Abstract

Laser induced damage thresholds (LIDTs) and photo-induced changes of As40S60, Ga0.8As39.2S60 and Ga0.8As29.2Sb10S60 chalcogenide glasses are investigated by femtosecond laser of 800 nm. As40S60 glass has the highest LIDT as well as 1452.3 mJ/cm2, the introduction of small amount of Ga and Sb into glass decreases the LIDTs to 957.1 mJ/cm2 for Ga0.8As39.2S60 and 705.9 mJ/cm2 for Ga0.8As29.2Sb10S60, respectively. Microstructure analysis reveals that the decrease of LIDT is tightly related to the decrease of high strength chemical bonds and formation of lower ones in glass matrix. After multi pulses induced damage occurred, the structure of glass matrix became more random and a half of S was replaced by O approximately. The damage mechanism was proposed and it is helpful to develop high LIDT chalcogenide glasses and the photo-induced effects are the basis of waveguide writing in chalcogenide glasses by femtosecond laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses

Yan Zhang, Yinsheng Xu, Chenyang You, Dong Xu, Junzhou Tang, Peiqing Zhang, and Shixun Dai
Opt. Express 25(8) 8886-8895 (2017)

Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser

Jian Cui, Xusheng Xiao, Yantao Xu, Xiaoxia Cui, Meiling Chen, Junjiang Guo, Min Lu, Bo Peng, and Haitao Guo
Opt. Mater. Express 8(8) 2089-2102 (2018)

Femtosecond laser induced damage on Ge-As-S chalcogenide glasses

Mingjie Zhang, Tongtong Li, Yan Yang, Haizheng Tao, Xiang Zhang, Xiao Yuan, and Zhiyong Yang
Opt. Mater. Express 9(2) 555-561 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2014).
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  3. B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
    [Crossref]
  4. M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
    [Crossref]
  5. S. Elliott, “AC conduction in amorphous chalcogenide and pnictide semiconductors,” Adv. Phys. 36(2), 135–217 (1987).
    [Crossref]
  6. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43(12), 1153–1157 (1953).
    [Crossref]
  7. G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  8. B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
    [Crossref]
  9. A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
    [Crossref]
  10. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref]
  11. J. Cui, X. Xiao, Y. Xu, X. Cui, M. Chen, J. Guo, M. Lu, B. Peng, and H. Guo, “Mid-infrared emissions of Dy 3+doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 µm fiber laser,” Opt. Mater. Express 8(8), 2089–2102 (2018).
    [Crossref]
  12. X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
    [Crossref]
  13. E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
    [Crossref]
  14. C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
    [Crossref]
  15. S. Messaddeq, J. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
    [Crossref]
  16. L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
    [Crossref]
  17. P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
    [Crossref]
  18. J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
    [Crossref]
  19. Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
    [Crossref]
  20. M. Zhang, T. Li, Y. Yang, H. Tao, X. Zhang, X. Yuan, and Z. Yang, “Femtosecond laser induced damage on Ge-As-S chalcogenide glasses,” Opt. Mater. Express 9(2), 555–561 (2019).
    [Crossref]
  21. W. Rudulph and L. A. Emmert, “Laser-Induced Damage in Optical Materials,” Encyclopedia of Modern Optics 4, 302–309 (2018).
    [Crossref]
  22. A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69(S1), S67–S73 (1999).
    [Crossref]
  23. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
    [Crossref]
  24. M. Bernier, M. El-Amraoui, J. Couillard, Y. Messaddeq, and R. Vallée, “Writing of bragg gratings through the polymer jacket of low-loss as 2 s 3 fibers using femtosecond pulses at 800 nm,” Opt. Lett. 37(18), 3900–3902 (2012).
    [Crossref]
  25. J. Liu, “Simple technique for measurements of pulsed gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref]
  26. N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
    [Crossref]
  27. I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
    [Crossref]
  28. J. Tauc, “Optical properties and electronic structure of amorphous semiconductors,” Optical Properties of Solids, (Springer, 1969), pp. 123–136.
  29. L. V. Keldysh, “On the theory of impact ionization in semiconductors,” Sov. Phys, JETP 37, 6 (1965).
  30. E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
    [Crossref]
  31. A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
    [Crossref]
  32. M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
    [Crossref]
  33. M. Kincl and L. Tichy, “Some Physical Properties of GexAsxS1-2x Glasses,” Mater. Chem. Phys. 103(1), 78–88 (2007).
    [Crossref]
  34. J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
    [Crossref]
  35. L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
    [Crossref]
  36. A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
    [Crossref]
  37. S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
    [Crossref]
  38. C. Hodgman, Handbook of chemistry and Physics (CRC Press, 1924).
  39. C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  40. C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
    [Crossref]
  41. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
    [Crossref]
  42. G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
    [Crossref]
  43. P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
    [Crossref]
  44. A. K. Mairaj, P. Hua, H. N. Rutt, and D. W. Hewak, “Fabrication and characterization of continuous wave direct UV (λ = 244˜ nm) written channel waveguides in chalcogenide (Ga: La: S) glass,” J. Lightwave Technol. 20(8), 1578–1584 (2002).
    [Crossref]
  45. H. A. Kramers, Collected Scientific Papers (North-Holland, 1956).
  46. R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
    [Crossref]
  47. K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
    [Crossref]
  48. J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
    [Crossref]
  49. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  50. S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
    [Crossref]

2019 (1)

2018 (2)

2017 (3)

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref]

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

2016 (2)

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

2015 (2)

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

2014 (1)

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

2012 (4)

M. Bernier, M. El-Amraoui, J. Couillard, Y. Messaddeq, and R. Vallée, “Writing of bragg gratings through the polymer jacket of low-loss as 2 s 3 fibers using femtosecond pulses at 800 nm,” Opt. Lett. 37(18), 3900–3902 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

S. Messaddeq, J. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
[Crossref]

2011 (1)

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

2010 (1)

2009 (2)

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

2007 (2)

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

M. Kincl and L. Tichy, “Some Physical Properties of GexAsxS1-2x Glasses,” Mater. Chem. Phys. 103(1), 78–88 (2007).
[Crossref]

2006 (1)

L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

2004 (1)

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

2003 (1)

C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (3)

A. K. Mairaj, P. Hua, H. N. Rutt, and D. W. Hewak, “Fabrication and characterization of continuous wave direct UV (λ = 244˜ nm) written channel waveguides in chalcogenide (Ga: La: S) glass,” J. Lightwave Technol. 20(8), 1578–1584 (2002).
[Crossref]

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

2001 (3)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1999 (2)

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69(S1), S67–S73 (1999).
[Crossref]

M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
[Crossref]

1998 (3)

J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
[Crossref]

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

1997 (1)

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

1996 (1)

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

1994 (1)

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

1991 (1)

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
[Crossref]

1988 (1)

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

1987 (2)

S. Elliott, “AC conduction in amorphous chalcogenide and pnictide semiconductors,” Adv. Phys. 36(2), 135–217 (1987).
[Crossref]

C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
[Crossref]

1982 (1)

1978 (1)

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

1965 (1)

L. V. Keldysh, “On the theory of impact ionization in semiconductors,” Sov. Phys, JETP 37, 6 (1965).

1953 (1)

Adam, J.-L.

J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2014).

Adamietz, F.

L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Agarwal, S.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
[Crossref]

Aitken, B. G.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Anderson, T.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

Anne, M.-L.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Asobe, M.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

Benson, T. M.

Bernier, M.

Bertoluzza, A.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Bérubé, J.

Boidin, R.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Boudebs, G.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

Boussard-Pledel, C.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Bruneel, J.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Bufetov, I.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Bulai, G.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Bulgakov, A.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Bulgakova, N.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Bulgakova, N. M.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Cardinal, T.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Carlie, N.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Cernohorsky, T.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

Cernošek, Z.

M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
[Crossref]

Cerqua-Richardson, K.

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Charrier, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Chen, M.

Choi, J.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

Churbanov, M.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Churbanov, M. F.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Couillard, J.

Couzi, M.

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Cui, J.

Cui, X.

Culeac, I.

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

Dai, S.

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref]

David Musgraves, J.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

Dianov, E.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Dianov, E. M.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Efimov, O.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

El-Amraoui, M.

Elliott, S.

P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
[Crossref]

S. Elliott, “AC conduction in amorphous chalcogenide and pnictide semiconductors,” Adv. Phys. 36(2), 135–217 (1987).
[Crossref]

Emmert, L. A.

W. Rudulph and L. A. Emmert, “Laser-Induced Damage in Optical Materials,” Encyclopedia of Modern Optics 4, 302–309 (2018).
[Crossref]

Emura, S.

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

Ewen, P.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Fagnano, C.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Fekete, L.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Focsa, C.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Fortin, V.

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Frerichs, R.

Frolov, A. A.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Frumar, M.

M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
[Crossref]

Furniss, D.

Galstian, T.

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Galstyan, A.

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

Garcia, J.

C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Glebov, L.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Gonda, S.-I.

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

Guo, H.

Guo, J.

Gurlui, S.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Haderka, O.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Hajto, E.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Hayashi, H.

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

Heo, J.

J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

Hewak, D. W.

Hodgman, C.

C. Hodgman, Handbook of chemistry and Physics (CRC Press, 1924).

Hua, P.

Hyodo, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Inoue, S.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Iovu, M.

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

Irimiciuc, S.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jasapara, J.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Joshi, S.

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Kaino, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

Kamitsos, E.

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

Kapoutsis, J.

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

Kar, A.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Keirsse, J.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “On the theory of impact ionization in semiconductors,” Sov. Phys, JETP 37, 6 (1965).

Kelly, R.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69(S1), S67–S73 (1999).
[Crossref]

Kincl, M.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

M. Kincl and L. Tichy, “Some Physical Properties of GexAsxS1-2x Glasses,” Mater. Chem. Phys. 103(1), 78–88 (2007).
[Crossref]

Knotek, P.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

Kosa, T.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Kramers, H. A.

H. A. Kramers, Collected Scientific Papers (North-Holland, 1956).

Krecmer, P.

P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
[Crossref]

Kudryashov, S.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Lawrence, B.

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Lhermite, H.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Li, L.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Li, T.

Liu, J.

Loreal, O.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Lu, M.

Lucas, J.

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Ma, H.

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Madden, S.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Mairaj, A. K.

Marine, W.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Mashinsky, V. M.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Matsui, Y.

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

Mazur, E.

C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

McKinley, J.

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Messaddeq, S.

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

S. Messaddeq, J. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
[Crossref]

Messaddeq, Y.

Michálek, V.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Miotello, A.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69(S1), S67–S73 (1999).
[Crossref]

Mirza, I.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Mocek, T.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Monti, P.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Nampoothiri, A.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Navesnik, J.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

Nazabal, V.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Nemec, P.

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

Ohara, T.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

Owen, A.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Paesler, M.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
[Crossref]

C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
[Crossref]

Panchenko, A.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Park, S. H.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Pelusi, M.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Peng, B.

Pereira, A.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Petit, L.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Pfeiffer, G.

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
[Crossref]

Plotnichenko, V.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Plotnichenko, V. G.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Polak, Z.

M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
[Crossref]

Ponader, C. W.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Quimby, R. S.

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Rangel-Rojo, R.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Richardson, K.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Richardson, M.

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

Ristau, D.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Rudolph, W.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Rudulph, W.

W. Rudulph and L. A. Emmert, “Laser-Induced Damage in Optical Materials,” Encyclopedia of Modern Optics 4, 302–309 (2018).
[Crossref]

Rutt, H. N.

Ryou, S.-Y.

J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

Sayers, D.

C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
[Crossref]

Schaffer, C.

C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Seddon, A. B.

Semerano, G.

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

Shiryaev, V.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Skripachev, I.

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

S. Messaddeq, J. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
[Crossref]

Snopatin, G.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Snopatin, G. E.

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Starke, K.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Sujecki, S.

Tang, D.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Tang, J.

Tang, Z.

Tao, H.

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous semiconductors,” Optical Properties of Solids, (Springer, 1969), pp. 123–136.

Tichy, L.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

M. Kincl and L. Tichy, “Some Physical Properties of GexAsxS1-2x Glasses,” Mater. Chem. Phys. 103(1), 78–88 (2007).
[Crossref]

Tomáštík, J.

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Vallée, R.

Van Stryland, E.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Villeneuve, A.

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

Vlcek, M.

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
[Crossref]

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Wang, R.

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Wang, Y.

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Wherrett, B.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Xiao, X.

Xu, D.

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref]

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Xu, Y.

Yanakata, K.

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Yang, A.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yang, C.

C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
[Crossref]

Yang, Y.

Yang, Z.

M. Zhang, T. Li, Y. Yang, H. Tao, X. Zhang, X. Yuan, and Z. Yang, “Femtosecond laser induced damage on Ge-As-S chalcogenide glasses,” Opt. Mater. Express 9(2), 555–561 (2019).
[Crossref]

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Yokohama, I.

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Yoon, J. M.

J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

You, C.

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref]

Yuan, X.

Zhang, B.

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, M.

M. Zhang, T. Li, Y. Yang, H. Tao, X. Zhang, X. Yuan, and Z. Yang, “Femtosecond laser induced damage on Ge-As-S chalcogenide glasses,” Opt. Mater. Express 9(2), 555–561 (2019).
[Crossref]

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

Zhang, P.

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref]

Zhang, X.

Zhang, X. H.

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

Zhang, Y.

Zhukov, V.

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Adv. Phys. (1)

S. Elliott, “AC conduction in amorphous chalcogenide and pnictide semiconductors,” Adv. Phys. 36(2), 135–217 (1987).
[Crossref]

Appl. Phys. A (1)

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69(S1), S67–S73 (1999).
[Crossref]

Appl. Phys. A: Mater. Sci. Process. (1)

C. Schaffer, J. Garćıa, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A: Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Appl. Surf. Sci. (1)

S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, and C. Focsa, “Laser ablation of (GeSe2)100-x (Sb2Se3)x chalcogenide glasses: Influence of the target composition on the plasma plume dynamics,” Appl. Surf. Sci. 418(SI), 594–600 (2017).
[Crossref]

C. R. Chim. (1)

B. G. Aitken, C. W. Ponader, and R. S. Quimby, “Clustering of rare earths in GeAs sulfide glass,” C. R. Chim. 5(12), 865–872 (2002).
[Crossref]

Electron. Lett. (1)

M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, “Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method,” Electron. Lett. 32(17), 1611–1613 (1996).
[Crossref]

Encyclopedia of Modern Optics (1)

W. Rudulph and L. A. Emmert, “Laser-Induced Damage in Optical Materials,” Encyclopedia of Modern Optics 4, 302–309 (2018).
[Crossref]

Inorg. Mater. (1)

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J. David Musgraves, N. Carlie, L. Petit, G. Boudebs, J. Choi, M. Richardson, and K. Richardson, “Effect of replacement of As by Ge and Sb on the photo-response under near infrared femtosecond laser irradiation in as-based sulfide glasses,” Int. J. Appl. Glass Sci. 2(4), 308–320 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Yang, M. Zhang, L. Li, Y. Wang, B. Zhang, Z. Yang, and D. Tang, “Ga–sb–s chalcogenide glasses for mid-infrared applications,” J. Am. Ceram. Soc. 99(1), 12–15 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (5)

G. Pfeiffer, M. Paesler, and S. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130(2), 111–143 (1991).
[Crossref]

P. Krecmer, M. Vlcek, and S. Elliott, “Novel photoinduced anisotropy in amorphous As50Se50 films at near the glass transition temperature,” J. Non-Cryst. Solids 227-230, 682–687 (1998).
[Crossref]

J. Heo, J. M. Yoon, and S.-Y. Ryou, “Raman spectroscopic analysis on the solubility mechanism of La3+ in GeS2–Ga2s3 glasses,” J. Non-Cryst. Solids 238(1-2), 115–123 (1998).
[Crossref]

A. Bertoluzza, C. Fagnano, P. Monti, and G. Semerano, “Raman and infrared spectra of As2sx chalcogenide glasses with x less than or equal to 3,” J. Non-Cryst. Solids 29(1), 49–60 (1978).
[Crossref]

M. Frumar, Z. Polak, and Z. Černošek, “Raman spectra and photostructural changes in the short-range order of amorphous as–s chalcogenides,” J. Non-Cryst. Solids 256-257, 105–110 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

E. Kamitsos, J. Kapoutsis, I. Culeac, and M. Iovu, “Structure and bonding in as- sb- s chalcogenide glasses by infrared reflectance spectroscopy,” J. Phys. Chem. B 101(51), 11061–11067 (1997).
[Crossref]

Laser Photonics Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, M. Pelusi, D. Yong Choi, S. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. 6(1), 97–114 (2012).
[Crossref]

Mater. Chem. Phys. (2)

M. Kincl and L. Tichy, “Some Physical Properties of GexAsxS1-2x Glasses,” Mater. Chem. Phys. 103(1), 78–88 (2007).
[Crossref]

L. Petit, N. Carlie, and F. Adamietz, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Mater. Res. Bull. (1)

P. Knotek, J. Navesnik, T. Cernohorsky, M. Kincl, M. Vlcek, and L. Tichy, “Ablation of (GeS2)0.3(Sb2S3) 0.7 glass with an ultra-violet nano-second laser,” Mater. Res. Bull. 64, 42–50 (2015).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Micromachines (1)

N. Bulgakova, A. Panchenko, V. Zhukov, S. Kudryashov, A. Pereira, W. Marine, T. Mocek, and A. Bulgakov, “Impacts of ambient and ablation plasmas on short-and ultrashort-pulse laser processing of surfaces,” Micromachines 5(4), 1344–1372 (2014).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

R. Rangel-Rojo, T. Kosa, E. Hajto, P. Ewen, A. Owen, A. Kar, and B. Wherrett, “Near-infrared optical nonlinearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (5)

X. H. Zhang, H. Ma, and J. Lucas, “Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications,” Opt. Mater. 25(1), 85–89 (2004).
[Crossref]

L. Petit, N. Carlie, T. Anderson, M. Couzi, J. Choi, M. Richardson, and K. Richardson, “Effect of IR femtosecond laser irradiation on the structure of new sulfo-selenide glasses,” Opt. Mater. 29(8), 1075–1083 (2007).
[Crossref]

A. Galstyan, S. Messaddeq, V. Fortin, I. Skripachev, R. Vallée, T. Galstian, and Y. Messaddeq, “Tm3+ doped Ga–As–S chalcogenide glasses and fibers,” Opt. Mater. 47, 518–523 (2015).
[Crossref]

K. Cerqua-Richardson, J. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10(2), 155–159 (1998).
[Crossref]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (3)

S. Emura, S.-I. Gonda, Y. Matsui, and H. Hayashi, “Internal-stress effects on raman spectra of InxGa1- x As on InP,” Phys. Rev. B 38(5), 3280–3286 (1988).
[Crossref]

C. Yang, M. Paesler, and D. Sayers, “Measurement of local structural configurations associated with reversible photostructural changes in arsenic trisulfide films,” Phys. Rev. B 36(17), 9160–9167 (1987).
[Crossref]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[Crossref]

Quantum Electron. (1)

E. M. Dianov, I. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Sci. Rep. (2)

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As 2 S 3 and As2 Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref]

I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6(1), 39133 (2016).
[Crossref]

Sensors (1)

M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, and O. Loreal et al., “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Sov. Phys, JETP (1)

L. V. Keldysh, “On the theory of impact ionization in semiconductors,” Sov. Phys, JETP 37, 6 (1965).

Other (4)

C. Hodgman, Handbook of chemistry and Physics (CRC Press, 1924).

J. Tauc, “Optical properties and electronic structure of amorphous semiconductors,” Optical Properties of Solids, (Springer, 1969), pp. 123–136.

J.-L. Adam and X. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2014).

H. A. Kramers, Collected Scientific Papers (North-Holland, 1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Illustration of the damage experiment setup
Fig. 2.
Fig. 2. Morphology of damaged spots on As40S60 (bottom), Ga0.8As39.2S60 (middle) and Ga0.8As29.2Sb10S60 (top). Laser fluence increases from the tail to the head of the arrow in each group.
Fig. 3.
Fig. 3. Linear fit of LIDT of As40S60, Ga0.8As39.2S60 and Ga0.8As34.5Sb5S60
Fig. 4.
Fig. 4. Absorption spectra (A) and linear fit of band gap (B) of As40S60, Ga0.8As39.2S60 and Ga0.8As34.8Sb5S60
Fig. 5.
Fig. 5. Decomposition of Raman spectra of As40S60 (A), Ga0.8As39.2S60 (B) and Ga0.8As29.2Sb10S60 (C). The red line is the sum of decomposed peaks and the dot line is the original Raman spectra. The list of different units are sequenced by their relative amounts
Fig. 6.
Fig. 6. SEM images of single pulse damaged region (left) and multi pulses damaged region (right) on Ga0.8As39.2S60.
Fig. 7.
Fig. 7. Structural changes after laser ablation of As40S60 (A), Ga0.8As39.2S60 (B) and Ga0.8As29.2Sb10S60 (C)
Fig. 8.
Fig. 8. Element changes after laser ablation of As40S60, Ga0.8As39.2S60 and Ga0.8As29.2Sb10S60
Fig. 9.
Fig. 9. Illustration of femtosecond laser damage to As40S60 glass

Tables (1)

Tables Icon

Table 1. Compare of homocentric ripples’ radius to Newton’s ring

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( r , t ) = I 0 exp ( r 2 ρ 2 ) exp ( t 2 τ 2 )
F ( r ) = d t I ( r , t ) = F 0 exp ( r 2 ρ 2 )
F ( r t h ) = F 0 exp ( r t h 2 ρ 2 ) = F t h
r t h 2 = ρ 2 ( ln F 0 ln F t h )
Δ n ( λ ) = 1 2 π 2 0 Δ α ( λ ) d λ 1 ( λ λ ) 2