Abstract

The influence of lead fluoride on the formation and luminescent properties of glass and glass-ceramics has been studied. Using the Judd-Ofelt theory, the intensity parameters Ωt have been obtained. The stimulated emission cross-section of the 4I13/24I15/2 transition has been determined. The energy transfer from ytterbium to erbium with 96% efficiency was found with an erbium laser level lifetime of ∼8 ms. The gain shape of the glass under study has been found to be smoother than for phosphate glasses, which makes the former very attractive gain material for ultra-short laser sources. For the first time, fluorophosphate glass-ceramics were obtained with nanocrystals doped with erbium and ytterbium ions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spectroscopic properties of lead fluoroborate glasses codoped with Er3+ and Yb3+

Luciana Reyes Pires Kassab, Lilia Coronato Courrol, Alessandro Santos Morais, Sonia Hatsue Tatumi, Niklaus Ursus Wetter, and Laércio Gomes
J. Opt. Soc. Am. B 19(12) 2921-2926 (2002)

Influences of radiation trapping on spectroscopic properties of Er3+-doped fluorophosphate glasses

Meisong Liao, Lili Hu, Yongzheng Fang, Shiqing Xu, and Liyan Zhang
J. Opt. Soc. Am. B 24(7) 1498-1504 (2007)

2.7 μm emission in Er3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals

Y. Liu, X. Y. Liu, W. C. Wang, W. J. Zhang, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2759-2768 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
    [Crossref]
  2. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
    [Crossref]
  3. W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
    [Crossref]
  4. S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
    [Crossref]
  5. S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
    [Crossref]
  6. S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
    [Crossref]
  7. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
    [Crossref]
  8. B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
    [Crossref]
  9. A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
    [Crossref]
  10. G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
    [Crossref]
  11. M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
    [Crossref]
  12. K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
    [Crossref]
  13. G. Krieke and A. Sarakovskis, “Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics,” J. Eur. Ceram. Soc. 36(7), 1715–1722 (2016).
    [Crossref]
  14. M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
    [Crossref]
  15. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
    [Crossref]
  16. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
    [Crossref]
  17. J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
    [Crossref]
  18. Z. H. Jiang and Q. Y. Zhang, “The structure of glass: A phase equilibrium diagram approach,” Prog. Mater. Sci. 61, 144–215 (2014).
    [Crossref]
  19. V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
    [Crossref]
  20. V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
    [Crossref]
  21. H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
    [Crossref]
  22. R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
    [Crossref]
  23. J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
    [Crossref]
  24. E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
    [Crossref]
  25. V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
    [Crossref]
  26. I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
    [Crossref]
  27. P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
    [Crossref]
  28. V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
    [Crossref]
  29. Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
    [Crossref]
  30. S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
    [Crossref]
  31. J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
    [Crossref]
  32. E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
    [Crossref]
  33. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
    [Crossref]
  34. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [Crossref]
  35. A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]
  36. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
    [Crossref]
  37. V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
    [Crossref]
  38. S. Tanabe, K. Takahara, M. Takahashi, and Y. Kawamoto, “Spectroscopic studies of radiative transitions and upconversion characteristics of Er3+ ions in simple pseudoternary fluoride glasses MFn–BaF2–YF3 (M : Zr, Hf, Al, Sc, Ga, In, or Zn),” J. Opt. Soc. Am. B 12(5), 786–793 (1995).
    [Crossref]
  39. E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in Oxide Glasses: Dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids 111(2-3), 205–213 (1989).
    [Crossref]
  40. Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
    [Crossref]
  41. H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
    [Crossref]
  42. H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
    [Crossref]
  43. H. Takebe, Y. Nageno, and K. Morinaga, “Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
    [Crossref]
  44. H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208(3), 205–216 (1996).
    [Crossref]
  45. A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. J. Exp. Theor. Phys. 35(5), 882–885 (1972).
  46. S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
    [Crossref]

2019 (3)

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

2018 (1)

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

2016 (4)

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

G. Krieke and A. Sarakovskis, “Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics,” J. Eur. Ceram. Soc. 36(7), 1715–1722 (2016).
[Crossref]

2015 (1)

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

2014 (1)

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: A phase equilibrium diagram approach,” Prog. Mater. Sci. 61, 144–215 (2014).
[Crossref]

2013 (2)

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

2012 (1)

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

2011 (2)

I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
[Crossref]

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

2009 (1)

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

2007 (1)

E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
[Crossref]

2006 (2)

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

2005 (2)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

2004 (3)

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[Crossref]

2003 (1)

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

2002 (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

2001 (1)

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

2000 (2)

K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
[Crossref]

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

1998 (4)

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[Crossref]

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

1997 (1)

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

1996 (3)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208(3), 205–216 (1996).
[Crossref]

1995 (2)

1994 (2)

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

1993 (1)

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

1992 (1)

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

1989 (1)

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in Oxide Glasses: Dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids 111(2-3), 205–213 (1989).
[Crossref]

1972 (1)

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. J. Exp. Theor. Phys. 35(5), 882–885 (1972).

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Adam, J. L.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Alkhlef, A.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Aseev, V. A.

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

Ballato, J.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Bettinelli, M.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Boutarfaia, A.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Burdaev, P. A.

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

Burshtein, A. I.

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. J. Exp. Theor. Phys. 35(5), 882–885 (1972).

Cai, Z.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Camy, P.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Chen, S.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Choi, J. H.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Cui, S.

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

Dantelle, G.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

Dehghan Hamedan, A.

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

Dernovich, O. P.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Dinh, B. M.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Djouama, T.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Doualan, J. L.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208(3), 205–216 (1996).
[Crossref]

Ehrt, D.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208(3), 205–216 (1996).
[Crossref]

Fan, J.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Fan, X.

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

Féron, P.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Goldner, P.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Golubkov, V. V.

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

Gredin, P.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

Gugov, I.

I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
[Crossref]

Guy, S.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Hatefi, Y.

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

Honkanen, S.

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Hupa, L.

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

Hwang, B.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Hwang, B.-C.

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Inoue, H.

K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
[Crossref]

Izumitani, T.

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[Crossref]

Jiang, B.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Jiang, S.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Jiang, X.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Jiang, Y.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Jiang, Z. H.

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: A phase equilibrium diagram approach,” Prog. Mater. Sci. 61, 144–215 (2014).
[Crossref]

Kanamori, T.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Kawamoto, Y.

Kisel’, VÉ

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Klementeva, A. V.

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

Kolobkova, E.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Kolobkova, E. V.

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
[Crossref]

Krieke, G.

G. Krieke and A. Sarakovskis, “Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics,” J. Eur. Ceram. Soc. 36(7), 1715–1722 (2016).
[Crossref]

Krupke, W. F.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Kuleshov, N. V.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Kway, W. L.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Laporta, P.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[Crossref]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

Larat, C.

E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
[Crossref]

Lastusaari, M.

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

Lee, Y. P.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[Crossref]

Li, R.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Li, S. F.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[Crossref]

Liu, C.

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

Liu, Q.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Longhi, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

Lucas, J.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Luo, T.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Makishima, A.

K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
[Crossref]

Mandrik, A. V.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Mao, X.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Margaryan, A.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Massera, J.

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

Melekhin, V. G.

E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
[Crossref]

Méndez-Ramos, J.

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Mokhtari, H.

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

Mori, A.

Morinaga, K.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Mortier, M.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Moskaleva, K. S.

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

Müller, M.

I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
[Crossref]

Myers, M.

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Nageno, Y.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Nazabal, V.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Nekrasova, Y. A.

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

Nikonorov, N.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Nikonorov, N. V.

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

Nishida, Y.

Núñez, P.

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Nunzi-Conti, G.

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Nuryev, R. K.

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[Crossref]

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Oikawa, K.

Olivier, M.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Ono, H.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[Crossref]

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Oomen, E. W. J. L.

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in Oxide Glasses: Dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids 111(2-3), 205–213 (1989).
[Crossref]

Pan, L.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Patriarche, G.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

Payne, S. A.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Penigin, A. N.

E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
[Crossref]

Petit, L.

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

Peyghambarian, N.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Philipps, J. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

Pirasteh, P.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Pocholle, J. P.

E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
[Crossref]

Poulain, M.

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

Qiao, X.

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

Rahimian, H.

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

Reichle, D. J.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Rhonehouse, D.

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Rodriguez, V. D.

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Rüssel, C.

I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
[Crossref]

Sarakovskis, A.

G. Krieke and A. Sarakovskis, “Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics,” J. Eur. Ceram. Soc. 36(7), 1715–1722 (2016).
[Crossref]

Sauerbrey, R.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

Seddon, A. B.

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Seneschal, K.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Serier-Brault, H.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

Shcherbitskii, V. G.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Sheng, X.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Shi, F. G.

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

Shirmardi, S. P.

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

Smekatala, F.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

Smith, L. K.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Soga, K.

K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
[Crossref]

Speghini, A.

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

Stephan, G. M.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Stevenson, A. J.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

Sudo, S.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Svelto, C.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[Crossref]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

Svelto, O.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

Taccheo, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[Crossref]

Takahara, K.

Takahashi, M.

Takebe, H.

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

Tanabe, S.

Tang, W.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Tanguy, E.

E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
[Crossref]

Tassano, J. B.

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

Tian, Y.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Tikhomirov, V. K.

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Töpfer, T.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

Trofimov, A. O.

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

van Dongen, A. M. A.

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in Oxide Glasses: Dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids 111(2-3), 205–213 (1989).
[Crossref]

Vivien, D.

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

Wang, J.

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

Wang, M.

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

Wang, W. C.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Wei, W.

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

Xu, H.

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

Xu, S.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Xu, S. H.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Xu, Y.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Yamada, M.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[Crossref]

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Yang, Z. M.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Yasukevich, A. S.

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Yasyukevich, A. S.

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Yuan, X.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

Zhang, J.

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

Zhang, L.

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

Zhang, Q. Y.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: A phase equilibrium diagram approach,” Prog. Mater. Sci. 61, 144–215 (2014).
[Crossref]

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[Crossref]

Zheng, R.

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

Zhou, B.

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

R. Zheng, J. Wang, L. Zhang, C. Liu, and W. Wei, “Preparation and properties of Nd3+:SrAlF5 nanocrystals embedded fluorophosphate transparent glass–ceramic with long fluorescence lifetime,” Appl. Phys. A: Mater. Sci. Process. 122(1), 1–6 (2016).
[Crossref]

Appl. Phys. B: Lasers Opt. (2)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B: Lasers Opt. 63(5), 425–436 (1996).
[Crossref]

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+:Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B: Lasers Opt. 72(4), 399–405 (2001).
[Crossref]

Appl. Phys. Lett. (1)

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[Crossref]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5(12), 815–824 (2002).
[Crossref]

Electron. Lett. (1)

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 µm-band and a 1.58 µm-band Er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett. 33(8), 710–711 (1997).
[Crossref]

Glass Phys. Chem. (3)

P. A. Burdaev, V. A. Aseev, E. V. Kolobkova, N. V. Nikonorov, and A. O. Trofimov, “Nanostructured glass ceramics based on fluorophosphate glass with a high content of rare-earth ions,” Glass Phys. Chem. 41(1), 132–136 (2015).
[Crossref]

V. A. Aseev, P. A. Burdaev, E. V. Kolobkova, and N. V. Nikonorov, “Fluorophosphate nanostructured glass ceramics activated by erbium ions,” Glass Phys. Chem. 39(2), 174–181 (2013).
[Crossref]

E. V. Kolobkova, V. G. Melekhin, and A. N. Penigin, “Optical glass-ceramics based on fluorine-containing silicate glasses doped with rare-earth ions,” Glass Phys. Chem. 33(1), 8–13 (2007).
[Crossref]

J. Am. Ceram. Soc. (4)

J. Fan, S. Chen, X. Yuan, Y. Jiang, L. Pan, B. Jiang, X. Mao, R. Li, X. Jiang, L. Zhang, and J. Ballato, “Recrystallization of Er3+:CaF2 in Transparent Fluorophosphate Glass-Ceramics with the Co-Firing Method,” J. Am. Ceram. Soc. 99(9), 2971–2976 (2016).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Effect of Network Modifier on Spontaneous Emission Probabilities of Er3+ in Oxide Glasses,” J. Am. Ceram. Soc. 77(8), 2132–2136 (1994).
[Crossref]

H. Takebe, Y. Nageno, and K. Morinaga, “Compositional Dependence of Judd-Ofelt Parameters in Silicate, Borate, and Phosphate Glasses,” J. Am. Ceram. Soc. 78(5), 1161–1168 (1995).
[Crossref]

Y. Nageno, H. Takebe, and K. Morinaga, “Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 76(12), 3081–3086 (1993).
[Crossref]

J. Appl. Phys. (1)

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasyukevich, V. G. Shcherbitskii, VÉ Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of laser crystals with impurity,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm 3+, Sm 3+, Eu 3+, Gd 3+, Tb 3+, Dy 3+, and Ho 3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[Crossref]

J. Eur. Ceram. Soc. (1)

G. Krieke and A. Sarakovskis, “Crystallization and upconversion luminescence of distorted fluorite nanocrystals in Ba2+ containing oxyfluoride glass ceramics,” J. Eur. Ceram. Soc. 36(7), 1715–1722 (2016).
[Crossref]

J. Fluorine Chem. (2)

V. Nazabal, M. Poulain, M. Olivier, P. Pirasteh, P. Camy, J. L. Doualan, S. Guy, T. Djouama, A. Boutarfaia, and J. L. Adam, “Fluoride and oxyfluoride glasses for optical applications,” J. Fluorine Chem. 134, 18–23 (2012).
[Crossref]

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluorine Chem. 132(12), 1165–1173 (2011).
[Crossref]

J. Lumin. (3)

J. H. Choi, A. Margaryan, A. Margaryan, and F. G. Shi, “Judd-Ofelt analysis of spectroscopic properties of Nd3+ -doped novel fluorophosphate glass,” J. Lumin. 114(3-4), 167–177 (2005).
[Crossref]

E. Kolobkova, A. Alkhlef, B. M. Dinh, A. S. Yasukevich, O. P. Dernovich, N. V. Kuleshov, and N. Nikonorov, “Spectral properties of Nd 3+ ions in the new fluoride glasses with small additives of the phosphates,” J. Lumin. 206, 523–529 (2019).
[Crossref]

Y. Xu, Y. Tian, Q. Liu, X. Sheng, W. Tang, J. Zhang, and S. Xu, “Effect of the heat treatment conditions on the structure and 2 micron luminescence of thulium-doped oxyfluoride silicate glass-ceramics,” J. Lumin. 211, 418–425 (2019).
[Crossref]

J. Non-Cryst. Solids (10)

S. Cui, J. Massera, M. Lastusaari, L. Hupa, and L. Petit, “Novel oxyfluorophosphate glasses and glass-ceramics,” J. Non-Cryst. Solids 445-446, 40–44 (2016).
[Crossref]

H. Rahimian, Y. Hatefi, A. Dehghan Hamedan, S. P. Shirmardi, and H. Mokhtari, “Structural and optical investigations on Eu3+ doped fluorophosphate glass and nano glass-ceramics,” J. Non-Cryst. Solids 487, 46–52 (2018).
[Crossref]

H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, and A. Speghini, “Effect of glass composition on Judd-Ofelt parameters and radiative decay rates of Er3+ in fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 240(1-3), 66–78 (1998).
[Crossref]

M. Mortier, P. Goldner, P. Féron, G. M. Stephan, H. Xu, and Z. Cai, “New fluoride glasses for laser applications,” J. Non-Cryst. Solids 326-327, 505–509 (2003).
[Crossref]

K. Soga, H. Inoue, and A. Makishima, “Calculation and simulation of spectroscopic properties for rare earth ions in chloro-fluorozirconate glasses,” J. Non-Cryst. Solids 274(1-3), 69–74 (2000).
[Crossref]

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, and N. Peyghambarian, “Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length,” J. Non-Cryst. Solids 263-264, 364–368 (2000).
[Crossref]

B. M. Walsh, N. P. Barnes, D. J. Reichle, and S. Jiang, “Optical properties of Tm3+ ions in alkali germanate glass,” J. Non-Cryst. Solids 352(50-51), 5344–5352 (2006).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Spectroscopic properties of Eu3+ and Tb3+ ions for local structure investigations of fluoride phosphate and phosphate glasses,” J. Non-Cryst. Solids 208(3), 205–216 (1996).
[Crossref]

E. W. J. L. Oomen and A. M. A. van Dongen, “Europium (III) in Oxide Glasses: Dependence of the emission spectrum upon glass composition,” J. Non-Cryst. Solids 111(2-3), 205–213 (1989).
[Crossref]

H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-Ho energy transfer in LiYF4,” J. Phys.: Condens. Matter 4(44), 8525–8542 (1992).
[Crossref]

J. Solid State Chem. (2)

I. Gugov, M. Müller, and C. Rüssel, “Transparent oxyfluoride glass ceramics co-doped with Er3+ and Yb3+ Crystallization and upconversion spectroscopy,” J. Solid State Chem. 184(5), 1001–1007 (2011).
[Crossref]

G. Dantelle, M. Mortier, G. Patriarche, and D. Vivien, “Er3+-doped PbF2: Comparison between nanocrystals in glass-ceramics and bulk single crystals,” J. Solid State Chem. 179(7), 1995–2003 (2006).
[Crossref]

Opt. Commun. (1)

E. Tanguy, C. Larat, and J. P. Pocholle, “Modelling of the erbium - ytterbium laser,” Opt. Commun. 153(1-3), 172–183 (1998).
[Crossref]

Opt. Eng. (1)

S. Jiang, T. Luo, B.-C. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. 37(12), 3282–3286 (1998).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (Amsterdam, Neth.) (1)

V. K. Tikhomirov, V. D. Rodriguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Opt. Mater. (Amsterdam, Neth.) 27(3), 543–547 (2004).
[Crossref]

Opt. Spectrosc. (2)

V. A. Aseev, V. V. Golubkov, A. V. Klementeva, E. V. Kolobkova, and N. V. Nikonorov, “Spectral luminescence properties of transparent lead fluoride nanoglassceramics doped with erbium ions,” Opt. Spectrosc. 106(5), 691–696 (2009).
[Crossref]

V. A. Aseev, E. V. Kolobkova, K. S. Moskaleva, Y. A. Nekrasova, N. V. Nikonorov, and R. K. Nuryev, “Luminescent properties of ytterbium-erbium nanostructured lead fluoride silicate glass-ceramics at low temperatures,” Opt. Spectrosc. 114(5), 751–755 (2013).
[Crossref]

Philos. Mag. (1)

J. Wang, X. Qiao, X. Fan, and M. Wang, “Judd-Ofelt analysis and upconversion emission of Er3+-Yb3+ co-doped oxyfluoride glass ceramics containing LaF3 nanocrystals,” Philos. Mag. 85(32), 3755–3766 (2005).
[Crossref]

Prog. Mater. Sci. (2)

W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Recent advances in soft optical glass fiber and fiber lasers,” Prog. Mater. Sci. 101, 90–171 (2019).
[Crossref]

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: A phase equilibrium diagram approach,” Prog. Mater. Sci. 61, 144–215 (2014).
[Crossref]

Sov. J. Exp. Theor. Phys. (1)

A. I. Burshtein, “Hopping Mechanism of Energy Transfer,” Sov. J. Exp. Theor. Phys. 35(5), 882–885 (1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a)Yb3+ and Er3+ ions energy level diagram: the Er–Yb energy transfer process (dotted arrow), the nonradiative transitions (dashed arrow), and the radiative transitions (solid arrows); (b) the absorption cross-sections of the B and P glasses: absorption cross-sections of the 2B (dashed line) and 2P (solid line) glasses in a wide spectral range.
Fig. 2.
Fig. 2. The luminescence spectra of the 2B (dashed line) and 2P (solid line) glasses doped with Er3+ ions of (a) 4I13/24I15/2 transition and (b) in the visible spectral region (λexc = 980 nm).
Fig. 3.
Fig. 3. The absorption cross-section spectra (1), stimulated emission obtained by MR method (2) and FL method (3) for the4I13/24I15/2 transition of the 2P glass.
Fig. 4.
Fig. 4. The DSC curves of the 2B and 2P glasses
Fig. 5.
Fig. 5. X-ray diffraction pattern of the 2B (a) and 2P (b) glasses after the heat treatment for 180 min at T = 480°C: Usovit crystal phase (JCPDS card, No. 010722129) denoted by x and cubic unknown phase (denoted by o)
Fig. 6.
Fig. 6. (a, b). SEM micrographs of the 2P glass (after the heat treatment) at different scale. The chemical composition of the glass was determined in two points: near the nanocrystals, surrounded by glass host (1), and in pure glass region without the nanocrystals (2)
Fig. 7.
Fig. 7. The absorption (a) and luminescence (b) spectra of the 2P glass before and after the heat treatment with different duration
Fig. 8.
Fig. 8. Spectra of amplification cross-sections of the 2B (a) and 2P (b) glasses at different values of ${\beta _2}$

Tables (4)

Tables Icon

Table 1. Composition (mol. fraction) and physical properties of the fluorophosphate glasses doped with ErF3, YbF3, where NEr, NYb – dopant ions concentration

Tables Icon

Table 2. The experimental Sexp (10−20 cm2), calculated Scal (10−20 cm2) line strengths, the root mean square deviation (Δrms) for transitions from 4I15/2 level to different excited levels, and the Judd-Ofelt parameters ${\Omega _2}$, ${\Omega _4}$, ${\Omega _6}$ and $\chi $ of the Er3+ ions in the 2B, 2P glasses

Tables Icon

Table 3. Emission parameters of the 2B and 2P glasses ($\overline \lambda $– the mean emission wavelength, Sed and Smd –the line strengths of the electric dipole and magnetic dipole transitions, $A(J \to J^{\prime})$ - spontaneous emission probability, QE - quantum efficiency, τrad and τexp - radiative and experimental lifetime by 532.8 nm excitation)

Tables Icon

Table 4. The chemical composition of the 2P glass-ceramics obtained by XDEA: composition 1 – in the region of nanocrystals surrounded by glass; composition 2 - at pure glass region (at.%) (according to Fig. 8)

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

N ( i o n c m 3 ) = mole fraction of rare earth oxide  × Avogadro number average molecular weight
S e d m e a s ( J J ) = 27 h c ( 2 J + 1 ) n 8 π 3 λ ¯ e 2 ( n 2 + 2 ) 2 σ ( λ ) d λ 9 n 2 ( n 2 + 2 ) 2 S m d
S e d c a l c ( J J ) = t = 2 , 4 , 6 Ω t | Ψ J | | U t | | Ψ J | 2
S m d ( J J ) = [ h 4 π m c ] 2 | Ψ J | | L + 2 S | | Ψ J | 2
A ( J J ) = 64 π 4 e 2 3 h ( 2 J + 1 ) λ ¯ 3 [ n ( n 2 + 2 3 ) 2 S e d c a l c + n 3 S m d ]
S e d [ 4 I 13 / 2 ; 4 I 15 / 2 ] = t = 2 , 4 , 6 Ω t 4 I 13 / 2 | | U t | | 4 I 15 / 2 2 = 0.19 Ω 2 + 0.118 Ω 4 + 1.462 Ω 6
τ r a d = 1 A ( J J )
σ e m = A ( J J ) 8 π c n 2 exp ( h c / ( k T λ ) ) λ 4 σ a b s ( λ ) exp ( h c / ( k T λ ) ) d λ σ a b s ( λ )
σ e m ( λ ) = A ( J J ) λ 5 8 π c n 2 I l u m ( λ ) λ I l u m ( λ ) d λ
W D A = π ( 2 π / 3 ) 5 / 2 R s a 3 R s s 3 τ s N s N a
η t = W D A τ s 1 + W D A τ s
g ( λ ) = N σ l ( λ ) ( β 2 β l ( λ ) )
Σ g a i n = g ( λ ) / g ( λ ) N N = σ l ( λ ) ( β 2 β l ( λ ) )
Δ τ = λ max 2 c Δ λ