Abstract

We designed and fabricated terahertz toroidal dipole metasurfaces based on a C-shaped split ring resonator metallic pattern fabricated on a flexible dielectric material (mylar). The toroidal dipole moment (Ty) was demonstrated as the dominant contribution to two different resonances at low frequency (ω1) and at high frequency (ω2). Simulation and LC circuit model analysis offered a quantitative explanation to the blue shift of the resonant frequencies at ω1 and ω2 as the increase of the opening angle(θ). The resonant frequencies showed a red shift at ω1 and ω2 as the increase of the outer ring radius (QR). Furthermore, the enhancement of the Q factor was attributed to the increase of Ty and the decrease of radiative loss. It was further proven that the model provided a new scheme for designing the toroidal dipole metasurfaces under a terahertz band, which was expected to be used as terahertz functional devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators

Wei Wang, Fengping Yan, Siyu Tan, Hong Zhou, and Yafei Hou
Photon. Res. 5(6) 571-577 (2017)

Transmission properties of terahertz pulses through subwavelength double split-ring resonators

Abul K. Azad, Jianming Dai, and Weili Zhang
Opt. Lett. 31(5) 634-636 (2006)

Nonbianisotropic complementary split ring resonators as angular selective metasurfaces

Pablo Rodríguez-Ulibarri and Miguel Beruete
J. Opt. Soc. Am. B 34(7) D56-D61 (2017)

References

  • View by:
  • |
  • |
  • |

  1. I. B. Zel’Dovich, “The Relation Between Decay Asymmetry and Dipole Moment of Fundamental Particles,” SoV. Phys. JETP 6(6), 1148–1155 (1958).
  2. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
    [Crossref]
  3. N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref]
  4. B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
    [Crossref]
  5. L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
    [Crossref]
  6. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
    [Crossref]
  7. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
    [Crossref]
  8. Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
    [Crossref]
  9. Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
    [Crossref]
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref]
  11. A. J. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Eigenmode hybridization enables lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications,” Opt. Lett. 44(11), 2705 (2019).
    [Crossref]
  12. R. Yahiaoui, A. J. Burrow, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  13. A. J. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25(26), 32540 (2017).
    [Crossref]
  14. M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
    [Crossref]
  15. O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
    [Crossref]
  16. A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref]
  17. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref]
  18. Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
    [Crossref]
  19. Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
    [Crossref]
  20. Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
    [Crossref]
  21. K. D. Donda and R. S. Hegde, “Bilayered nanoantenna design improves the performance of silicon metasurfaces in the visible-wavelength region,” Nanophotonics 11(4), 046002 (2017).
    [Crossref]
  22. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Crossref]
  23. A. Ahmadivand and B. Gerislioglu, “Directional Toroidal Dipoles Driven by Oblique Poloidal and Loop Currents Flows in Plasmonic Meta-Atoms,” J. Phys. Chem. C 122(42), 24304–24308 (2018).
    [Crossref]
  24. Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
    [Crossref]
  25. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
    [Crossref]
  26. A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
    [Crossref]
  27. M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
    [Crossref]
  28. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
    [Crossref]
  29. M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High-Q-planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
    [Crossref]
  30. S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
    [Crossref]
  31. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  32. A. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006).
    [Crossref]
  33. N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
    [Crossref]
  34. V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
    [Crossref]
  35. Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
    [Crossref]
  36. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [Crossref]
  37. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
    [Crossref]
  38. Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
    [Crossref]
  39. Y. Huang, W. Chen, P. Wu, V. Fedotov, V. Savinov, Y. Ho, Y. Chau, N. I. Zheludev, and D. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
    [Crossref]
  40. L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
    [Crossref]

2019 (1)

2018 (7)

R. Yahiaoui, A. J. Burrow, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

A. Ahmadivand and B. Gerislioglu, “Directional Toroidal Dipoles Driven by Oblique Poloidal and Loop Currents Flows in Plasmonic Meta-Atoms,” J. Phys. Chem. C 122(42), 24304–24308 (2018).
[Crossref]

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

2017 (9)

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

K. D. Donda and R. S. Hegde, “Bilayered nanoantenna design improves the performance of silicon metasurfaces in the visible-wavelength region,” Nanophotonics 11(4), 046002 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

A. J. Burrow, R. Yahiaoui, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces,” Opt. Express 25(26), 32540 (2017).
[Crossref]

2016 (7)

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High-Q-planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

2015 (2)

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

2014 (2)

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

2013 (1)

A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

2012 (3)

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Y. Huang, W. Chen, P. Wu, V. Fedotov, V. Savinov, Y. Ho, Y. Chau, N. I. Zheludev, and D. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[Crossref]

2011 (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

2010 (1)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

2007 (2)

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

2006 (2)

1990 (1)

1958 (1)

I. B. Zel’Dovich, “The Relation Between Decay Asymmetry and Dipole Moment of Fundamental Particles,” SoV. Phys. JETP 6(6), 1148–1155 (1958).

Ada, E. T.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Agha, I.

Ahmadivand, A.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand and B. Gerislioglu, “Directional Toroidal Dipoles Driven by Oblique Poloidal and Loop Currents Flows in Plasmonic Meta-Atoms,” J. Phys. Chem. C 122(42), 24304–24308 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

Akyurtlu, A.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Alexandra, B.

A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Al-Naib, I.

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Azad, A.

Bao, Y.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref]

Beruete, M.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Bhansali, S.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Burrow, A. J.

Cao, W.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Chau, Y.

Chen, H.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Chen, S.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Chen, W.

Cong, L.

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Cui, A.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Dai, J.

Dayal, G.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Donda, K. D.

K. D. Donda and R. S. Hegde, “Bilayered nanoantenna design improves the performance of silicon metasurfaces in the visible-wavelength region,” Nanophotonics 11(4), 046002 (2017).
[Crossref]

Dong, J.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Dong, Q.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Dong, Z.

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Du, L.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Du, S.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Economon, E. N.

Economou, E. N.

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Etayo, D.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Fan, Y.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Fang, Z.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref]

Fattinger, C.

Fedotov, V.

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Fu, Q.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Gerislioglu, B.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand and B. Gerislioglu, “Directional Toroidal Dipoles Driven by Oblique Poloidal and Loop Currents Flows in Plasmonic Meta-Atoms,” J. Phys. Chem. C 122(42), 24304–24308 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

Goodhue, W. D.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Grischkowsky, D.

Gu, C.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Gupta, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High-Q-planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Han, J.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Hao, R.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Hegde, R. S.

K. D. Donda and R. S. Hegde, “Bilayered nanoantenna design improves the performance of silicon metasurfaces in the visible-wavelength region,” Nanophotonics 11(4), 046002 (2017).
[Crossref]

Ho, Y.

Huang, Y.

Jing, L.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Kaelberer, T.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Kafesaki, M.

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Keiding, S.

Kildishev, A. V.

A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Kong, B.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Koschny, T.

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref]

Li, E.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Li, H.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Li, J.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Li, Q.

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Li, W.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Li, Z.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Liu, Z.

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Lu, C.

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Manickam, P.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Manjappa, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Martinez, A.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Marx, K. A.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Mathews, J.

Nair, M.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Navarro-Cia, M.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Ortuno, R.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Pala, N.

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

Papaioannou, M.

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Plum, E.

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Qiao, T.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Rho, J.

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Rogers, E. T.

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Sanchez, N.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Sarangan, A.

Savinov, V.

N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Y. Huang, W. Chen, P. Wu, V. Fedotov, V. Savinov, Y. Ho, Y. Chau, N. I. Zheludev, and D. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[Crossref]

Searles, A. T.

Shalaev, V. M.

A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

Shen, L.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Shen, N.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Singh, R.

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High-Q-planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Soukoulis, C. M.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
[Crossref]

Srivastava, Y. K.

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Tasolamprou, A. C.

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Tian, Z.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Tomitaka, A.

Torres, V.

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

Tsai, D.

Tsai, D. P.

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Tsilipakos, O.

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

Valente, J.

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

van Exter, M.

Wang, H.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Wang, S.

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Wang, Z.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

Wei, Z.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Wongkasem, N.

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Wu, P.

Xu, N.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Xu, Z.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Yahiaoui, R.

Yang, Y.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Yin, W.

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Yin, X.

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Yu, F.

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

Zel’Dovich, I. B.

I. B. Zel’Dovich, “The Relation Between Decay Asymmetry and Dipole Moment of Fundamental Particles,” SoV. Phys. JETP 6(6), 1148–1155 (1958).

Zhang, F.

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Zhang, W.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

A. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31(5), 634–636 (2006).
[Crossref]

Zhang, X.

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Zhao, X.

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

Zheludev, N. I.

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

Y. Huang, W. Chen, P. Wu, V. Fedotov, V. Savinov, Y. Ho, Y. Chau, N. I. Zheludev, and D. Tsai, “Design of plasmonic toroidal metamaterials at optical frequencies,” Opt. Express 20(2), 1760–1768 (2012).
[Crossref]

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Zheng, B.

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

Zhou, J.

Zhu, J.

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

Zhu, X.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref]

ACS Sens. (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref]

Adv. Mater. (3)

Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, and H. Chen, “Full-Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase,” Adv. Mater. 28(32), 6866–6871 (2016).
[Crossref]

M. Gupta, V. Savinov, N. Xu, L. Cong, G. Dayal, S. Wang, W. Zhang, N. I. Zheludev, and R. Singh, “Sharp Toroidal Resonances in Planar Terahertz Metasurfaces,” Adv. Mater. 28(37), 8206–8211 (2016).
[Crossref]

Z. Liu, S. Du, A. Cui, Z. Li, Y. Fan, S. Chen, W. Li, J. Li, and C. Gu, “High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials,” Adv. Mater. 29(17), 1606298 (2017).
[Crossref]

Adv. Opt. Mater. (3)

M. Gupta and R. Singh, “Toroidal versus Fano Resonances in High-Q-planar THz Metamaterials,” Adv. Opt. Mater. 4(12), 2119–2125 (2016).
[Crossref]

O. Tsilipakos, A. C. Tasolamprou, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Pairing Toroidal and Magnetic Dipole Resonances in Elliptic Dielectric Rod Metasurfaces for Reconfigurable Wavefront Manipulation in Reflection,” Adv. Opt. Mater. 6(22), 1800633 (2018).
[Crossref]

L. Cong, M. Manjappa, N. Xu, I. Al-Naib, W. Zhang, and R. Singh, “Fano Resonances in Terahertz Metasurfaces: A Figure of Merit Optimization,” Adv. Opt. Mater. 3(11), 1537–1543 (2015).
[Crossref]

Appl. Phys. Lett. (3)

Z. Dong, J. Zhu, J. Rho, J. Li, C. Lu, X. Yin, and X. Zhang, “Optical toroidal dipolar response by an asymmetric double-bar metamaterial,” Appl. Phys. Lett. 101(14), 144105 (2012).
[Crossref]

L. Cong, Y. K. Srivastava, and R. Singh, “Tailoring the multipoles in THz toroidal metamaterials,” Appl. Phys. Lett. 111(8), 081108 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (2)

V. Torres, N. Sanchez, D. Etayo, R. Ortuno, M. Navarro-Cia, A. Martinez, and M. Beruete, “Compact Dual-Band Terahertz Quarter-Wave Plate Metasurface,” IEEE Photonics Technol. Lett. 26(16), 1679–1682 (2014).
[Crossref]

A. Ahmadivand, B. Gerislioglu, and N. Pala, “Large-Modulation-Depth Polarization-Sensitive Plasmonic Toroidal Terahertz Metamaterial,” IEEE Photonics Technol. Lett. 29(21), 1860–1863 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

A. Ahmadivand and B. Gerislioglu, “Directional Toroidal Dipoles Driven by Oblique Poloidal and Loop Currents Flows in Plasmonic Meta-Atoms,” J. Phys. Chem. C 122(42), 24304–24308 (2018).
[Crossref]

Light: Sci. Appl. (1)

M. Papaioannou, E. Plum, J. Valente, E. T. Rogers, and N. I. Zheludev, “Two-dimensional control of light with light on metasurfaces,” Light: Sci. Appl. 5(4), e16070 (2016).
[Crossref]

Materials (1)

S. Wang, S. Wang, Q. Li, X. Zhao, and J. Zhu, “Dual Toroidal Dipole Resonance Metamaterials under a Terahertz Domain,” Materials 11(10), 2036 (2018).
[Crossref]

Microsc. Res. Tech. (1)

N. Wongkasem, A. Akyurtlu, K. A. Marx, W. D. Goodhue, J. Li, Q. Dong, and E. T. Ada, “Fabrication of a novel micron scale Y-structure-based chiral metamaterial: Simulation and experimental analysis of its chiral and negative index properties in the terahertz and microwave regimes,” Microsc. Res. Tech. 70(6), 497–505 (2007).
[Crossref]

Nanophotonics (1)

K. D. Donda and R. S. Hegde, “Bilayered nanoantenna design improves the performance of silicon metasurfaces in the visible-wavelength region,” Nanophotonics 11(4), 046002 (2017).
[Crossref]

Nanoscale (1)

Q. Li, L. Cong, R. Singh, N. Xu, W. Cao, X. Zhang, Z. Tian, L. Du, J. Han, and W. Zhang, “Monolayer graphene sensing enabled by the strong Fano-resonant metasurface,” Nanoscale 8(39), 17278–17284 (2016).
[Crossref]

Nat. Mater. (3)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater. 11(11), 917–924 (2012).
[Crossref]

N. Papasimakis, V. A. Fedotov, and V. Savinov, “Electromagnetic Toroidal Excitations in Matter and Free Space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Nat. Photonics (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5(9), 523–530 (2011).
[Crossref]

NPG Asia Mater. (1)

Y. Yang, L. Jing, L. Shen, Z. Wang, B. Zheng, H. Wang, E. Li, N. Shen, T. Koschny, C. M. Soukoulis, and H. Chen, “Hyperbolic spoof plasmonic metasurfaces,” NPG Asia Mater. 9(8), e428 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Fan, F. Zhang, N. Shen, Q. Fu, Z. Wei, H. Li, and C. M. Soukoulis, “Achieving a high-Q response in metamaterials by manipulating the toroidal excitations,” Phys. Rev. A 97(3), 033816 (2018).
[Crossref]

Phys. Rev. B (2)

B. Gerislioglu, A. Ahmadivand, and N. Pala, “Tunable plasmonic toroidal terahertz metamodulator,” Phys. Rev. B 97(16), 161405 (2018).
[Crossref]

R. Yahiaoui, A. J. Burrow, A. Sarangan, J. Mathews, I. Agha, and A. T. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Phys. Rev. Lett. (1)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref]

Sci. Rep. (3)

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic Toroidal Dipolar Response under Radially Polarized Excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref]

Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, “A metasurface carpet cloak for electromagnetic, acoustic and water waves,” Sci. Rep. 6(1), 20219 (2016).
[Crossref]

Science (2)

T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

A. V. Kildishev, B. Alexandra, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref]

SoV. Phys. JETP (1)

I. B. Zel’Dovich, “The Relation Between Decay Asymmetry and Dipole Moment of Fundamental Particles,” SoV. Phys. JETP 6(6), 1148–1155 (1958).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the proposed metasurfaces metamolecule; (b) Microscope image of the fabricated sample with g = 4 µm.
Fig. 2.
Fig. 2. (a) Experimental, (b)Simulated amplitude transmission spectra for samples, surface current, and (c) Magnetic field distribution (on the XZ plane at Y = 0) at ω2 resonances of the design with different values of θ, (d) and (e) Schematics of the formation of head-to-tail arrangement correlating at ω1 and ω2, respectively.
Fig. 3.
Fig. 3. Effective circuit models of the TD resonance (a) at ω1 and (b) at ω2.
Fig. 4.
Fig. 4. Simulated scattering powers of the optimal parameters at (a) ω1 and (b) ω2.
Fig. 5.
Fig. 5. (a) Experimental and (b) Simulated amplitude transmission spectra for samples with different values of QR, when the E field was parallel to the x-axis.
Fig. 6.
Fig. 6. (a) Q factor (b) FoM for simulated samples with different QR at ω1 and ω2.
Fig. 7.
Fig. 7. Scattering powers of Ty as a function of QR at (a) ω1 and (b) ω2.
Fig. 8.
Fig. 8. (a) Experimental and (b) Simulated amplitude transmission spectra for samples with different values of g.

Tables (1)

Tables Icon

Table 1. The frequencies calculated at ω1 and ω2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L m = μ 0 t l 2 w ,
L e = μ 0 π G ( w l ) ,
C m = ε w c 1 l t ,
C e = π ε w l n ( g / h ) ,
f ω 1 = 1 2 π L e C e ,
f ω 2 = 1 2 π L m ( C e + C m ) 1 2 π c 1 ε r / 2 c l ,