S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
D. B. Bonneville, M. A. Méndez-Rosales, H. C. Frankis, L. M. Gonçalves, R. N. Kleiman, and J. D. B. Bradley, “Flexible and low-cost fabrication of optical waveguides by UV laser resist-mask writing,” Opt. Mater. Express 9(4), 1728 (2019).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
M. Z. Mohammed, A. H. I. Mourad, and S. A. Khashan, “Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width,” Lasers Manuf. Mater. Process. 5(2), 133–142 (2018).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
N. Tsutsumi, J. Hirota, K. Kinashi, and W. Sakai, “Direct laser writing for micro-optical devices using a negative photoresist,” Opt. Express 25(25), 31539–31551 (2017).
[Crossref]
D. Ji, T. Li, and H. Fuchs, “Nanosphere Lithography for Sub-10-nm Nanogap Electrodes,” Adv. Electron. Mater. 3(1), 1600348 (2017).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
M. G. Guney and G. K. Fedder, “Estimation of line dimensions in 3D direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
A. Pimpin and W. Srituravanich, “Reviews on micro- and nanolithography techniques and their applications,” Eng. J. 16(1), 37–56 (2012).
[Crossref]
C. Hao-Wen, “Development of blue laser direct-write lithography system,” Int. J. Innov. Technol. Manag. 2(1), 63 (2012).
M. Altissimo, “E-beam lithography for micro-/nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[Crossref]
J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron 35(6), 399–409 (2004).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
H. Elsner and H. G. Meyer, “Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist,” Microelectron. Eng. 57-58(1), 291–296 (2001).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
W. Chen and H. Ahmed, “Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett. 62(13), 1499–1501 (1993).
[Crossref]
T. Fink, D. D. Smith, and W. D. Braddock, “Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization,” IEEE Trans. Electron Devices 37(6), 1422–1425 (1990).
[Crossref]
W. Chen and H. Ahmed, “Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett. 62(13), 1499–1501 (1993).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
S. J. Park, S. H. Cha, G. A. Shin, and Y. H. Ahn, “Sensing viruses using terahertz nano-gap metamaterials,” Biomed. Opt. Express 8(8), 3551–3558 (2017).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
M. Altissimo, “E-beam lithography for micro-/nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
E. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Dissertation, University of Twente (2012).
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
T. Fink, D. D. Smith, and W. D. Braddock, “Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization,” IEEE Trans. Electron Devices 37(6), 1422–1425 (1990).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
W. Chen and H. Ahmed, “Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett. 62(13), 1499–1501 (1993).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron 35(6), 399–409 (2004).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
H. Elsner and H. G. Meyer, “Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist,” Microelectron. Eng. 57-58(1), 291–296 (2001).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. G. Guney and G. K. Fedder, “Estimation of line dimensions in 3D direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]
T. Fink, D. D. Smith, and W. D. Braddock, “Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization,” IEEE Trans. Electron Devices 37(6), 1422–1425 (1990).
[Crossref]
J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]
J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
D. Ji, T. Li, and H. Fuchs, “Nanosphere Lithography for Sub-10-nm Nanogap Electrodes,” Adv. Electron. Mater. 3(1), 1600348 (2017).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
M. G. Guney and G. K. Fedder, “Estimation of line dimensions in 3D direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
C. Hao-Wen, “Development of blue laser direct-write lithography system,” Int. J. Innov. Technol. Manag. 2(1), 63 (2012).
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
D. Ji, T. Li, and H. Fuchs, “Nanosphere Lithography for Sub-10-nm Nanogap Electrodes,” Adv. Electron. Mater. 3(1), 1600348 (2017).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
M. Z. Mohammed, A. H. I. Mourad, and S. A. Khashan, “Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width,” Lasers Manuf. Mater. Process. 5(2), 133–142 (2018).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron 35(6), 399–409 (2004).
[Crossref]
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
D. Ji, T. Li, and H. Fuchs, “Nanosphere Lithography for Sub-10-nm Nanogap Electrodes,” Adv. Electron. Mater. 3(1), 1600348 (2017).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron 35(6), 399–409 (2004).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
H. Elsner and H. G. Meyer, “Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist,” Microelectron. Eng. 57-58(1), 291–296 (2001).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. Z. Mohammed, A. H. I. Mourad, and S. A. Khashan, “Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width,” Lasers Manuf. Mater. Process. 5(2), 133–142 (2018).
[Crossref]
M. Z. Mohammed, A. H. I. Mourad, and S. A. Khashan, “Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width,” Lasers Manuf. Mater. Process. 5(2), 133–142 (2018).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
A. Pimpin and W. Srituravanich, “Reviews on micro- and nanolithography techniques and their applications,” Eng. J. 16(1), 37–56 (2012).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
T. Fink, D. D. Smith, and W. D. Braddock, “Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization,” IEEE Trans. Electron Devices 37(6), 1422–1425 (1990).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
A. Pimpin and W. Srituravanich, “Reviews on micro- and nanolithography techniques and their applications,” Eng. J. 16(1), 37–56 (2012).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]
J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
S. Bagheri, K. Weber, T. Gissibl, T. Weiss, F. Neubrech, and H. Giessen, “Fabrication of Square-Centimeter Plasmonic Nanoantenna Arrays by Femtosecond Direct Laser Writing Lithography: Effects of Collective Excitations on SEIRA Enhancement,” ACS Photonics 2(6), 779–786 (2015).
[Crossref]
D. Ji, T. Li, and H. Fuchs, “Nanosphere Lithography for Sub-10-nm Nanogap Electrodes,” Adv. Electron. Mater. 3(1), 1600348 (2017).
[Crossref]
J. Fischer, G. von Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22(32), 3578–3582 (2010).
[Crossref]
Q. C. Tong, D. T. T. Nguyen, M. T. Do, M. H. Luong, B. Journet, I. Ledoux-Rak, and N. D. Lai, “Direct laser writing of polymeric nanostructures via optically induced local thermal effect,” Appl. Phys. Lett. 108(18), 183104 (2016).
[Crossref]
W. Chen and H. Ahmed, “Fabrication of 5-7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett. 62(13), 1499–1501 (1993).
[Crossref]
M. Altissimo, “E-beam lithography for micro-/nanofabrication,” Biomicrofluidics 4(2), 026503 (2010).
[Crossref]
P. Müller, R. Müller, L. Hammer, C. Barner-Kowollik, M. Wegener, and E. Blasco, “STED-Inspired Laser Lithography Based on Photoswitchable Spirothiopyran Moieties,” Chem. Mater. 31(6), 1966–1972 (2019).
[Crossref]
A. Pimpin and W. Srituravanich, “Reviews on micro- and nanolithography techniques and their applications,” Eng. J. 16(1), 37–56 (2012).
[Crossref]
T. Fink, D. D. Smith, and W. D. Braddock, “Electron-beam-induced damage study in GaAs-AlGaAs heterostructures as determined by magnetotransport characterization,” IEEE Trans. Electron Devices 37(6), 1422–1425 (1990).
[Crossref]
C. Hao-Wen, “Development of blue laser direct-write lithography system,” Int. J. Innov. Technol. Manag. 2(1), 63 (2012).
D. X. Yang, A. Frommhold, X. Xue, R. E. Palmer, and A. P. G. Robinson, “Chemically amplified phenolic fullerene electron beam resist,” J. Mater. Chem. C 2(8), 1505–1512 (2014).
[Crossref]
S. Srikanth, S. Dudala, S. Raut, S. K. Dubey, I. Ishii, A. Javed, and S. G. Goel, “Optimization and Characterization of Direct UV Laser Writing System for Microscale Applications,” J. Micromech. Microeng. 30(9), 095003 (2020).
[Crossref]
M. G. Guney and G. K. Fedder, “Estimation of line dimensions in 3D direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]
R. Fallica, D. Kazazis, R. Kirchner, A. Voigt, I. Mochi, H. Schift, and Y. Ekinci, “Lithographic performance of ZEP520A and mr-PosEBR resists exposed by electron beam and extreme ultraviolet lithography,” J. Vac. Sci. Technol. 35(6), 061603 (2017).
[Crossref]
J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]
A. Žukauskas, I. Matulaitiene, D. Paipulas, G. Niaura, M. Malinauskas, and R. Gadonas, “Tuning the refractive index in 3D direct laser writing lithography: Towards GRIN microoptics,” Laser Photonics Rev. 9(6), 706–712 (2015).
[Crossref]
M. Z. Mohammed, A. H. I. Mourad, and S. A. Khashan, “Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width,” Lasers Manuf. Mater. Process. 5(2), 133–142 (2018).
[Crossref]
D. Roy, P. K. Basu, P. Raghunathan, and S. V. Eswaran, “Photo-induced cross-linking mechanism in azide-novolac negative photoresists: Molecular level investigation using NMR spectroscopy,” Magn. Reson. Chem. 41(9), 671–678 (2003).
[Crossref]
M. M. Blideran, M. Häffner, B. E. Schuster, C. Raisch, H. Weigand, M. Fleischer, H. Peisert, T. Chassé, and D. P. Kern, “Improving etch selectivity and stability of novolak based negative resists by fluorine plasma treatment,” Microelectron. Eng. 86(4-6), 769–772 (2009).
[Crossref]
M. A. Bruk, E. N. Zhikharev, A. E. Rogozhin, D. R. Streltsov, V. A. Kalnov, S. N. Averkin, and A. V. Spirin, “Formation of micro- A nd nanostructures with well-rounded profile by new e-beam lithography principle,” Microelectron. Eng. 155(1), 92–96 (2016).
[Crossref]
H. Elsner, H. G. Meyer, A. Voigt, and G. Grüitzner, “Evaluation of ma-N 2400 series DUV photoresist for electron beam exposure,” Microelectron. Eng. 46(1-4), 389–392 (1999).
[Crossref]
H. Elsner and H. G. Meyer, “Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist,” Microelectron. Eng. 57-58(1), 291–296 (2001).
[Crossref]
X. He, T. Li, J. Zhang, and Z. Wang, “STED direct laser writing of 45 nm Width Nanowire,” Micromachines 10(11), 726 (2019).
[Crossref]
R. F. Egerton, P. Li, and M. Malac, “Radiation damage in the TEM and SEM,” Micron 35(6), 399–409 (2004).
[Crossref]
L. Qin, Y. Huang, F. Xia, L. Wang, J. Ning, H. Chen, X. Wang, W. Zhang, Y. Peng, Q. Liu, and Z. Zhang, “5 nm Nanogap Electrodes and Arrays by Super-resolution Laser Lithography,” Nano Lett. 20(7), 4916–4923 (2020).
[Crossref]
H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Phonon-Polaritons in Lead Halide Perovskite Film Hybridized with THz Metamaterials,” Nano Lett. 20(9), 6690–6696 (2020).
[Crossref]
M. S. M. Saifullah, T. Ondarçuhu, D. K. Koltsov, C. Joachim, and M. E. Welland, “A reliable scheme for fabricating sub-5 nm co-planar junctions for single-molecule electronics,” Nanotechnology 13(5), 659–662 (2002).
[Crossref]
Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4(1), 2061 (2013).
[Crossref]
H. Ni, G. Yuan, L. Sun, N. Chang, D. Zhang, R. Chen, L. Jiang, H. Chen, Z. Gu, and X. Zhao, “Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography,” RSC Adv. 8(36), 20117–20123 (2018).
[Crossref]
J. Kim, K. Han, and J. W. Hahn, “Selective dual-band metamaterial perfect absorber for infrared stealth technology,” Sci. Rep. 7(1), 6740 (2017).
[Crossref]
B. H. Son, H. S. Kim, H. Jeong, J. Y. Park, S. Lee, and Y. H. Ahn, “Electron beam induced removal of PMMA layer used for graphene transfer,” Sci. Rep. 7(1), 18058 (2017).
[Crossref]
ma-N 2400 negative photo resist data sheet (micro resist technology GmbH).
E. Bernhardi, “Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications,” Dissertation, University of Twente (2012).