Abstract

Zn1−xCdxO thin films spanning the whole composition range have been explored as an active region in photonic devices. The precise control of the Cd concentration, as well as its crystalline phase, allowed to characterize their optoelectronic properties. However, its application as a transparent conducting oxide material in photonics has yet to be unveiled. Here, we fabricated Zn1−xCdxO thin films via the spray pyrolysis method and confirmed their composition via Energy-dispersive X-ray spectroscopy measurements. We obtained their dielectric function through spectroscopy ellipsometry over the 300-3200 nm wavelength range and validated our model performing transmittance measurements. We observed a nonlinear red-shift of the optical bandgap while increasing Cd concentration, from 3.2 eV for ZnO to 2.9 eV for Zn0.10Cd0.90O. We found that the samples with Cd concentration > 50% have sheet resistance as low as 19.8 Ω/Square. The use of alloyed metal oxides on organic solar cells as photonic crystal structures (PhC) was also evaluated by performing finite-difference time-domain simulations. We saw an enhancement in the light absorption leading to a 39.75% increase of the short-circuit current for Zn0.25Cd0.75O PhC when compared to organic solar cells with no PhC structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se2/ZnS thin film solar cells

Xiao-Hui Tan, Yu Chen, and Ye-Xiang Liu
Appl. Opt. 53(15) 3273-3277 (2014)

Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact

Yongbeom Kwon, Jaeyoung Seo, Yoonmook Kang, Donghwan Kim, and Jihyun Kim
Opt. Express 26(2) A30-A38 (2018)

Structural design of photonic crystal thin film silicon solar cells by sensitivity analysis: Inclusion of electrode absorption

Yosuke Kawamoto, Yoshinori Tanaka, Kenji Ishizaki, Menaka De Zoysa, Takashi Asano, and Susumu Noda
Opt. Express 23(15) A896-A902 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P.-Y. Chen and S.-H. Yang, “Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection,” Opt. Mater. Express 6(11), 3651–3669 (2016).
    [Crossref]
  2. D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
    [Crossref]
  3. K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
    [Crossref]
  4. Z.-P. Yang, Z.-H. Xie, C.-C. Lin, and Y.-J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
    [Crossref]
  5. Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
    [Crossref]
  6. R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
    [Crossref]
  7. J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
    [Crossref]
  8. C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.
  9. J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
    [Crossref]
  10. D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
    [Crossref]
  11. P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
    [Crossref]
  12. Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
    [Crossref]
  13. A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
    [Crossref]
  14. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  15. P. D. C. King and T. D. Veal, “Conductivity in transparent oxide semiconductors,” J. Phys.: Condens. Matter 23(33), 334214 (2011).
    [Crossref]
  16. J. Zúñiga-Pérez, “ZnCdO: Status after 20 years of research,” Mater. Sci. Semicond. Process. 69, 36–43 (2017).
    [Crossref]
  17. T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
    [Crossref]
  18. E. A. Irene and H. G. Tompkins, Handbook of Ellipsometry (William Andrew Pub., 2005).
  19. I. J. A. Woollam Co., WVASE Manual “Guide to Using WVASE32” (2010). (n.d.).
  20. C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
    [Crossref]
  21. S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
    [Crossref]
  22. G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
    [Crossref]
  23. A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
    [Crossref]
  24. S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
    [Crossref]
  25. R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
    [Crossref]
  26. T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
    [Crossref]
  27. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
    [Crossref]
  28. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
    [Crossref]
  29. D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
    [Crossref]
  30. A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
    [Crossref]
  31. L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
    [Crossref]
  32. T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
    [Crossref]
  33. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
    [Crossref]
  34. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [Crossref]
  35. I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
    [Crossref]

2018 (2)

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

2017 (3)

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

J. Zúñiga-Pérez, “ZnCdO: Status after 20 years of research,” Mater. Sci. Semicond. Process. 69, 36–43 (2017).
[Crossref]

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

2016 (2)

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

P.-Y. Chen and S.-H. Yang, “Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection,” Opt. Mater. Express 6(11), 3651–3669 (2016).
[Crossref]

2015 (3)

Z.-P. Yang, Z.-H. Xie, C.-C. Lin, and Y.-J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
[Crossref]

A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
[Crossref]

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

2013 (2)

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

2012 (1)

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
[Crossref]

2011 (2)

P. D. C. King and T. D. Veal, “Conductivity in transparent oxide semiconductors,” J. Phys.: Condens. Matter 23(33), 334214 (2011).
[Crossref]

D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
[Crossref]

2009 (4)

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

2008 (3)

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
[Crossref]

2007 (1)

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

2006 (1)

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

2005 (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

2003 (1)

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

2000 (1)

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

1998 (1)

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

1996 (1)

Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
[Crossref]

1995 (1)

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

1993 (1)

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Anders, A.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Aoki, T.

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

Ates, A.

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

Bao, G.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Bharti, B.

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

Bichile, G. K.

P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
[Crossref]

Brillson, L.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Caglar, M.

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

Caglar, Y.

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

Cavas, M.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
[Crossref]

Chang, R. P. H.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Chen, P.-Y.

Chiang, C.-K.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Cho, S. M.

Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
[Crossref]

Choi, Y.-S.

Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
[Crossref]

Chou, B.-T.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Chou, Y.-H.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Clarke, D. R.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

de Castro, S.

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

de Godoy, M. P. F.

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

Decker, M.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Deshpande, N. G.

P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
[Crossref]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Detert, D. M.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Devshette, P. M.

P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
[Crossref]

Di, J.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

dos Reis, S. L.

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

Dubon, O. D.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Freeman, A. J.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Fukui, T.

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

Gu, Y.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Gupta, R. K.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
[Crossref]

Hauschild, R.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Hu, Y.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Ilican, S.

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

Irene, E. A.

E. A. Irene and H. G. Tompkins, Handbook of Ellipsometry (William Andrew Pub., 2005).

Ishihara, J.

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

Jayashri, B. S.

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

Jellison, G. E.

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

Jensen, I. J. T.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Johansen, K. M.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Kalt, H.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Karg, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Karim, A. M. M. T.

A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
[Crossref]

Keshavaraja, A.

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

Khan, M. K. R.

A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
[Crossref]

Khokhra, R.

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

Kim, S.

D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
[Crossref]

King, P. D. C.

P. D. C. King and T. D. Veal, “Conductivity in transparent oxide semiconductors,” J. Phys.: Condens. Matter 23(33), 334214 (2011).
[Crossref]

Klingshirn, C.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Ko, D.-H.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Kobayashi, N.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

König, T. A. F.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Kumar, R.

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

Kundakci, M.

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

Kuo, H.-C.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Kuwae, H.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

Kuznetsov, A. Yu.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Lai, Y.-Y.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Lee, C.-G.

Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
[Crossref]

Lee, D.-H.

D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
[Crossref]

Lee, H.-N.

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

Lee, S. Y.

D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
[Crossref]

Lee, Y.-J.

Leedy, K. D.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

Li, H.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Lim, S. H. M.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Lin, C.-C.

Z.-P. Yang, Z.-H. Xie, C.-C. Lin, and Y.-J. Lee, “Slanted n-ZnO nanorod arrays/p-GaN light-emitting diodes with strong ultraviolet emissions,” Opt. Mater. Express 5(2), 399–407 (2015).
[Crossref]

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Lin, T.-R.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Look, D. C.

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

Lu, T.-C.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Luce, A. V.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Mai, W.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Mao, W.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Marks, T. J.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Mason, T. O.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Minami, T.

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Mizuno, J.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

Naito, M.

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

Nakamura, A.

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

Ni, D.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Nobori, A.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

Nogi, K.

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

Ohara, S.

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

Ohashi, T.

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

Poeppelmeier, K. R.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Polla, D. L.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Priller, H.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Prytz, Ø.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Rahman, M. M.

A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
[Crossref]

Ramaswamy, A. V.

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

Retsch, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Rodrigues, A. D.

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

Sakamoto, K.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

Shigemori, S.

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

Shoji, S.

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

Singh, C. R.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Sood, A. K.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Srikant, V.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

Stelling, C.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Temmyo, J.

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

Thelakkat, M.

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Tom, K.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Tompkins, H. G.

E. A. Irene and H. G. Tompkins, Handbook of Ellipsometry (William Andrew Pub., 2005).

Tu, Y.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Tumbleston, J. R.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Veal, T. D.

P. D. C. King and T. D. Veal, “Conductivity in transparent oxide semiconductors,” J. Phys.: Condens. Matter 23(33), 334214 (2011).
[Crossref]

Venkatachalapathy, V.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Vijayamohanan, K.

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

Walukiewicz, W.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Wang, L.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Wang, S.-C.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Wang, Z. L.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Wu, Y.

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Xie, Z.-H.

Yakuphanoglu, F.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
[Crossref]

Yamamoto, K.

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

Yang, C.-T.

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Yang, S.-H.

Yang, Z.-P.

Yeh, P.-H.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Yu, K. M.

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

Zeller, J.

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Zhan, W.

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Zhou, J.

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

Zúñiga-Pérez, J.

J. Zúñiga-Pérez, “ZnCdO: Status after 20 years of research,” Mater. Sci. Semicond. Process. 69, 36–43 (2017).
[Crossref]

ACS Nano (1)

Y.-H. Chou, B.-T. Chou, C.-K. Chiang, Y.-Y. Lai, C.-T. Yang, H. Li, T.-R. Lin, C.-C. Lin, H.-C. Kuo, S.-C. Wang, and T.-C. Lu, “Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano 9(4), 3978–3983 (2015).
[Crossref]

Appl. Phys. Lett. (5)

J. Zhou, Y. Gu, Y. Hu, W. Mai, P.-H. Yeh, G. Bao, A. K. Sood, D. L. Polla, and Z. L. Wang, “Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization,” Appl. Phys. Lett. 94(19), 191103 (2009).
[Crossref]

D. C. Look and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102(18), 182107 (2013).
[Crossref]

J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, “Zn1-xCd0 systems with visible band gaps,” Appl. Phys. Lett. 89(9), 091914 (2006).
[Crossref]

D. M. Detert, S. H. M. Lim, K. Tom, A. V. Luce, A. Anders, O. D. Dubon, K. M. Yu, and W. Walukiewicz, “Crystal structure and properties of CdxZn1-xO alloys across the full composition range,” Appl. Phys. Lett. 102(23), 232103 (2013).
[Crossref]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94(4), 043305 (2009).
[Crossref]

Electrochem. Commun. (1)

L. Wang, W. Mao, D. Ni, J. Di, Y. Wu, and Y. Tu, “Direct electrodeposition of gold nanoparticles onto indium/tin oxide film coated glass and its application for electrochemical biosensor,” Electrochem. Commun. 10(4), 673–676 (2008).
[Crossref]

Int. J. Hydrogen Energy (1)

S. Ilican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, “Photovoltaic solar cell properties of CdxZn1-xO films prepared by sol–gel method,” Int. J. Hydrogen Energy 34(12), 5201–5207 (2009).
[Crossref]

J. Alloys Compd. (1)

P. M. Devshette, N. G. Deshpande, and G. K. Bichile, “Growth and physical properties of ZnxCd1-xO thin films prepared by spray pyrolysis technique,” J. Alloys Compd. 463(1-2), 576–580 (2008).
[Crossref]

J. Appl. Phys. (2)

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998).
[Crossref]

I. J. T. Jensen, K. M. Johansen, W. Zhan, V. Venkatachalapathy, L. Brillson, A. Yu. Kuznetsov, and Ø. Prytz, “Bandgap and band edge positions in compositionally graded ZnCdO,” J. Appl. Phys. 124(1), 015302 (2018).
[Crossref]

J. Phys.: Condens. Matter (1)

P. D. C. King and T. D. Veal, “Conductivity in transparent oxide semiconductors,” J. Phys.: Condens. Matter 23(33), 334214 (2011).
[Crossref]

J. Semicond. (1)

A. M. M. T. Karim, M. K. R. Khan, and M. M. Rahman, “Structural and opto-electrical properties of pyrolized ZnO—CdO crystalline thin films,” J. Semicond. 36(5), 053001 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Ohashi, K. Yamamoto, A. Nakamura, T. Aoki, and J. Temmyo, “Optical Properties of Wurtzite Zn1-xCdxO Films Grown by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 46(4B), 2516–2518 (2007).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Mater. Sci. Eng., B (1)

S. de Castro, S. L. dos Reis, A. D. Rodrigues, and M. P. F. de Godoy, “Defects-related optical properties of Zn1-xCdxO thin films,” Mater. Sci. Eng., B 212, 96–100 (2016).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. Zúñiga-Pérez, “ZnCdO: Status after 20 years of research,” Mater. Sci. Semicond. Process. 69, 36–43 (2017).
[Crossref]

MRS Bull. (1)

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin-Film Strategies for New Transparent Conducting Oxides,” MRS Bull. 25(8), 45–51 (2000).
[Crossref]

Nano Lett. (1)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic Crystal Geometry for Organic Solar Cells,” Nano Lett. 9(7), 2742–2746 (2009).
[Crossref]

Opt. Mater. Express (2)

Powder Technol. (1)

T. Fukui, S. Ohara, M. Naito, and K. Nogi, “Synthesis of NiO–YSZ composite particles for an electrode of solid oxide fuel cells by spray pyrolysis,” Powder Technol. 132(1), 52–56 (2003).
[Crossref]

Sci. Rep. (3)

K. Sakamoto, H. Kuwae, N. Kobayashi, A. Nobori, S. Shoji, and J. Mizuno, “Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide,” Sci. Rep. 8(1), 2825 (2018).
[Crossref]

R. Khokhra, B. Bharti, H.-N. Lee, and R. Kumar, “Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method,” Sci. Rep. 7(1), 15032 (2017).
[Crossref]

C. Stelling, C. R. Singh, M. Karg, T. A. F. König, M. Thelakkat, and M. Retsch, “Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells,” Sci. Rep. 7(1), 42530 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Sens. Actuators, B (1)

A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy, and K. Vijayamohanan, “Effect of surface modification due to superacid species in controlling the sensitivity and selectivity of SnO2 gas sensors,” Sens. Actuators, B 23(1), 75–81 (1995).
[Crossref]

Spectrochim. Acta, Part A (1)

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta, Part A 95, 107–113 (2012).
[Crossref]

Thin Solid Films (4)

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234(1-2), 416–422 (1993).
[Crossref]

T. Minami, “Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications,” Thin Solid Films 516(7), 1314–1321 (2008).
[Crossref]

Y.-S. Choi, C.-G. Lee, and S. M. Cho, “Transparent conducting ZnxCd1-x0 thin films prepared by the sol-gel process,” Thin Solid Films 289(1-2), 153–158 (1996).
[Crossref]

D.-H. Lee, S. Kim, and S. Y. Lee, “Zinc cadmium oxide thin film transistors fabricated at room temperature,” Thin Solid Films 519(13), 4361–4365 (2011).
[Crossref]

Other (3)

E. A. Irene and H. G. Tompkins, Handbook of Ellipsometry (William Andrew Pub., 2005).

I. J. A. Woollam Co., WVASE Manual “Guide to Using WVASE32” (2010). (n.d.).

C. Klingshirn, R. Hauschild, H. Priller, J. Zeller, M. Decker, and H. Kalt, “ZnO rediscovered–once again!?” in Advances in Spectroscopy for Lasers and Sensing (Springer), 2006, pp. 277–293.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Scanning electron microscope (SEM) plan-view images of a) ZnCdO, b) Zn0.90Cd0.10O, c) Zn0.75Cd0.25O, d) Zn0.68Cd0.32O, e) Zn0.50Cd0.50O, f) Zn0.40Cd0.60O, g) Zn0.25Cd0.75O, and h) Zn0.10Cd0.90O thin films fabricated through the spray pyrolysis deposition method. Substrate: glass.
Fig. 2.
Fig. 2. Raw ellipsometry measurements for the Zn1-xCdxO thin films. The Ψ (open blue circles) and Δ (open red circles) data were obtained from reflection measurements at 50, 55 and 60 degrees. The solid black lines correspond to their fit, obtained by the general oscillator method. The mean square error (MSE) of all fits is found to be less than 7.1.
Fig. 3.
Fig. 3. Real (ɛ1) and imaginary (ɛ2) part of dielectric function for Zn1-xCdxO thin films as a function of wavelength obtained by ellipsometry.
Fig. 4.
Fig. 4. (a) The optical bandgap (Eg) as a function of the Cd concentration. We estimated Eg by the Tauc equation, that relates the absorption coefficient (α) and the incident photon energy (E), (see Appendix 4). The absorption coefficients were calculated using the dielectric function obtained from the ellipsometry measurements. (b) Measured transmittance as a function of wavelength. (c) Sheet resistance versus Cd concentration.
Fig. 5.
Fig. 5. (a) Cross-section and (b) top view of the hexagonal lattice photonic crystal (PhC) organic solar cell. (c) Calculated wavelength dependence of the absorptance spectra in the photoactive layer. (d) Calculated short-circuit current (Jsc) for the flat (red triangle) and PhC (grey dot) solar cell varying the Cd concentration.
Fig. 6.
Fig. 6. SEM plan-view images of a) ZnO, b) Zn0.90Cd0.10O, c) Zn0.75Cd0.25O, d) Zn0.68Cd0.32O, e) Zn0.50Cd0.50O, f) Zn0.40Cd0.60O, g) Zn0.25Cd0.75O, h) Zn0.10Cd0.90O, and i) CdO thin films fabricated through the spray pyrolysis deposition method. Substrate: glass.
Fig. 7.
Fig. 7.E)2 as a function of the photon energy. The optical bandgaps were estimated by the Tauc equation, that relate the absorption coefficient (α) and the incident photon energy (E). The absorption coefficients were calculated using the dielectric function obtained from the ellipsometry measurements.

Tables (3)

Tables Icon

Table 1. Film thickness, roughness, electrical resistivity, electrical conductivity, and sheet resistance of Zn1-xCdxO thin films obtained through spectroscopic ellipsometry measurements

Tables Icon

Table 2. Chemical composition obtained from EDX measurements of 3 representative areas, showing a good agreement between the nominal composition and the average.

Tables Icon

Table 3. General oscillator parameters for the Zn1-xCdxO thin films.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 2 N M i = 1 N ( Ψ i m o d Ψ i e x p σ Ψ , i e x p ) 2 + ( Δ i m o d Δ i e x p σ Δ , i e x p ) 2
ε ~ ( E ) = ε offset + ( j = 1 N A j e ( E E j B j ) 2 + l = 1 P A l E l 2 E + A D E 2 + i B D E )