E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
J. Agrawal, T. Dixit, P. A. Iyamperumal, and V. Singh, “Electron Depleted ZnO Nanowalls-Based Broadband Photodetector,” IEEE Photonics Technol. Lett. 31(20), 1639–1642 (2019).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]
M. Freitag, T. Low, and P. Avouris, “Increased esponsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[Crossref]
T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
B. Liu, I. S. Chiu, and C. S. Lai, “Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing,” Vacuum 137, 8–13 (2017).
[Crossref]
H. T. Kim, D. K. Park, and W. S. Choi, “Measurements of plasma parameters in low-frequency (60 Hz) hydrogen discharge,” J. Korean Phys. Soc. 42, S916–S919 (2003).
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
K. Teii, S. Shimada, M. Nakashima, and A. T. H. Chuang, “Synthesis and electrical characterization of n-type carbon nanowalls,” J. Appl. Phys. 106(8), 084303 (2009).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, “Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface,” J. Am. Chem. Soc. 136(8), 3040–3047 (2014).
[Crossref]
J. Agrawal, T. Dixit, P. A. Iyamperumal, and V. Singh, “Electron Depleted ZnO Nanowalls-Based Broadband Photodetector,” IEEE Photonics Technol. Lett. 31(20), 1639–1642 (2019).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, “Breit-Wigner-Fano line shapes in Raman spectra of graphene,” Phys. Rev. B 90(24), 245140 (2014).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]
M. Freitag, T. Low, and P. Avouris, “Increased esponsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[Crossref]
H. Wang and Y. Fu, “Graphene-Nanowalls/Silicon hybrid heterojunction photodetectors,” Carbon 162, 181–186 (2020).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, “Breit-Wigner-Fano line shapes in Raman spectra of graphene,” Phys. Rev. B 90(24), 245140 (2014).
[Crossref]
Y. Okigawa, R. Kato, T. Yamada, M. Ishihara, and M. Hasegawa, “Electrical properties and domain sizes of graphene fifilms synthesized by microwave plasma treatment under a low carbon concentration,” Carbon 82, 60–66 (2015).
[Crossref]
D. B. Hash and M. Meyyappan, “Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes,” J. Appl. Phys. 93(1), 750–752 (2003).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
Y. Okigawa, R. Kato, T. Yamada, M. Ishihara, and M. Hasegawa, “Electrical properties and domain sizes of graphene fifilms synthesized by microwave plasma treatment under a low carbon concentration,” Carbon 82, 60–66 (2015).
[Crossref]
J. Agrawal, T. Dixit, P. A. Iyamperumal, and V. Singh, “Electron Depleted ZnO Nanowalls-Based Broadband Photodetector,” IEEE Photonics Technol. Lett. 31(20), 1639–1642 (2019).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
Y. Okigawa, R. Kato, T. Yamada, M. Ishihara, and M. Hasegawa, “Electrical properties and domain sizes of graphene fifilms synthesized by microwave plasma treatment under a low carbon concentration,” Carbon 82, 60–66 (2015).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
H. T. Kim, M. J. Kim, and S. H. Sohn, “Characterization of TiN thin films grown by low-frequency (60 Hz) plasma enhanced chemical vapor deposition,” J. Phys. Chem. Solids 73(7), 931–935 (2012).
[Crossref]
H. T. Kim, D. K. Park, and W. S. Choi, “Measurements of plasma parameters in low-frequency (60 Hz) hydrogen discharge,” J. Korean Phys. Soc. 42, S916–S919 (2003).
H. T. Kim, M. J. Kim, and S. H. Sohn, “Characterization of TiN thin films grown by low-frequency (60 Hz) plasma enhanced chemical vapor deposition,” J. Phys. Chem. Solids 73(7), 931–935 (2012).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
D. Seo, A. Rider, S. Kumar, L. Randeniya, and K. Ostrikov, “Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey,” Carbon 60, 221–228 (2013).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
B. Liu, I. S. Chiu, and C. S. Lai, “Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing,” Vacuum 137, 8–13 (2017).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
B. Liu, I. S. Chiu, and C. S. Lai, “Improvements on thermal stability of graphene and top gate graphene transistors by Ar annealing,” Vacuum 137, 8–13 (2017).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]
M. Freitag, T. Low, and P. Avouris, “Increased esponsivity of suspended graphene photodetectors,” Nano Lett. 13(4), 1644–1648 (2013).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
D. B. Hash and M. Meyyappan, “Model based comparison of thermal and plasma chemical vapor deposition of carbon nanotubes,” J. Appl. Phys. 93(1), 750–752 (2003).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
K. Teii, S. Shimada, M. Nakashima, and A. T. H. Chuang, “Synthesis and electrical characterization of n-type carbon nanowalls,” J. Appl. Phys. 106(8), 084303 (2009).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, “Breit-Wigner-Fano line shapes in Raman spectra of graphene,” Phys. Rev. B 90(24), 245140 (2014).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
Y. Okigawa, R. Kato, T. Yamada, M. Ishihara, and M. Hasegawa, “Electrical properties and domain sizes of graphene fifilms synthesized by microwave plasma treatment under a low carbon concentration,” Carbon 82, 60–66 (2015).
[Crossref]
D. Seo, A. Rider, S. Kumar, L. Randeniya, and K. Ostrikov, “Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey,” Carbon 60, 221–228 (2013).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
H. T. Kim, D. K. Park, and W. S. Choi, “Measurements of plasma parameters in low-frequency (60 Hz) hydrogen discharge,” J. Korean Phys. Soc. 42, S916–S919 (2003).
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
D. Seo, A. Rider, S. Kumar, L. Randeniya, and K. Ostrikov, “Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey,” Carbon 60, 221–228 (2013).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
D. Seo, A. Rider, S. Kumar, L. Randeniya, and K. Ostrikov, “Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey,” Carbon 60, 221–228 (2013).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p-n junction,” Nano Lett. 11(10), 4134–4137 (2011).
[Crossref]
E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus, and R. Saito, “Breit-Wigner-Fano line shapes in Raman spectra of graphene,” Phys. Rev. B 90(24), 245140 (2014).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
D. Seo, A. Rider, S. Kumar, L. Randeniya, and K. Ostrikov, “Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey,” Carbon 60, 221–228 (2013).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
K. Shiji, M. Hiramatsu, A. Enomoto, M. Nakamura, H. Amano, and M. Hori, “Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition,” Diamond Relat. Mater. 14(3-7), 831–834 (2005).
[Crossref]
K. Teii, S. Shimada, M. Nakashima, and A. T. H. Chuang, “Synthesis and electrical characterization of n-type carbon nanowalls,” J. Appl. Phys. 106(8), 084303 (2009).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
J. Agrawal, T. Dixit, P. A. Iyamperumal, and V. Singh, “Electron Depleted ZnO Nanowalls-Based Broadband Photodetector,” IEEE Photonics Technol. Lett. 31(20), 1639–1642 (2019).
[Crossref]
H. T. Kim, M. J. Kim, and S. H. Sohn, “Characterization of TiN thin films grown by low-frequency (60 Hz) plasma enhanced chemical vapor deposition,” J. Phys. Chem. Solids 73(7), 931–935 (2012).
[Crossref]
N. Soin, S. S. Roy, C. O’Kane, J. A. D. McLaughlin, T. H. Lim, and C. J. D. Hetherington, “Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction,” CrystEngComm 13(1), 312–318 (2011).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
E. M. Ferreira, M. O. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82(12), 125429 (2010).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
K. Teii, S. Shimada, M. Nakashima, and A. T. H. Chuang, “Synthesis and electrical characterization of n-type carbon nanowalls,” J. Appl. Phys. 106(8), 084303 (2009).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
C. Ramesh, P. Tyagi, B. Bhattacharyya, S. Husale, K. K. Maurya, M. S. Kumar, and S. S. Kushvaha, “Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors,” J. Alloys Compd. 770, 572–581 (2019).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
S. Vizireanu, S. D. Stoica, C. Luculescu, L. C. Nistor, B. Mitu, and G. Dinescu, “Plasma techniques for nanostructured carbon materials synthesis. A case study: carbon nanowall growth by low pressure expanding RF plasma,” Plasma Sources Sci. Technol. 19(3), 034016 (2010).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
H. Wang and Y. Fu, “Graphene-Nanowalls/Silicon hybrid heterojunction photodetectors,” Carbon 162, 181–186 (2020).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, “Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface,” J. Am. Chem. Soc. 136(8), 3040–3047 (2014).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
Y. Hao, M. S. Bharathi, L. Wang, L. Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, and H. Ramanarayan, “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science 342(6159), 720–723 (2013).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics 7(1), 53–59 (2013).
[Crossref]
T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics 4(5), 297–301 (2010).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, “Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface,” J. Am. Chem. Soc. 136(8), 3040–3047 (2014).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
L. Li, Y. Dong, W. Guo, F. Qian, F. Xiong, Y. Fu, Z. Du, C. Xu, and J. Sun, “High-responsivity photodetectors made of graphene nanowalls grown on Si,” Appl. Phys. Lett. 115(8), 081101 (2019).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, “Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface,” J. Am. Chem. Soc. 136(8), 3040–3047 (2014).
[Crossref]
Y. Okigawa, R. Kato, T. Yamada, M. Ishihara, and M. Hasegawa, “Electrical properties and domain sizes of graphene fifilms synthesized by microwave plasma treatment under a low carbon concentration,” Carbon 82, 60–66 (2015).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
C. Yang, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, “Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes,” J. Mater. Chem. A 1(3), 770–775 (2013).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
L. Jiang, T. Yang, F. Liu, J. Dong, Z. Yao, C. Shen, S. Deng, N. Xu, Y. Liu, and H. Gao, “Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field Emitters,” Adv. Mater. 25(2), 250–255 (2013).
[Crossref]
S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 97(10), 104320 (2005).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan, and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale 5(12), 5180–5204 (2013).
[Crossref]
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu, J. Yang, H. Feng, L. Yu, and D. Wei, “Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate,” Nanotechnology 28(31), 315501 (2017).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
J. L. Qi, X. Wang, J. H. Lin, F. Zhang, J. C. Feng, and W. D. Fei, “A high-performance supercapacitor of vertically-oriented few-layered graphene with high-density defects,” Nanoscale 7(8), 3675–3682 (2015).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology 19(30), 305604 (2008).
[Crossref]
J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, “Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD,” RSC Adv. 4(84), 44434–44441 (2014).
[Crossref]
K. Hu, Z. Xue, Y. Liu, H. Long, B. Peng, H. Yan, Z. Di, X. Wang, L. Lin, and W. Zhang, “Tension-Induced Raman Enhancement of Graphene Membranes in the Stretched State,” Small 15(2), 1804337 (2019).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
J. Liu, W. Sun, D. Wei, X. Song, T. Jiao, S. He, W. Zhang, and C. Du, “Direct growth of graphene nanowalls on the crystalline silicon for solar cells,” Appl. Phys. Lett. 106(4), 043904 (2015).
[Crossref]
X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, “Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface,” J. Am. Chem. Soc. 136(8), 3040–3047 (2014).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
L. Liu, C. Yang, A. Patane, Z. Yu, F. Yan, K. Wang, H. Liu, J. Li, and L. Zhao, “High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN,” Nanoscale 9(24), 8142–8148 (2017).
[Crossref]
W. Zhao, N. Du, C. Xiao, H. Wu, H. Zhang, and D. Yang, “Large-scale synthesis of Ag-Si core-shell nanowall arrays as high-performance anode materials of Li-ion batteries,” J. Mater. Chem. A 2(34), 13949–13954 (2014).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
H. Zhang, K. Zhao, S. Cui, J. Yang, D. Zhou, L. Tang, J. Shen, S. Feng, W. Zhang, and Y. Fu, “Anomalous temperature coefficient of resistance in graphene nanowalls/polymer films and applications in infrared photodetectors,” Nanophotonics 7(5), 883–892 (2018).
[Crossref]
X. Liu, Q. Zhou, S. Luo, H. Du, Z. Cao, X. Peng, W. Feng, J. Shen, and D. Wei, “Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction,” ACS Appl. Mater. Interfaces 11(19), 17663–17669 (2019).
[Crossref]
J. Shen, X. Liu, X. Song, X. Li, J. Wang, Q. Zhou, S. Luo, W. Feng, X. Wei, S. Lu, S. Feng, C. Du, Y. Wang, H. Shi, and D. Wei, “High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes,” Nanoscale 9(18), 6020–6025 (2017).
[Crossref]
Q. Zhou, X. Liu, E. Zhang, S. Luo, J. Shen, Y. Wang, and D. Wei, “The controlled growth of graphene nanowalls on Si for Schottky photodetector,” AIP Adv. 7(12), 125317 (2017).
[Crossref]
M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, and D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon 45(11), 2229–2234 (2007).
[Crossref]
S. Wang, J. Wang, P. Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, T. Tyler, O. Shenderova, M. Ray, J. Dalton, and G. McGuire, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett. 89(18), 183103 (2006).
[Crossref]
J. Sun, Y. Chen, X. Cai, B. Ma, Z. Chen, M. K. Priydarshi, K. Chen, T. Gao, X. Song, Q. Ji, X. Guo, D. Zou, Y. Zhang, and Z. Liu, “Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes,” Nano Res. 8(11), 3496–3504 (2015).
[Crossref]