toyoda, J. Miyazu, K. Naganuma, S. Kawamura, M. Sasaura, and K. Fujiura, “Fast response varifocal lenses using KTa1-xNbxO3 crystals and a simulation method with electrostrictive calculations,” Appl. Opt. 51(10), 1532–1539 (2012).
[Crossref]

Yamada, M.

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Yamaguchi, J.

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

Yamamoto, K.

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University, (1997).

Zushi, J.

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

Am. Ceram. Soc. Bull. (1)

W. Bonner, E. F. Dearborn, and L. G. Van Uitert, “Growth of potassium tantalate-niobate single crystals for optical application,” Am. Ceram. Soc. Bull. 44(1), 9–11 (1965).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, “Electro-optic properties of some ABO3 perovskites in the paraelectric phase,” Appl. Phys. Lett. 4(8), 141–143 (1964).
[Crossref]

R. Ohta, J. Zushi, T. Ariizumi, and S. Kojima, “Order–disorder behavior of ferroelectric phase transition of KTa1−xNbxO3 probed by Brillouin scattering,” Appl. Phys. Lett. 98(9), 092909 (2011).
[Crossref]

J. Alloys Compd. (1)

M. M. Rahaman, T. Imai, T. Sakamoto, M. Al Helal, S. Tsukada, and S. Kojima, “Ferroelectric phase transition of Li-doped KTa1-xNbxO3 single crystals with weak random fields: Inelastic light scattering study,” J. Alloys Compd. 735, 1063–1070 (2018).
[Crossref]

J. Appl. Phys. (4)

M. DiDomenico and S. H. Wemple, “Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects,” J. Appl. Phys. 40(2), 720–734 (1969).
[Crossref]

S. Kawamura, T. Imai, and T. Sakamoto, “Temperature independent electrostrictive coefficients of K0.95Li0.05Ta0.73Nb0.27O3 single crystals,” J. Appl. Phys. 122(11), 114101 (2017).
[Crossref]

F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light modulation and beam deflection with potassium tantalite-niobate crystals,” J. Appl. Phys. 37(1), 388–398 (1966).
[Crossref]

K. Nakamura, J. Miyazu, Y. Sasaki, T. Imai, M. Sasaura, and K. Fujiura, “Space-charge-controlled electro-optic effect: optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction,” J. Appl. Phys. 104(1), 013105 (2008).
[Crossref]

J. Phys. Soc. Jpn. (1)

K. Uchino, S. Nomura, and L. E. Cross, “Anomalous temperature dependence of electrostrictive coefficients in K(Ta0.55Nb0.45)O3,” J. Phys. Soc. Jpn. 51(10), 3242–3244 (1982).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Miyazu, S. Kawamura, T. Imai, and J. Kobayashi, “Temperature dependence of photoelastic effect in KTa1−xNbxO3 crystals and investigation of its origin,” Jpn. J. Appl. Phys. 52(9S1), 09KC03 (2013).
[Crossref]

NTT Tech. Rev. (1)

T. Imai, M. Sasaura, K. Nakamura, and K. Fujiura, “Crystal growth and electro-optic properties of KTa1−xNbxO3,” NTT Tech. Rev. 5(9), 1–8 (2007).

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

S. Triebwasser, “Study of ferroelectric transitions of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev. 114(1), 63–70 (1959).
[Crossref]

Phys. Rev. B (2)

L. A. Knauss, X. M. Wang, and J. Toulouse, “Polarization-strain coupling in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B 52(18), 13261–13268 (1995).
[Crossref]

S. H. Wemple and M. DiDomenico Jr, “Theory of the elasto-optic effect in nonmetallic crystals,” Phys. Rev. B 1(1), 193–202 (1970).
[Crossref]

Proc. SPIE (3)

S. Tatsumi, Y. Sasaki, S. Toyoda, T. Imai, J. Kobayashi, and T. Sakamoto, “Planar electro-optic deflector using KTa1−xNbxO3 for low-power-consumption operation,” Proc. SPIE 9744, 97440L (2016).
[Crossref]

Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-Optic KTN Deflector Stabilized with 405-nm Light Irradiation for Wavelength-Swept Light Source,” Proc. SPIE 10110, 101100H (2017).
[Crossref]

M. Fujimoto, M. Yamada, K. Yamamoto, Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, T. Sakamoto, M. Ueno, T. Imai, E. Sugai, and S. Yagi, “Stable wavelength-swept light source designed for industrial applications using KTN beam scanning technology,” Proc. SPIE 10110, 101100Q (2017).
[Crossref]

Other (2)

A. Yariv, Optical Electronics in Modern Communications, 5th ed., Oxford University, (1997).

T. S. Narasimhamurty, Photelastic and electro-optic properties of crystals, Plenum Press, New York, (1981).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. EO crystal block and light polarizations.
Fig. 2.
Fig. 2. Nominal EO coefficients gn11 and gn12 as functions of temperature.
Fig. 3.
Fig. 3. Elastic stiffness components c11 and c12.
Fig. 4.
Fig. 4. Optical path length profiles along the x-axis at 0 V after electron injection.
Fig. 5.
Fig. 5. Relations among αx, βx, αy and βy at 35.7 °C.
Fig. 6.
Fig. 6. gn12 / gn11 compared with (αy + βy) / (αx + βx).
Fig. 7.
Fig. 7. Elasto-optic coefficients p11 and p12.
Fig. 8.
Fig. 8. Genuine electrooptic coefficients gg11 and gg12.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ n x g = 1 2 n 0 3 g 11 g P x 2 Δ n y g = 1 2 n 0 3 g 12 g P x 2
P x ( x ) = ρ x ε V d
Δ n x g = 1 2 n 0 3 g 11 g ρ 2 ( x ε V ρ d ) 2 Δ n y g = 1 2 n 0 3 g 12 g ρ 2 ( x ε V ρ d ) 2 .
e x x = ( Q 11 + 2 c 12 c 11 Q 12 ) ρ 2 ( x ε V ρ d ) 2 + 2 c 12 c 11 x x c r a e y y = e z z = x x c r a
x c = ρ d 3 24 ε V + ε V 2 ρ d , r a = d 2 Q 12 ρ ε V
Δ n x p = 1 2 n 0 3 ( p 11 e x x + p 12 e y y + p 12 e z z ) Δ n y p = 1 2 n 0 3 ( p 12 e x x + p 11 e y y + p 12 e z z )
Δ s x = ( Δ n x g + Δ n x p ) L + ( n 0 1 ) e y y L Δ s y = ( Δ n y g + Δ n y p ) L + ( n 0 1 ) e y y L
Δ s x = 1 2 n 0 3 L [ ( g 11 g + g 11 e ) ρ 2 x 2 2 x g 11 n ρ ε V d + g 11 n ε 2 V 2 d 2 ( g 11 g + g 11 e g 11 n ) ρ 2 d 2 12 ] Δ s y = 1 2 n 0 3 L [ ( g 12 g + g 12 e ) ρ 2 x 2 2 x g 12 n ρ ε V d + g 12 n ε 2 V 2 d 2 ( g 12 g + g 12 e g 12 n ) ρ 2 d 2 12 ]
g 11 s p 11 Q 11 + 2 p 12 Q 12 g 12 s p 12 Q 11 + ( p 11 + p 12 ) Q 12 g 11 e p 11 [ Q 11 + 2 ( c 12 / c 12 c 11 c 11 ) Q 12 ] g 12 e p 12 [ Q 11 + 2 ( c 12 / c 12 c 11 c 11 ) Q 12 ] g 11 n g 11 g + g 11 s 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3 g 12 n g 12 g + g 12 s 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3
Δ s x | ρ = 0 = 1 2 n 0 3 g 11 n L ( ε V d ) 2 Δ s y | ρ = 0 = 1 2 n 0 3 g 11 n L ( ε V d ) 2 .
Δ s x | V = 0 = α x x 2 d 2 + β x 12 Δ s y | V = 0 = α y x 2 d 2 + β y 12 .
α x = ( 1 / 1 2 2 ) n 0 3 ρ 2 d 2 L [ g 11 n + g 11 e g 11 s + 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3 ] β x = ( 1 / 1 2 2 ) n 0 3 ρ 2 d 2 L [ g 11 e g 11 s + 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3 ] α y = ( 1 / 1 2 2 ) n 0 3 ρ 2 d 2 L [ g 12 n + g 12 e g 12 s + 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3 ] β y = ( 1 / 1 2 2 ) n 0 3 ρ 2 d 2 L [ g 12 e g 12 s + 2 Q 12 ( n 0 1 ) / ( n 0 1 ) n 0 3 n 0 3 ] .
p 11 = c 11 c 11 c 12 [ g 11 n 2 Q 12 2 c 11 ( β y / β y α x α x ) ( c 11 2 c 12 ) ( β x / β x α x α x ) ( c 11 + 2 c 12 ) ( 1 + β x / β x α x α x ) + n 0 1 n 0 3 ] p 12 = c 11 c 11 c 12 [ g 11 n 2 Q 12 c 11 ( β x / β x α x α x ) + 2 c 12 ( β y / β y α x α x ) ( c 11 + 2 c 12 ) ( 1 + β x / β x α x α x ) + n 0 1 n 0 3 ] .
g 12 n g 11 n = α y + β y α x + β x .

Metrics