Abstract

Chalcogenide glasses are a promising group of materials for remote sensing applications. Two compositions from the Ge-Sb-Se/S system are investigated as core and cladding glasses in a step index fiber (SIF). Following thermomechanical and refractive index measurements, mid-infrared (MIR) light guiding is demonstrated through an 8 m length of SIF with a Ge20Sb10Se70 at. % core and Ge20Sb10Se67S3 at. % cladding. Using a single distillation procedure, Ge20Sb10Se70 at. % glass fibers are shown to have low optical loss across the 2 to 10 µm wavelength range with the lowest baseline loss shown as 0.44 dB/m at 6.4 µm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics

Zhuoqi Tang, Vladimir S. Shiryaev, David Furniss, Lukasz Sojka, Slawomir Sujecki, Trevor M. Benson, Angela B. Seddon, and Mikhail F. Churbanov
Opt. Mater. Express 5(8) 1722-1737 (2015)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  2. M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
    [Crossref]
  3. A.B. Seddon, “Mid-infrared photonics for early cancer diagnosis,” in 16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014, pp.1–4.
  4. P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).
  5. A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  6. W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
    [Crossref]
  7. J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
    [Crossref]
  8. A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
    [Crossref]
  9. M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
    [Crossref]
  10. M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
    [Crossref]
  11. H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
    [Crossref]
  12. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref]
  13. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  14. R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
    [Crossref]
  15. G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
    [Crossref]
  16. D. Lezal, “Chalcogenide glasses- survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).
  17. V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).
  18. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
    [Crossref]
  19. E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
    [Crossref]
  20. V. Shiryaev and M.F. Churbanov, “Preparation of high-purity chalcogenide glasses,” Chapter 1 in Chalcogenide Glasses, J.L Adam and X. Zhang, eds. (Woodhead Publishing Limited, 2014).
  21. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  22. W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc. 74(22), 5757–5758 (1952).
    [Crossref]
  23. S. Pizzini, Physical Chemistry of Semiconductor Materials Processing (John Wiley & Sons, Ltd.2015), Chap. 5.
  24. D. Furniss and A.B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics,” Chap. 10 in Principles and Applications of Thermal Analysis, P. Gabbott, ed. (Blackwell Publishing Ltd, 2008).
  25. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
    [Crossref]
  26. Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
    [Crossref]
  27. I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
    [Crossref]
  28. M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).
  29. Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
    [Crossref]
  30. T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
    [Crossref]
  31. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).
  32. B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
    [Crossref]
  33. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

2018 (2)

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

2017 (1)

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

2016 (3)

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

2015 (3)

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

2014 (1)

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

2013 (1)

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

2012 (1)

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

2011 (2)

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

A. B. Seddon, “A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

2009 (2)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

2008 (2)

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

2003 (1)

D. Lezal, “Chalcogenide glasses- survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

1995 (1)

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

1991 (1)

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

1978 (1)

J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

1975 (2)

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

1973 (1)

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

1952 (1)

W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc. 74(22), 5757–5758 (1952).
[Crossref]

Abell, J.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Baker, M. J.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Benson, T. M.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Bewley, W. W.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Borisevich, V. G.

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Brown, M. D.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Canedy, C. L.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Cardinal, T.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

Carter, S. F.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Chen, F.

Churbanov, M. F.

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Churbanov, M.F.

V. Shiryaev and M.F. Churbanov, “Preparation of high-purity chalcogenide glasses,” Chapter 1 in Chalcogenide Glasses, J.L Adam and X. Zhang, eds. (Woodhead Publishing Limited, 2014).

Clarke, N. W.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Dai, S.

Dianov, E.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Dianov, E. M.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Drexhage, M. G.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Fang, L.

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

Fang, Y.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Fargin, E.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

France, P. W.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Frumar, M.

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Furniss, D.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

D. Furniss and A.B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics,” Chap. 10 in Principles and Applications of Thermal Analysis, P. Gabbott, ed. (Blackwell Publishing Ltd, 2008).

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Gardner, P.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Gazi, E.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Gerasimenko, V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Guery, G.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

Guo, W.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Harrington, J. A.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).

Hayes, D. J.

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

Hilton, A. R.

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

Höfling, S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Huang, Y.

Jackson, I.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Jayasuriya, D.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Jolly, W. L.

W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc. 74(22), 5757–5758 (1952).
[Crossref]

Kamp, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Karaksina, E. V.

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

Kim, C. S.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Kim, M.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Klikorka, J.

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Kotereva, T. V.

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

Labrugere, C.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

Latimer, W. M.

W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc. 74(22), 5757–5758 (1952).
[Crossref]

Lezal, D.

D. Lezal, “Chalcogenide glasses- survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

Li, L.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Liu, H.

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

Liu, Z.

Luo, B.

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Markos, C.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Merritt, C. D.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Meyer, J. R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Moore, M. W.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Musgraves, J. D.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

Neate, N. C.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Ou, H.

Parker, J. M.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Parnell, H.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Pitt, A. M.

J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Pizzini, S.

S. Pizzini, Physical Chemistry of Semiconductor Materials Processing (John Wiley & Sons, Ltd.2015), Chap. 5.

Plotnichenko, V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Plotnichenko, V. G.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Pushkin, A. A.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Rechtin, M. D.

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

Richardson, K.

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

Savage, J. A.

J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Scripachev, I. V.

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Seddon, A. B.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

A. B. Seddon, “A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Seddon, A.B.

A.B. Seddon, “Mid-infrared photonics for early cancer diagnosis,” in 16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014, pp.1–4.

D. Furniss and A.B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics,” Chap. 10 in Principles and Applications of Thermal Analysis, P. Gabbott, ed. (Blackwell Publishing Ltd, 2008).

Shanks, J. H.

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Shen, X.

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Sheng, Y.

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

Shiryaev, V.

V. Shiryaev and M.F. Churbanov, “Preparation of high-purity chalcogenide glasses,” Chapter 1 in Chalcogenide Glasses, J.L Adam and X. Zhang, eds. (Woodhead Publishing Limited, 2014).

Shiryaev, V. S.

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Snopatin, G. E.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Sojka, L

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Sojka, L.

Sujecki, S.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Tang, Z.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Tang, Z. Q.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Tang D, D.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Tao, G.

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Tichá, H.

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Tomíška, P.

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Voitsekhovsky, V. V.

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Vurgaftman, I.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

Wang, R.

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Wang, R. P.

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Wang, T.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Wang, X.

Wang, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Webber, P. J.

J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Wei, W. H.

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Weih, R.

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

Wright, J. V.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

Xu, H.

Xu, Q.

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yang, X.

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

Zhang, P.

Br. J. Cancer (1)

M. J. Baker, E. Gazi, M. D. Brown, J. H. Shanks, P. Gardner, and N. W. Clarke, “FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer,” Br. J. Cancer 99(11), 1859–1866 (2008).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Am. Ceram. Soc. (4)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

R. Wang, Q. Xu, H. Liu, Y. Sheng, and X. Yang, “Structure and physical properties of Ge15Sb20Se65-xSx glasses,” J. Am. Ceram. Soc. 101(1), 201–207 (2018).
[Crossref]

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge–Sb–Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

B. Zhang, W. Guo, Y. Yu, C. Zhai, S. Qi, A. Yang, L. Li, Z. Yang, R. Wang, D. Tang D, G. Tao, and B. Luther-Davies, “Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation,” J. Am. Ceram. Soc. 98(5), 1389–1392 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc. 74(22), 5757–5758 (1952).
[Crossref]

J. Appl. Phys. (1)

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, “Transition threshold in GexSb10Se90−x glasses,” J. Appl. Phys. 115(11), 113510 (2014).
[Crossref]

J. Electron. Mater. (1)

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

J. Lumin. (1)

E. V. Karaksina, V. S. Shiryaev, T. V. Kotereva, and M. F. Churbanov, “Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence,” J. Lumin. 170(1), 37–41 (2016).
[Crossref]

J. Mater. Sci. (1)

J. A. Savage, P. J. Webber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

J. Non-Cryst. Solids (6)

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. Frumar, H. Tichá, J. Klikorka, and P. Tomíška, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: A review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids 357(11-13), 2352–2357 (2011).
[Crossref]

G. Guery, J. D. Musgraves, C. Labrugere, E. Fargin, T. Cardinal, and K. Richardson, “Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60−xSex glass network,” J. Non-Cryst. Solids 358(15), 1740–1745 (2012).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

D. Lezal, “Chalcogenide glasses- survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

J. Phys. D: Appl. Phys. (2)

I. Vurgaftman, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling, “Interband Cascade Lasers,” J. Phys. D: Appl. Phys. 48(12), 123001 (2015).
[Crossref]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. Luther-Davies, and I. Jackson, “Elastic transition thresholds in Ge–As(Sb)–Se glasses,” J. Phys. D: Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, Ł Sojka, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Optoelectronics and advanced materials-rapid communications (1)

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. Gerasimenko, E. Dianov, and V. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectronics and advanced materials-rapid communications 3(7), 669–671 (2009).

Vysokochist. Vesch. (1)

V. G. Borisevich, V. V. Voitsekhovsky, I. V. Scripachev, V. G. Plotnichenko, and M. F. Churbanov, “Investigation of the influence of extrinsic hydrogen on the optical properties of chalcogenide glasses in the system As-Se,” Vysokochist. Vesch. 1, 65 (1991).

Other (7)

A.B. Seddon, “Mid-infrared photonics for early cancer diagnosis,” in 16th International Conference on Transparent Optical Networks (ICTON), Graz, 2014, pp.1–4.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (CRC Press, Inc, 1990).

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).

M. Kim, C. S. Kim, C. L. Canedy, W. W. Bewley, C. D. Merritt, I. Vurgaftman, and J. R. Meyer, “Recent advances of interband cascade lasers and LEDs,” Proc. SPIE10939 (2019).

V. Shiryaev and M.F. Churbanov, “Preparation of high-purity chalcogenide glasses,” Chapter 1 in Chalcogenide Glasses, J.L Adam and X. Zhang, eds. (Woodhead Publishing Limited, 2014).

S. Pizzini, Physical Chemistry of Semiconductor Materials Processing (John Wiley & Sons, Ltd.2015), Chap. 5.

D. Furniss and A.B. Seddon, “Thermal Analysis of Inorganic Compound Glasses and Glass-Ceramics,” Chap. 10 in Principles and Applications of Thermal Analysis, P. Gabbott, ed. (Blackwell Publishing Ltd, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Viscosity-temperature curves of the: a) Ge20Sb10Se70 at. % core and b) Ge20Sb10Se67S3 at. % cladding glasses. Horizontal dashed lines indicate the approximate extrusion (107.5 Pa.s) and fiber-drawing (104.5 Pa.s) viscosities, denoted by ve and vf respectively. The dashed tangent lines indicate the onset of deviation from the linear fall of the viscosity-temperature curves.
Fig. 2.
Fig. 2. Refractive index (n) measurements of Ge20Sb10Se70 at. % core glass (dashed line) and Ge20Sb10Se67S3 at. % cladding glass (solid line).
Fig. 3.
Fig. 3. (a) Calculated numerical aperture (NA) values for a step-index fiber (SIF) with Ge20Sb10Se70 at. % core glass and Ge20Sb10Se67S3 at. % cladding glass. (b) Material dispersion (D) for a SIF with Ge20Sb10Se70 at. % core and Ge20Sb10Se67S3 at. % cladding glasses. Inset shows an enlarged region between 5 to 10 µm.
Fig. 4.
Fig. 4. Combined optical fiber loss measurements for unstructured Ge20Sb10Se70 at. % core, unstructured Ge20Sb10Se67S3 at. % cladding and a Ge20Sb10Se70 at. % (core) Ge20Sb10Se67S3 at. % (cladding) step-index fiber (SIF).
Fig. 5.
Fig. 5. a) Scanning electron microscopy (SEM) image of a cleaved optical fiber taken from the Ge20Sb10Se70 at. % (core) Ge20Sb10Se67S3 at. % (cladding) step-index fiber and b) energy dispersive X-ray spectroscopy (EDX) map for elemental S (K lines used).
Fig. 6.
Fig. 6. Optical fiber loss spectra for the unstructured, distilled Ge20Sb10Se70 at. % glass measured over an 18 m length of 200 µm diameter fiber (solid line). The optical loss in the undistilled Ge20Sb10Se70 at. % optical fiber is included for comparison (dashed line).

Tables (1)

Tables Icon

Table 1. Thermal properties of prospective Ge20Sb10Se70 at. % core and Ge20Sb10Se67S3 at. % cladding glassesa.