T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
T. Unuma and S. Maeda, “Phase shift of terahertz Bloch oscillations induced by interminiband mixing in a biased semiconductor superlattice,” Appl. Phys. Express 12(4), 041003 (2019).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2018).
[Crossref]
J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26(2), 663–673 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
R. Ito, M. Honma, and T. Nose, “Electrically tunable hydrogen-bonded liquid crystal phase control device,” Appl. Sci. 8(12), 2478 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
A. Maka, K. Hirakawa, and T. Unuma, “Capacitive response and room-temperature terahertz gain of a Wannier–Stark ladder system in GaAs-based superlattices,” Appl. Phys. Express 9(11), 112101 (2016).
[Crossref]
C.-T. Wang, C.-L. Wu, H.-W. Zhang, T.-H. Lin, and C.-K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication 12, 16–32 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express 20(1), 364–376 (2012).
[Crossref]
H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]
R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref]
C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref]
S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2(3), 466–475 (1956).
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication 12, 16–32 (2014).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2018).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]
R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2018).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication 12, 16–32 (2014).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]
A. Maka, K. Hirakawa, and T. Unuma, “Capacitive response and room-temperature terahertz gain of a Wannier–Stark ladder system in GaAs-based superlattices,” Appl. Phys. Express 9(11), 112101 (2016).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
R. Ito, M. Honma, and T. Nose, “Electrically tunable hydrogen-bonded liquid crystal phase control device,” Appl. Sci. 8(12), 2478 (2018).
[Crossref]
C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
R. Ito, M. Honma, and T. Nose, “Electrically tunable hydrogen-bonded liquid crystal phase control device,” Appl. Sci. 8(12), 2478 (2018).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]
I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication 12, 16–32 (2014).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
T. Sasaki, K. Noda, H. Ono, and N. Kawatsuki, “Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers,” in Liquid Crystalline Polymers: Processing and Applications, V. K. Thakur and M. R. Kessler, eds. (Springer, 2015).
I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref]
R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
C.-T. Wang, C.-L. Wu, H.-W. Zhang, T.-H. Lin, and C.-K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
C.-T. Wang, C.-L. Wu, H.-W. Zhang, T.-H. Lin, and C.-K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
T. Unuma and S. Maeda, “Phase shift of terahertz Bloch oscillations induced by interminiband mixing in a biased semiconductor superlattice,” Appl. Phys. Express 12(4), 041003 (2019).
[Crossref]
A. Maka, K. Hirakawa, and T. Unuma, “Capacitive response and room-temperature terahertz gain of a Wannier–Stark ladder system in GaAs-based superlattices,” Appl. Phys. Express 9(11), 112101 (2016).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]
H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
T. Sasaki, K. Noda, H. Ono, and N. Kawatsuki, “Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers,” in Liquid Crystalline Polymers: Processing and Applications, V. K. Thakur and M. R. Kessler, eds. (Springer, 2015).
R. Ito, M. Honma, and T. Nose, “Electrically tunable hydrogen-bonded liquid crystal phase control device,” Appl. Sci. 8(12), 2478 (2018).
[Crossref]
T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozokido, “Refractive index of nematic liquid crystals in the submillimeter wave region,” Appl. Opt. 36(25), 6383–6387 (1997).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
T. Sasaki, K. Noda, H. Ono, and N. Kawatsuki, “Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers,” in Liquid Crystalline Polymers: Processing and Applications, V. K. Thakur and M. R. Kessler, eds. (Springer, 2015).
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2(3), 466–475 (1956).
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
T. Sasaki, K. Noda, H. Ono, and N. Kawatsuki, “Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers,” in Liquid Crystalline Polymers: Processing and Applications, V. K. Thakur and M. R. Kessler, eds. (Springer, 2015).
T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
T. Unuma and S. Maeda, “Phase shift of terahertz Bloch oscillations induced by interminiband mixing in a biased semiconductor superlattice,” Appl. Phys. Express 12(4), 041003 (2019).
[Crossref]
A. Maka, K. Hirakawa, and T. Unuma, “Capacitive response and room-temperature terahertz gain of a Wannier–Stark ladder system in GaAs-based superlattices,” Appl. Phys. Express 9(11), 112101 (2016).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
C.-T. Wang, C.-L. Wu, H.-W. Zhang, T.-H. Lin, and C.-K. Lee, “Polarization-independent 2 pi phase modulation for terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2018).
[Crossref]
D. C. Zografopoulos, A. Ferraro, and R. Beccherelli, “Liquid-crystal high-frequency microwave technology: materials and characterization,” Adv. Mater. Technol. 4(2), 1800447 (2018).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, N. Kawatsuki, and H. Ono, “Optical control of polarized terahertz waves using dye-doped nematic liquid crystals,” AIP Adv. 8(11), 115326 (2018).
[Crossref]
A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “From birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref]
T. Nose, S. Sato, K. Mizuno, J. Bae, and T. Nozokido, “Refractive index of nematic liquid crystals in the submillimeter wave region,” Appl. Opt. 36(25), 6383–6387 (1997).
[Crossref]
A. Maka, K. Hirakawa, and T. Unuma, “Capacitive response and room-temperature terahertz gain of a Wannier–Stark ladder system in GaAs-based superlattices,” Appl. Phys. Express 9(11), 112101 (2016).
[Crossref]
T. Unuma and S. Maeda, “Phase shift of terahertz Bloch oscillations induced by interminiband mixing in a biased semiconductor superlattice,” Appl. Phys. Express 12(4), 041003 (2019).
[Crossref]
C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]
R. Ito, M. Honma, and T. Nose, “Electrically tunable hydrogen-bonded liquid crystal phase control device,” Appl. Sci. 8(12), 2478 (2018).
[Crossref]
A. K. Sahoo, C.-S. Yang, C.-L. Yen, H.-C. Lin, Y.-J. Wang, Y.-H. Lin, O. Wada, and C.-L. Pan, “Twisted nematic liquid-crystal-based terahertz phase shifter using pristine PEDOT: PSS transparent conducting electrodes,” Appl. Sci. 9(4), 761 (2019).
[Crossref]
R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013).
[Crossref]
T.-R. Tsai, C.-Y. Chen, R.-P. Pan, and C.-L. Pan, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wireless Compon. Lett. 14(2), 77–79 (2004).
[Crossref]
C.-T. Wang, P.-S. Fang, J.-T. Guo, T.-H. Lin, and C.-K. Lee, “Sub-second switching speed polarization-independent 2 pi terahertz phase shifter,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]
T. Sasaki, Y. Nishie, M. Kambayashi, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Active terahertz polarization converter using a liquid crystal-embedded metal mesh,” IEEE Photonics J. 11(6), 1–7 (2019).
[Crossref]
H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]
J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]
T. Sasaki, H. Okuyama, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Twisted nematic liquid crystal cells with rubbed poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films for active polarization control of terahertz waves,” J. Appl. Phys. 121(14), 143106 (2017).
[Crossref]
R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103(9), 093523 (2008).
[Crossref]
N. Vieweg, M. K. Shakfa, B. Scherger, M. Kikulics, and M. Koch, “THz properties of nematic liquid Crystals,” J. Infrared, Millimeter, Terahertz Waves 31(11), 1312–1320 (2010).
[Crossref]
B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33(11), 1117–1122 (2012).
[Crossref]
S. R. Nersisyan, N. V. Tabriyan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Highly controllable form birefringence in subwavelength-period grating structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 29(9), 2386–2391 (2012).
[Crossref]
H. Ono, M. Nishi, T. Sasaki, K. Noda, M. Okada, S. Matsui, and N. Kawatsuki, “Polarization-sensitive diffraction in vector gratings combined with form birefringence in subwavelength-periodic structures fabricated by imprinting on polarization-sensitive liquid crystalline polymers,” J. Opt. Soc. Am. B 31(1), 11–19 (2014).
[Crossref]
P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]
X. Lia, N. Tanb, M. Pivnenkoa, J. Sibikb, J. A. Zeitlerb, and D. Chu, “High-birefringence nematic liquid crystal for broadband THz applications,” Liq. Cryst. 43(7), 955–962 (2016).
[Crossref]
T. Sasaki, H. Kushida, M. Sakamoto, K. Noda, H. Okamoto, N. Kawatsuki, and H. Ono, “Liquid crystal cells with subwavelength metallic gratings for transmissive terahertz elements with electrical tunability,” Opt. Commun. 431, 63–67 (2019).
[Crossref]
O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref]
J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26(2), 663–673 (2018).
[Crossref]
S. Ge, P. Chen, Z. Shen, W. Sun, X. Wang, W. Hu, Y. Zhang, and Y. Lu, “Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal,” Opt. Express 25(11), 12349–12356 (2017).
[Crossref]
Z. Shen, S. Zhou, S. Ge, W. Duan, L. Ma, Y. Lu, and W. Hu, “Liquid crystal tunable terahertz lens with spin-selected focusing property,” Opt. Express 27(6), 8800–8807 (2019).
[Crossref]
I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquid crystal spatial light modulator,” Opt. Express 20(1), 364–376 (2012).
[Crossref]
K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref]
Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref]
C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref]
R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17(9), 7377–7382 (2009).
[Crossref]
I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[Crossref]
I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: Next frontier for wireless communications,” Physical Communication 12, 16–32 (2014).
[Crossref]
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]
S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2(3), 466–475 (1956).
T. Sasaki, K. Noda, H. Ono, and N. Kawatsuki, “Liquid crystal diffraction gratings using photocrosslinkable liquid crystalline polymer films as alignment layers,” in Liquid Crystalline Polymers: Processing and Applications, V. K. Thakur and M. R. Kessler, eds. (Springer, 2015).
M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).