Abstract

The ever-expanding array of two-dimensional materials and heterostructures susceptible to alteration in oxygen environments motivates the search for lateral confinement techniques outside conventional lithographic and etching methods. Laser ablation of such materials using a femtosecond pulsed Ti:Sapphire laser and programmable x-y stage is a single-step process that can be used as a flexible tool for device processing. However, scanning probe analysis of sub-micron graphene ribbons fabricated with this technique reveal considerable defect accumulation under ambient conditions. We show that such defects are largely alleviated by the simple change in the ablation environment from air to water.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser ablation of silicon in water with nanosecond and femtosecond pulses

Jun Ren, Michael Kelly, and Lambertus Hesselink
Opt. Lett. 30(13) 1740-1742 (2005)

Laser ablation- and plasma etching-based patterning of graphene on silicon-on-insulator waveguides

Jürgen Van Erps, Tymoteusz Ciuk, Iwona Pasternak, Aleksandra Krajewska, Wlodek Strupinski, Steven Van Put, Geert Van Steenberge, Kitty Baert, Herman Terryn, Hugo Thienpont, and Nathalie Vermeulen
Opt. Express 23(20) 26639-26650 (2015)

Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation

Xiaodan Xu, Bin Shi, Xinzheng Zhang, Yang Liu, Wei Cai, Mengxin Ren, Xiaojie Jiang, Romano A. Rupp, Qiang Wu, and Jingjun Xu
Opt. Express 26(16) 20726-20734 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
    [Crossref]
  2. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref]
  3. R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
    [Crossref]
  4. D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
    [Crossref]
  5. W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
    [Crossref]
  6. G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
    [Crossref]
  7. R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
    [Crossref]
  8. R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
    [Crossref]
  9. S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
    [Crossref]
  10. T. Dong and M. Sparkes, “Evaluating Femtosecond Laser Ablation of Graphene on SiO2/Si Substrate,” J. Laser Appl. 28(2), 022202 (2016).
    [Crossref]
  11. Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
    [Crossref]
  12. C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
    [Crossref]
  13. A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Lasers Eng. 41(2), 329–352 (2004).
    [Crossref]
  14. N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
    [Crossref]
  15. J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
    [Crossref]
  16. D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
    [Crossref]
  17. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
    [Crossref]
  18. J. Hernandez-Rueda and D. van Oosten, “Dynamics of ultrafast laser ablation of water,” arXiv:1810.06946 (2018).
  19. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [Crossref]
  20. T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
    [Crossref]

2018 (1)

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

2017 (1)

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

2016 (4)

T. Dong and M. Sparkes, “Evaluating Femtosecond Laser Ablation of Graphene on SiO2/Si Substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
[Crossref]

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

2015 (2)

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

2014 (1)

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

2012 (1)

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

2011 (3)

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

2010 (2)

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

2004 (1)

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Lasers Eng. 41(2), 329–352 (2004).
[Crossref]

2002 (1)

2000 (1)

T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Ahmed, N.

N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
[Crossref]

Akturk, S.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Alahmari, A. M.

N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
[Crossref]

Allen, M. J.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
[Crossref]

Barcikowski, S.

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Barri, R.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Booksh, K.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Darwish, S.

N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
[Crossref]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Dong, T.

T. Dong and M. Sparkes, “Evaluating Femtosecond Laser Ablation of Graphene on SiO2/Si Substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Englund, D.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Gao, H.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Gibson, C.

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Glezer, E. N.

Gökce, B.

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Gundlach, L.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Hernandez-Rueda, J.

J. Hernandez-Rueda and D. van Oosten, “Dynamics of ultrafast laser ablation of water,” arXiv:1810.06946 (2018).

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Huang, X.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Huang, Y.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Iwanaga, S.

T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[Crossref]

Jiang, L.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Joanni, E.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Kaakkunen, J. J. J.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Kalita, G.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Kaner, R. B.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
[Crossref]

Kim, A. M.-T.

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Kolesov, R.

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Lasers Eng. 41(2), 329–352 (2004).
[Crossref]

Kumar, R.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Li, D.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Li, L.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Lin, Z.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Lu, Y.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Mazur, E.

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Mollabashi, M.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Mortazavi, S.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Moshkalev, S.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Namba, Y.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Nishimura, N.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Ogata, Y. H.

T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[Crossref]

Paivasaari, K.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Pena, A.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Pescador, J.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Qi, L.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Sahin, R.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Sakka, T.

T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[Crossref]

Schaffer, C. B.

Shah, S.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Shapter, J.

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Shearer, C.

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Shi, N.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Silvain, J.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Silvennoinen, M.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Simsek, E.

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Singh, D.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Singh, R.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Slattery, A.

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Smith, J.

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Sommer, S.

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Sparkes, M.

T. Dong and M. Sparkes, “Evaluating Femtosecond Laser Ablation of Graphene on SiO2/Si Substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Stapleton, A.

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Stohr, R.

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Streubel, R.

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Sutter, E.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Sutter, P.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Tung, V. C.

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
[Crossref]

Tunnerman, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Umeno, M.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Vahimaag, P.

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

van Oosten, D.

J. Hernandez-Rueda and D. van Oosten, “Dynamics of ultrafast laser ablation of water,” arXiv:1810.06946 (2018).

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

Wakita, K.

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Wang, Z.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Whitehead, D.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Wrachtrup, J.

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Xia, K.

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Yadav, R.

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

Yang, T.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Zhang, D.

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Zhang, W.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Zheng, J.

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Zhong, M.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Zhou, Y.

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Zhu, H.

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

ACS Nano (2)

R. Stohr, R. Kolesov, K. Xia, and J. Wrachtrup, “All-Optical High-Resolution Nanopatterning and 3D Suspending of Graphene,” ACS Nano 5(6), 5141–5150 (2011).
[Crossref]

Y. Huang, E. Sutter, N. Shi, J. Zheng, T. Yang, D. Englund, H. Gao, and P. Sutter, “Reliable exoliation of large-area high-quality flakes of graphene and other two-dimensional materials,” ACS Nano 9(11), 10612–10620 (2015).
[Crossref]

Appl. Phys. A (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63(2), 109–115 (1996).
[Crossref]

W. Zhang, L. Li, Z. Wang, A. Pena, D. Whitehead, M. Zhong, Z. Lin, and H. Zhu, “Ti:sapphire femtosecond laser direct micro-cutting and profiling of graphene,” Appl. Phys. A 109(2), 291–297 (2012).
[Crossref]

Appl. Phys. Lett. (1)

R. Sahin, E. Simsek, and S. Akturk, “Nanoscale patterning of graphene through femtosecond laser ablation,” Appl. Phys. Lett. 104(5), 053118 (2014).
[Crossref]

Appl. Surf. Sci. (1)

D. Zhang, B. Gökce, S. Sommer, R. Streubel, and S. Barcikowski, “Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol,” Appl. Surf. Sci. 367, 222–230 (2016).
[Crossref]

Chem. Rev. (1)

M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. 110(1), 132–145 (2010).
[Crossref]

Coord. Chem. Rev. (1)

R. Kumar, R. Singh, D. Singh, E. Joanni, R. Yadav, and S. Moshkalev, “Laser-assisted synthesis, reduction, and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev. 342, 34–79 (2017).
[Crossref]

J. Chem. Phys. (1)

T. Sakka, S. Iwanaga, and Y. H. Ogata, “Laser ablation at solid-liquid interfaces: An approach from optical emission spectra,” J. Chem. Phys. 112(19), 8645–8653 (2000).
[Crossref]

J. Laser Appl. (1)

T. Dong and M. Sparkes, “Evaluating Femtosecond Laser Ablation of Graphene on SiO2/Si Substrate,” J. Laser Appl. 28(2), 022202 (2016).
[Crossref]

Mater. Lett. (1)

G. Kalita, L. Qi, Y. Namba, K. Wakita, and M. Umeno, “Femtosecond laser induced micropatterning of graphene film,” Mater. Lett. 65(11), 1569–1572 (2011).
[Crossref]

Mater. Manuf. Processes (1)

N. Ahmed, S. Darwish, and A. M. Alahmari, “Laser ablation and laser-hybrid ablation processes: a review,” Mater. Manuf. Processes 31(9), 1121–1142 (2016).
[Crossref]

Nanoscale (1)

D. Li, Y. Zhou, X. Huang, L. Jiang, J. Silvain, and Y. Lu, “In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene,” Nanoscale 7(8), 3651–3659 (2015).
[Crossref]

Nanotechnology (1)

C. Shearer, A. Slattery, A. Stapleton, J. Shapter, and C. Gibson, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

A. Kruusing, “Underwater and water-assisted laser processing: Part 2 - Etching, cutting and rarely used methods,” Opt. Lasers Eng. 41(2), 329–352 (2004).
[Crossref]

Phys. Procedia (1)

J. J. J. Kaakkunen, M. Silvennoinen, K. Paivasaari, and P. Vahimaag, “Water-assisted femtosecond laser pulse ablation of high aspect ratio holes,” Phys. Procedia 12, 89–93 (2011).
[Crossref]

Phys. Status Solidi A (1)

S. Mortazavi, M. Mollabashi, R. Barri, J. Pescador, L. Gundlach, J. Smith, K. Booksh, and S. Shah, “Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation,” Phys. Status Solidi A 215, 1800334 (2018).
[Crossref]

Other (1)

J. Hernandez-Rueda and D. van Oosten, “Dynamics of ultrafast laser ablation of water,” arXiv:1810.06946 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Laser ablation schematic. The ultrafast laser is coupled into an inverted microscope equipped with a computer-controlled x-y stage. The sample is viewed in real time during the ablation using reflected illumination from an LED. The inset shows how the sample is placed underwater by sandwiching a drop of water between the sample and a coverslip; the coverslip and water are not used for ablation performed in air.
Fig. 2.
Fig. 2. (a) A flake of graphene halfway through ablation processing. The arrow indicates the direction of the ablation path traced out by the bright laser spot. (b) The same flake of graphene post-ablation and after electron beam lithography and thermal evaporation were used to attach gold leads to the fabricated submicron-thin graphene wires.
Fig. 3.
Fig. 3. (a) Unablated flake of graphene with gold leads used to measure two-terminal electrical transport; the source and drain are indicated on the image. (b) Before ablation, the room-temperature conductance measurement as a function of gating voltage shows graphene’s characteristic conductance minimum at its charge neutral point as its two-terminal resistance peaks at 33 k$\Omega$. (c) The same flake after ablation has been used to sever the connection between source and drain. (d) Following ablation the $\gtrsim {10}~ M\Omega$ measured resistance is indistinguishable from the the leakage impedance of our measurement setup, indicating the ablating cut is electrically complete.
Fig. 4.
Fig. 4. Optical images were taken of a serpentine pattern processed in (a) ambient air and (b) water, as well as (c) perpendicular air/water channels patterned on the same sample (red arrows point along air channels, blue arrows point along water channels). (d-f) These patterns were subsequently scanned across their full areas with an AFM. (g-i) Representative height data is shown with the colored dotted boxes in (d-f) indicating the scanned area corresponding to the similarly colored data. (g) Air cuts reveal highly disordered ablation trenches when compared to (h) water cuts. (i) Scans across air and water trenches show different post-ablation substrate heights. The water cut (blue scan box) produced a trench at the unexposed SiO$_2$ level, while the air cut trench (red scan box) is above it. A scan within the water trench intersecting an air cut (purple scan box) highlights the $\sim$0.5 nm difference in trench height. The insets of (e) (of the boxed orange region) and (f) are scans of the same samples performed with the AFM probe moving at 90$^\circ$ relative to the main image to cross-check for height artifacts due to scan direction.