Abstract

We study the potential of common dielectric coating materials used for the fabrication of high reflectance mirrors in micro-cavity devices used in the visible region. We examine materials grown using E-beam and thermal evaporation and magnetron sputtering. The refractive indices and the extinction coefficients of the coatings were calculated from transmission and reflectance spectrophotometric data. The surface roughness of single layer coatings was measured using atomic force microscopy and the scatter of the thin film coatings was approximated from roughness measurements.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
    [Crossref]
  2. J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.
  3. T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
    [Crossref]
  4. T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
    [Crossref]
  5. R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
    [Crossref]
  6. M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
    [Crossref]
  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  8. G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  9. T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
    [Crossref]
  10. C. Fabry and A. Perot, “Theorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Annales des Chimie et des Physique 7th series, 115–144 (1899).
  11. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).
  12. H. A. Macleod, “Introduction,” in Thin-film Optical Filters (CRC Press, 2010), pp. 7–8.
  13. S. Reid and I. Martin, “Development of Mirror Coatings for Gravitational Wave Detectors,” Coatings 6(4), 61 (2016).
    [Crossref]
  14. S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.
  15. L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
    [Crossref]
  16. L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
    [Crossref]
  17. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.
  18. D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
    [Crossref]
  19. S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
    [Crossref]
  20. D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
    [Crossref]
  21. S. Chao, W.-H. Wang, and C.-C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40(13), 2177–2182 (2001).
    [Crossref]
  22. A. Melninkaitis, T. Tolenis, L. Mažule, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kicas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
    [Crossref]
  23. D. M. Mattox, “Chapter 6 - Vacuum Evaporation and Vacuum Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 195–235.
  24. D. M. Mattox, “Chapter 9 - Ion Plating and Ion Beam-Assisted Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 301–331.
  25. J. Bellum, E. Field, D. Kletecka, and L. Finis, “Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO2 layers and laser damage resistant, broad bandwidth, high-.(Report),” Appl. Opt. 53(4), A205 (2014).
    [Crossref]
  26. D. M. Mattox, “Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering),” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 237–286.
  27. G. Hass and J. B. Ramsey, “Vacuum Deposition of Dielectric and Semiconductor Films by a CO2 Laser,” Appl. Opt. 8(6), 1115–1118 (1969).
    [Crossref]
  28. H. K. Pulker and C. Zaminer, “Composition and structure of vapour-deposited cryolite films,” Thin Solid Films 5(5-6), 421–428 (1970).
    [Crossref]
  29. R. P. Netterfield, “Refractive indices of zinc sulfide and cryolite in multilayer stacks,” Appl. Opt. 15(8), 1969–1973 (1976).
    [Crossref]
  30. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared byvarious techniques,” Appl. Opt. 28(16), 3303–3317 (1989).
    [Crossref]
  31. H. Selhofer, E. Ritter, and R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt. 41(4), 756–762 (2002).
    [Crossref]
  32. H. W. Lehmann and K. Frick, “Optimizing deposition parameters of electron beam evaporated TiO2 films,” Appl. Opt. 27(23), 4920–4924 (1988).
    [Crossref]
  33. O. D. Vol’pyan, P. P. Yakovlev, B. B. Meshkov, and Y. A. Obod, “Optical properties of Ta2O5 films obtained by reactive magnetron sputtering,” J. Opt. Technol. 70(9), 669–672 (2003).
    [Crossref]
  34. S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
    [Crossref]
  35. S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
    [Crossref]
  36. E. Ritter and R. Hoffmann, “Influence of Substrate Temperature on the Condensation of Vacuum Evaporated Films of MgF2 and ZnS,” J. Vac. Sci. Technol. 6(4), 733–736 (1969).
    [Crossref]
  37. J. C. Maxwell, “On physical lines of force,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 4th series, 161–175, 282–291, 338–349, 113–124, 185–195 (1861).
  38. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ed 7 (Cambridge University Press, 2002).
  39. M. K. Trubetskov and A. V. Tikhonravov, “OptiLayer Thin film Software,” (OptiLayer GmbH).
  40. T. Amotchkina, M. Trubetskov, A. Tikhonravov, I. B. Angelov, and V. Pervak, “Reliable optical characterization of e-beam evaporated TiO2 films deposited at different substrate temperatures,” Appl. Opt. 53(4), A8–A15 (2014).
    [Crossref]
  41. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
    [Crossref]
  42. A. V. Tikhonravov and M. K. Trubetskov, “Development of the needle optimization technique and new features of OptiLayer design software,” in International Symposium on Optical Interference Coatings, (SPIE, 1994).
  43. E. D. Palik and W. R. Hunter, “Lithium Fluoride (LiF),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 675–693.
  44. C. A. Klein, “Room-temperature dispersion equations for cubic zinc sulfide,” Appl. Opt. 25(12), 1873–1875 (1986).
    [Crossref]
  45. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984).
    [Crossref]
  46. D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
    [Crossref]
  47. A. E. Ennos, “Stresses Developed in Optical Film Coatings,” Appl. Opt. 5(1), 51–61 (1966).
    [Crossref]
  48. M. Banning, “Practical Methods of Making and Using Multilayer Filters,” J. Opt. Soc. Am. 37(10), 792 (1947).
    [Crossref]
  49. H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 216.
  50. H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 222.
  51. K. Zhang, R. E. D. T. M. Faber, and D. Ristau, “Plasma Assisted Pulsed DC Magnetron Sputtering System for Optical Thin Film Coatings,” in Optical Interference Coatings, OSA Technical Digest (online) (Optical Society of America, 2013), ThB.6.
  52. S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
    [Crossref]
  53. M. R. A. Bhuiyan, A. H. Miah, and J. Begum, Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films (2012), Vol. 36, pp. 233–240.
  54. J. R. DeVore, “Refractive Indices of Rutile and Sphalerite,” J. Opt. Soc. Am. 41(6), 416–419 (1951).
    [Crossref]
  55. D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29(4), 604–607 (1990).
    [Crossref]
  56. D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21(16), 2978–2981 (1982).
    [Crossref]
  57. H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 749–763.
  58. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
    [Crossref]
  59. D. Nečas and P. Klapetek, “Gwyddion, Free SPM data analysis software.”
  60. T. Klaassen, M. P. van Exter, and J. P. Woerdman, “Characterization of scattering in an optical Fabry-Perot resonator,” Appl. Opt. 46(22), 5210 (2007).
    [Crossref]
  61. S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
    [Crossref]
  62. D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
    [Crossref]
  63. A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
    [Crossref]
  64. E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology (2012).
  65. J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
    [Crossref]
  66. L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
    [Crossref]
  67. C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
    [Crossref]
  68. H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
    [Crossref]
  69. S. E. Watkins, J. P. Black, and B. J. Pond, “Optical scatter characteristics of high-reflectance dielectric coatings and fused-silica substrates,” Appl. Opt. 32(28), 5511–5518 (1993).
    [Crossref]
  70. G. Harry, T. P. Bodiya, and R. DeSalvo, “Optical scatter,” in Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, 2012), p. 168.
  71. D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]

2017 (3)

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

2016 (4)

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
[Crossref]

S. Reid and I. Martin, “Development of Mirror Coatings for Gravitational Wave Detectors,” Coatings 6(4), 61 (2016).
[Crossref]

2015 (2)

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

2014 (4)

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

J. Bellum, E. Field, D. Kletecka, and L. Finis, “Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO2 layers and laser damage resistant, broad bandwidth, high-.(Report),” Appl. Opt. 53(4), A205 (2014).
[Crossref]

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

T. Amotchkina, M. Trubetskov, A. Tikhonravov, I. B. Angelov, and V. Pervak, “Reliable optical characterization of e-beam evaporated TiO2 films deposited at different substrate temperatures,” Appl. Opt. 53(4), A8–A15 (2014).
[Crossref]

2013 (2)

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

2011 (4)

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažule, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kicas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

2010 (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

2009 (1)

D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
[Crossref]

2008 (2)

S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
[Crossref]

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

2007 (2)

A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
[Crossref]

T. Klaassen, M. P. van Exter, and J. P. Woerdman, “Characterization of scattering in an optical Fabry-Perot resonator,” Appl. Opt. 46(22), 5210 (2007).
[Crossref]

2006 (2)

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

2003 (1)

2002 (2)

2001 (1)

2000 (1)

J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
[Crossref]

1995 (1)

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

1993 (1)

1990 (1)

1989 (1)

1988 (1)

1986 (1)

1984 (2)

1982 (1)

1979 (1)

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

1976 (1)

1970 (1)

H. K. Pulker and C. Zaminer, “Composition and structure of vapour-deposited cryolite films,” Thin Solid Films 5(5-6), 421–428 (1970).
[Crossref]

1969 (2)

E. Ritter and R. Hoffmann, “Influence of Substrate Temperature on the Condensation of Vacuum Evaporated Films of MgF2 and ZnS,” J. Vac. Sci. Technol. 6(4), 733–736 (1969).
[Crossref]

G. Hass and J. B. Ramsey, “Vacuum Deposition of Dielectric and Semiconductor Films by a CO2 Laser,” Appl. Opt. 8(6), 1115–1118 (1969).
[Crossref]

1966 (1)

1951 (1)

1947 (1)

Adawi, A. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Albrand, G.

Alfonso, E.

E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology (2012).

Allen, T. H.

Amotchkina, T.

Amotchkina, T. V.

Amra, C.

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Angelov, I. B.

Anghinolfi, L.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Appel, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Baker, H. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Banning, M.

Barbour, R. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Bassiri, R.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Baumberg, J. J.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).

Begum, J.

M. R. A. Bhuiyan, A. H. Miah, and J. Begum, Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films (2012), Vol. 36, pp. 233–240.

Bellum, J.

Bennett, J. M.

Berloff, N. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

Bhuiyan, M. R. A.

M. R. A. Bhuiyan, A. H. Miah, and J. Begum, Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films (2012), Vol. 36, pp. 233–240.

Black, J. P.

Bodiya, T. P.

G. Harry, T. P. Bodiya, and R. DeSalvo, “Optical scatter,” in Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, 2012), p. 168.

Bogdanovic, S.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Bonato, C.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Bondo, T.

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Borah, M. N.

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

Borgogno, J. P.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ed 7 (Cambridge University Press, 2002).

Bosch, S.

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

Brida, D.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Bulir, J.

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

Buller, G. S.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Canepa, M.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Carniglia, C. K.

Caspar, C.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Cavazzini, M.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Cerullo, G.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Chaliha, S.

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

Chandra, S. V. J.

S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
[Crossref]

Chao, S.

Chincarini, A.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Chtanov, A.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Clark, C.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Clark, J.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Coenen, L. C.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Coles, D.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Coles, D. M.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

Collins, R. J.

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Commandré, M.

Cookson, T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

Cubillos, G.

E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology (2012).

Curran, A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Dalgarno, P. A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

David, G. L.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

David, M. C.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

DeBell, G.

DeSalvo, R.

G. Harry, T. P. Bodiya, and R. DeSalvo, “Optical scatter,” in Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, 2012), p. 168.

DeVore, J. R.

Dodge, M. J.

Drazdys, R.

Duempelmann, L.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Dufferwiel, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Ennos, A. E.

Faber, R. E. D. T. M.

K. Zhang, R. E. D. T. M. Faber, and D. Ristau, “Plasma Assisted Pulsed DC Magnetron Sputtering System for Optical Thin Film Coatings,” in Optical Interference Coatings, OSA Technical Digest (online) (Optical Society of America, 2013), ThB.6.

Fabry, C.

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Annales des Chimie et des Physique 7th series, 115–144 (1899).

Fejer, M. M.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Ferré-Borrull, J.

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

Field, E.

Finis, L.

Fink, T.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Flatten, L. C.

L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
[Crossref]

Frick, K.

Fu, X.

Galeotti, F.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Gallais, L.

Garrett, D. C.

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Gemme, G.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Georgiou, K.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Gibson, D.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Grant, R. T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Gregoire, P.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Greuter, L.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Grilli, M. L.

Gross, M.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Guenther, K. H.

Hakomori, K.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Hall, D. R.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Hanson, R.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Harry, G.

G. Harry, T. P. Bodiya, and R. DeSalvo, “Optical scatter,” in Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, 2012), p. 168.

Hass, G.

Heisig, U.

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

Hennrich, M.

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Hensen, B.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Hoffmann, R.

E. Ritter and R. Hoffmann, “Influence of Substrate Temperature on the Condensation of Vacuum Evaporated Films of MgF2 and ZnS,” J. Vac. Sci. Technol. 6(4), 733–736 (1969).
[Crossref]

Hunter, W. R.

E. D. Palik and W. R. Hunter, “Lithium Fluoride (LiF),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 675–693.

Isojima, Y.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Isoshima, T.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Jang, A.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

Jun, Y.

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Kash, J.

J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
[Crossref]

Kash, J. A.

J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.

Kathalingam, A.

A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
[Crossref]

Kavokin, A. V.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).

Khlyap, H.

D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
[Crossref]

Kicas, S.

Kikuchi, K.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Kim, J. S.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

Klaassen, T.

Klapetek, P.

D. Nečas and P. Klapetek, “Gwyddion, Free SPM data analysis software.”

Klein, C. A.

Kletecka, D.

Knebel, D. R.

J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.

Kometani, T. Y.

Krasilnikova, A.

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

Krizhanovskii, D. N.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Kuhn, A.

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Kurbatov, D.

D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
[Crossref]

Lagoudakis, P. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

Laussy, F. P.

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).

Lazarides, B.

Lee, C.-C.

Legero, T.

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Lehmann, H. W.

Lequime, M.

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Li, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Liddy, M.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Lidzey, D. G.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Linsbod, R.

Loncar, M.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Loock, H.-P.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

Ludwig, A.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Macleod, H. A.

H. A. Macleod, “Introduction,” in Thin-film Optical Filters (CRC Press, 2010), pp. 7–8.

H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 216.

H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 222.

Magaña-Sandoval, F.

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Mahalingam, T.

A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
[Crossref]

Maiuri, M.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Maletinsky, P.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Malpuech, G.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).

Mangote, B.

Markosyan, A.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Markus, A.

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Martin, I.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

S. Reid and I. Martin, “Development of Mirror Coatings for Gravitational Wave Detectors,” Coatings 6(4), 61 (2016).
[Crossref]

Mattox, D. M.

D. M. Mattox, “Chapter 6 - Vacuum Evaporation and Vacuum Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 195–235.

D. M. Mattox, “Chapter 9 - Ion Plating and Ion Beam-Assisted Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 301–331.

D. M. Mattox, “Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering),” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 237–286.

Maxwell, J. C.

J. C. Maxwell, “On physical lines of force,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 4th series, 161–175, 282–291, 338–349, 113–124, 185–195 (1861).

Mažule, L.

Melninkaitis, A.

Meshkov, B. B.

Miah, A. H.

M. R. A. Bhuiyan, A. H. Miah, and J. Begum, Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films (2012), Vol. 36, pp. 233–240.

Michael, J. M.

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Michetti, P.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Mirauskas, J.

Munzke, D.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

Murray, P. G.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Musser, A. J.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Nagai, K.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Najer, D.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Nakagawa, H.

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Nalitov, A.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Nash, D. L.

Nassau, K.

Necas, D.

D. Nečas and P. Klapetek, “Gwyddion, Free SPM data analysis software.”

Neri, M.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Netterfield, R. P.

Neu, E.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Niccolo, S.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Novoselov, K. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Nowak, K. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Obod, Y. A.

Olaya, J.

E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology (2012).

Opanasyuk, A.

D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
[Crossref]

Palik, E. D.

E. D. Palik and W. R. Hunter, “Lithium Fluoride (LiF),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 675–693.

Paolo, M.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Pavlos, G. L.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Pavlos, G. S.

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Pelletier, E.

Perot, A.

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Annales des Chimie et des Physique 7th series, 115–144 (1899).

Pervak, V.

Petroff, P. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Philipp, H. R.

H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 749–763.

Polli, D.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Pond, B. J.

Pozo-Zamudio, O. D.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Prato, M.

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

Pulker, H. K.

H. K. Pulker and C. Zaminer, “Composition and structure of vapour-deposited cryolite films,” Thin Solid Films 5(5-6), 421–428 (1970).
[Crossref]

Rahman, A.

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

Rajendran, S. K.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Ramsey, J. B.

Rao, G. M.

S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
[Crossref]

Reid, S.

S. Reid and I. Martin, “Development of Mirror Coatings for Gravitational Wave Detectors,” Coatings 6(4), 61 (2016).
[Crossref]

Reiserer, A.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Rempe, G.

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Riedel, D.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Ristau, D.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref]

K. Zhang, R. E. D. T. M. Faber, and D. Ristau, “Plasma Assisted Pulsed DC Magnetron Sputtering System for Optical Thin Film Coatings,” in Optical Interference Coatings, OSA Technical Digest (online) (Optical Society of America, 2013), ThB.6.

Ritter, E.

H. Selhofer, E. Ritter, and R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt. 41(4), 756–762 (2002).
[Crossref]

E. Ritter and R. Hoffmann, “Influence of Substrate Temperature on the Condensation of Vacuum Evaporated Films of MgF2 and ZnS,” J. Vac. Sci. Technol. 6(4), 733–736 (1969).
[Crossref]

Rohner, D.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Rowan, S.

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

Sancho-Parramon, J.

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

Sanjeeviraja, C.

A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
[Crossref]

Sarmah, P. C.

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

Saxer, A.

Schiller, S.

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

Schmell, R. A.

Schwarz, S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Selhofer, H.

Shields, B. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Sich, M.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Silva, C.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Sirutkaitis, V.

Skolnick, M. S.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Smith, J. M.

L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Smith, J. R.

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Söllner, I.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Solnyshkov, D. D.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Starosielec, S.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

Steinfelder, K.

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

Stoltz, N. G.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Strümpfel, J.

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

Sytchkova, A. K.

Tartakovskii, A. I.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Tatian, B.

Tikhonravov, A.

Tikhonravov, A. V.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref]

M. K. Trubetskov and A. V. Tikhonravov, “OptiLayer Thin film Software,” (OptiLayer GmbH).

A. V. Tikhonravov and M. K. Trubetskov, “Development of the needle optimization technique and new features of OptiLayer design software,” in International Symposium on Optical Interference Coatings, (SPIE, 1994).

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Tolenis, T.

Trichet, A. A. P.

L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
[Crossref]

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Trubetskov, M.

Trubetskov, M. K.

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref]

A. V. Tikhonravov and M. K. Trubetskov, “Development of the needle optimization technique and new features of OptiLayer design software,” in International Symposium on Optical Interference Coatings, (SPIE, 1994).

M. K. Trubetskov and A. V. Tikhonravov, “OptiLayer Thin film Software,” (OptiLayer GmbH).

Tsang, J.

J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
[Crossref]

J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.

Tsoi, W. C.

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

Tuttle-Hart, T.

Uthanna, S.

S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
[Crossref]

Vallett, D.

J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
[Crossref]

Vallett, D. P.

J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.

van Dam, S. B.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

van Exter, M. P.

Vander-Hyde, D.

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Vella, E.

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Virgili, T.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

Vol’pyan, O. D.

Waechter, H.

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

Wang, W.-H.

Warburton, R. J.

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

Watkins, S. E.

Wei, Z.

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Withers, F.

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Woerdman, J. P.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ed 7 (Cambridge University Press, 2002).

Wood, D. L.

Yakovlev, P. P.

Zaminer, C.

H. K. Pulker and C. Zaminer, “Composition and structure of vapour-deposited cryolite films,” Thin Solid Films 5(5-6), 421–428 (1970).
[Crossref]

Zasedatelev, A.

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zerrad, M.

Zhang, K.

K. Zhang, R. E. D. T. M. Faber, and D. Ristau, “Plasma Assisted Pulsed DC Magnetron Sputtering System for Optical Thin Film Coatings,” in Optical Interference Coatings, OSA Technical Digest (online) (Optical Society of America, 2013), ThB.6.

Zwerver, A.

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Adv. Funct. Mater. (1)

D. M. Coles, P. Michetti, C. Clark, W. C. Tsoi, A. M. Adawi, J. S. Kim, and D. G. Lidzey, “Organic Semiconductors: Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities,” Adv. Funct. Mater. 21(19), 3690 (2011).
[Crossref]

Adv. Opt. Mater. (2)

T. Cookson, K. Georgiou, A. Zasedatelev, R. T. Grant, T. Virgili, M. Cavazzini, F. Galeotti, C. Clark, N. G. Berloff, D. G. Lidzey, and P. G. Lagoudakis, “A Yellow Polariton Condensate in a Dye Filled Microcavity,” Adv. Opt. Mater. 5(18), 1700203 (2017).
[Crossref]

R. T. Grant, P. Michetti, A. J. Musser, P. Gregoire, T. Virgili, E. Vella, M. Cavazzini, K. Georgiou, F. Galeotti, C. Clark, J. Clark, C. Silva, and D. G. Lidzey, “Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye,” Adv. Opt. Mater. 4(10), 1615–1623 (2016).
[Crossref]

Anal. Chem. (1)

H. Waechter, D. Munzke, A. Jang, and H.-P. Loock, “Simultaneous and Continuous Multiple Wavelength Absorption Spectroscopy on Nanoliter Volumes Based on Frequency-Division Multiplexing Fiber-Loop Cavity Ring-Down Spectroscopy,” Anal. Chem. 83(7), 2719–2725 (2011).
[Crossref]

Appl. Opt. (18)

S. E. Watkins, J. P. Black, and B. J. Pond, “Optical scatter characteristics of high-reflectance dielectric coatings and fused-silica substrates,” Appl. Opt. 32(28), 5511–5518 (1993).
[Crossref]

M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23(12), 1980–1985 (1984).
[Crossref]

T. Klaassen, M. P. van Exter, and J. P. Woerdman, “Characterization of scattering in an optical Fabry-Perot resonator,” Appl. Opt. 46(22), 5210 (2007).
[Crossref]

T. Amotchkina, M. Trubetskov, A. Tikhonravov, I. B. Angelov, and V. Pervak, “Reliable optical characterization of e-beam evaporated TiO2 films deposited at different substrate temperatures,” Appl. Opt. 53(4), A8–A15 (2014).
[Crossref]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50(9), C75–C85 (2011).
[Crossref]

A. E. Ennos, “Stresses Developed in Optical Film Coatings,” Appl. Opt. 5(1), 51–61 (1966).
[Crossref]

C. A. Klein, “Room-temperature dispersion equations for cubic zinc sulfide,” Appl. Opt. 25(12), 1873–1875 (1986).
[Crossref]

B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23(24), 4477–4485 (1984).
[Crossref]

D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29(4), 604–607 (1990).
[Crossref]

D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21(16), 2978–2981 (1982).
[Crossref]

S. Chao, W.-H. Wang, and C.-C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40(13), 2177–2182 (2001).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažule, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kicas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
[Crossref]

J. Bellum, E. Field, D. Kletecka, and L. Finis, “Reactive ion-assisted deposition of e-beam evaporated titanium for high refractive index TiO2 layers and laser damage resistant, broad bandwidth, high-.(Report),” Appl. Opt. 53(4), A205 (2014).
[Crossref]

G. Hass and J. B. Ramsey, “Vacuum Deposition of Dielectric and Semiconductor Films by a CO2 Laser,” Appl. Opt. 8(6), 1115–1118 (1969).
[Crossref]

R. P. Netterfield, “Refractive indices of zinc sulfide and cryolite in multilayer stacks,” Appl. Opt. 15(8), 1969–1973 (1976).
[Crossref]

J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared byvarious techniques,” Appl. Opt. 28(16), 3303–3317 (1989).
[Crossref]

H. Selhofer, E. Ritter, and R. Linsbod, “Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials,” Appl. Opt. 41(4), 756–762 (2002).
[Crossref]

H. W. Lehmann and K. Frick, “Optimizing deposition parameters of electron beam evaporated TiO2 films,” Appl. Opt. 27(23), 4920–4924 (1988).
[Crossref]

Appl. Phys. Lett. (2)

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105(12), 121105 (2014).
[Crossref]

S. Bogdanovic, S. B. van Dam, C. Bonato, L. C. Coenen, A. Zwerver, B. Hensen, M. Liddy, T. Fink, A. Reiserer, M. Loncar, and R. Hanson, “Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks,” Appl. Phys. Lett. 110(17), 171103 (2017).
[Crossref]

Appl. Surf. Sci. (2)

J. Sancho-Parramon, J. Ferré-Borrull, S. Bosch, A. Krasilnikova, and J. Bulir, “New calibration method for UV–VIS photothermal deflection spectroscopy set-up,” Appl. Surf. Sci. 253(1), 158–162 (2006).
[Crossref]

S. V. J. Chandra, S. Uthanna, and G. M. Rao, “Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films,” Appl. Surf. Sci. 254(7), 1953–1960 (2008).
[Crossref]

Classical Quantum Gravity (1)

D. Vander-Hyde, C. Amra, M. Lequime, F. Magaña-Sandoval, J. R. Smith, and M. Zerrad, “Optical scatter of quantum noise filter cavity optics,” Classical Quantum Gravity 32(13), 135019 (2015).
[Crossref]

Coatings (2)

S. Reid and I. Martin, “Development of Mirror Coatings for Gravitational Wave Detectors,” Coatings 6(4), 61 (2016).
[Crossref]

C. Clark, R. Bassiri, I. Martin, A. Markosyan, P. G. Murray, D. Gibson, S. Rowan, and M. M. Fejer, “Comparison of single-layer and double-layer anti-reflection coatings using laser-induced damage threshold and photothermal common-path interferometry,” Coatings 6(2), 20 (2016).
[Crossref]

IBM J. Res. Dev. (1)

J. Tsang, J. Kash, and D. Vallett, “Picosecond imaging circuit analysis,” IBM J. Res. Dev. 44(4), 583–603 (2000).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Technol. (1)

J. Phys. D: Appl. Phys. (1)

L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, and M. Canepa, “Optical properties of uniform, porous, amorphous Ta2O5 coatings on silica: temperature effects,” J. Phys. D: Appl. Phys. 46(45), 455301 (2013).
[Crossref]

J. Phys.: Conf. Ser. (1)

S. Chaliha, M. N. Borah, P. C. Sarmah, and A. Rahman, “Effect of substrate temperature on structural properties of thermally evaporated ZnSe thin films of different thickness,” J. Phys.: Conf. Ser. 114, 012048 (2008).
[Crossref]

J. Vac. Sci. Technol. (1)

E. Ritter and R. Hoffmann, “Influence of Substrate Temperature on the Condensation of Vacuum Evaporated Films of MgF2 and ZnS,” J. Vac. Sci. Technol. 6(4), 733–736 (1969).
[Crossref]

Laser Photonics Rev. (1)

L. C. Flatten, A. A. P. Trichet, and J. M. Smith, “Spectral engineering of coupled open-access microcavities,” Laser Photonics Rev. 10(2), 257–263 (2016).
[Crossref]

Mater. Chem. Phys. (1)

A. Kathalingam, T. Mahalingam, and C. Sanjeeviraja, “Optical and structural study of electrodeposited zinc selenide thin films,” Mater. Chem. Phys. 106(2-3), 215–221 (2007).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single-photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Nat. Commun. (1)

S. Dufferwiel, S. Schwarz, F. Withers, A. A. P. Trichet, F. Li, M. Sich, O. D. Pozo-Zamudio, C. Clark, A. Nalitov, D. D. Solnyshkov, G. Malpuech, K. S. Novoselov, J. M. Smith, M. S. Skolnick, D. N. Krizhanovskii, and A. I. Tartakovskii, “Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities,” Nat. Commun. 6(1), 8579 (2015).
[Crossref]

Nat. Mater. (1)

M. C. David, S. Niccolo, M. Paolo, C. Caspar, G. L. Pavlos, G. S. Pavlos, and G. L. David, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref]

Nat. Photonics (1)

D. C. Garrett, Z. Wei, J. M. Michael, Y. Jun, and A. Markus, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Opt. Commun. (1)

T. Bondo, M. Hennrich, T. Legero, G. Rempe, and A. Kuhn, “Time-resolved and state-selective detection of single freely falling atoms,” Opt. Commun. 264(2), 271–277 (2006).
[Crossref]

Phys. Rev. X (1)

D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, and R. J. Warburton, “Deterministic enhancement of coherent photon generation from a Nitrogen-Vacancy center in ultrapure diamond,” Phys. Rev. X 7(3), 031040 (2017).
[Crossref]

Phys. Status Solidi A (1)

D. Kurbatov, A. Opanasyuk, and H. Khlyap, “Substrate-temperature effect on the microstructural and optical properties of ZnS thin films obtained by close-spaced vacuum sublimation,” Phys. Status Solidi A 206(7), 1549–1557 (2009).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Rev. Sci. Instrum. (1)

T. Isoshima, Y. Isojima, K. Hakomori, K. Kikuchi, K. Nagai, and H. Nakagawa, “Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence,” Rev. Sci. Instrum. 66(4), 2922–2926 (1995).
[Crossref]

Thin Solid Films (2)

S. Schiller, U. Heisig, K. Steinfelder, and J. Strümpfel, “Reactive D.C. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films 63(2), 369–375 (1979).
[Crossref]

H. K. Pulker and C. Zaminer, “Composition and structure of vapour-deposited cryolite films,” Thin Solid Films 5(5-6), 421–428 (1970).
[Crossref]

Other (22)

D. M. Mattox, “Chapter 7 - Physical Sputtering and Sputter Deposition (Sputtering),” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 237–286.

D. M. Mattox, “Chapter 6 - Vacuum Evaporation and Vacuum Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 195–235.

D. M. Mattox, “Chapter 9 - Ion Plating and Ion Beam-Assisted Deposition,” in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition) (William Andrew Publishing, Boston, 2010), pp. 301–331.

J. C. Maxwell, “On physical lines of force,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 4th series, 161–175, 282–291, 338–349, 113–124, 185–195 (1861).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ed 7 (Cambridge University Press, 2002).

M. K. Trubetskov and A. V. Tikhonravov, “OptiLayer Thin film Software,” (OptiLayer GmbH).

C. Fabry and A. Perot, “Theorie et applications d’une nouvelle méthode de spectroscopie interférentielle,” Annales des Chimie et des Physique 7th series, 115–144 (1899).

A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University Press, 2007).

H. A. Macleod, “Introduction,” in Thin-film Optical Filters (CRC Press, 2010), pp. 7–8.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” (2012), pp. 1–2.

J. A. Kash, J. Tsang, D. R. Knebel, and D. P. Vallett, Non-Invasive Backside Failure Analysis of Integrated Circuits by Time-Dependent Light Emission: Picosecond Imaging Circuit Analysis (1998), pp. 483–488.

S. K. Rajendran, D. Brida, M. Maiuri, D. Coles, D. Polli, A. M. Adawi, C. Clark, P. Michetti, D. G. Lidzey, G. Cerullo, and T. Virgili, “Ultrafast dynamics of cavity polaritons in an organic semicondutor microcavity,” (2012), pp. 1–3.

H. R. Philipp, “Silicon Dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 749–763.

M. R. A. Bhuiyan, A. H. Miah, and J. Begum, Substrate Temperature Effect on the Structural and Optical Properties of ZnSe Thin Films (2012), Vol. 36, pp. 233–240.

H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 216.

H. A. Macleod, “Multilayer high-reflectance coatings,” in Thin-film Optical Filters (CRC Press, 2010), p. 222.

K. Zhang, R. E. D. T. M. Faber, and D. Ristau, “Plasma Assisted Pulsed DC Magnetron Sputtering System for Optical Thin Film Coatings,” in Optical Interference Coatings, OSA Technical Digest (online) (Optical Society of America, 2013), ThB.6.

A. V. Tikhonravov and M. K. Trubetskov, “Development of the needle optimization technique and new features of OptiLayer design software,” in International Symposium on Optical Interference Coatings, (SPIE, 1994).

E. D. Palik and W. R. Hunter, “Lithium Fluoride (LiF),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985), pp. 675–693.

D. Nečas and P. Klapetek, “Gwyddion, Free SPM data analysis software.”

E. Alfonso, J. Olaya, and G. Cubillos, “Thin Film Growth Through Sputtering Technique and Its Applications,” in Crystallization - Science and Technology (2012).

G. Harry, T. P. Bodiya, and R. DeSalvo, “Optical scatter,” in Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, 2012), p. 168.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Structure of Fabry-Perot cavity mirrors. Each mirror is composed of low index/high index dielectric materials pairs. The optical thickness of each layer is a quarter of the emission wavelength of the single photon source. (b) Combined light reflections and transmissions in a multilayer Fabry-Perot cavity, reproduced from [12].
Fig. 2.
Fig. 2. Measured reflectance and transmission spectra for IAD E-beam silicon dioxide deposited on SF11 substrate using Perkin Elmer Lambda 900 spectrophotometer between 350 nm and 2200 nm.
Fig. 3.
Fig. 3. Measured reflectance and transmission spectra for thermally evaporated zinc selenide deposited on microscope slide substrate using Perkin Elmer Lambda 900 spectrophotometer between 350 nm and 2200 nm.
Fig. 4.
Fig. 4. Refractive index n calculated from fitted reflection data for low index dielectric single layer coatings in the wavelength fitting range 500 nm to 1000 nm.
Fig. 5.
Fig. 5. Refractive index n calculated from fitted reflection data for high index dielectric single layer coatings in the wavelength fitting range 500 nm to 1000 nm.
Fig. 6.
Fig. 6. Extinction coefficient k calculated from fitted transmission data of single layers of low index dielectric materials.
Fig. 7.
Fig. 7. Extinction coefficient k calculated from fitted transmission data of single layers of high index dielectric materials.
Fig. 8.
Fig. 8. Halfwaves of thermally evaporated zinc sulphide measured transmittance laying on the substrate transmittance.
Fig. 9.
Fig. 9. Selected AFM scans of low roughness coatings deposited on microscope slides with a thickness around 500 nm. The AFM scans have been performed in tapping mode on 1 µm × 1 µm area at a speed of 0.25 Hz using 256 sample/line.

Tables (4)

Tables Icon

Table 1. Source materials and process conditions for thin film low index dielectric coatings.

Tables Icon

Table 2. Source materials and process conditions for thin film high index dielectric coatings.

Tables Icon

Table 3. Summary of the optical constants results for the studied dielectric coatings compared to bulk materials [8, 4345, 5458].

Tables Icon

Table 4. Summary of the Root Mean Square (RMS) roughness values of the studied dielectric coatings and the estimated scatter at 500 nm and 1000 nm from Eq. (6).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = n + i k
n ( λ ) = n + A λ 2 + B λ 4 ; k( λ )   =   B 0 exp ( B 1 λ B 2 λ )
D F ( X ) = j = 1 n ( S ( X ; λ j ) S ^ ( λ j ) Δ j ) 2
R = ( 1 N R 2 p n H 2 n s ) 2 ( 1 + N R 2 p n H 2 n s ) 2
W = 4 π a r c sin ( N R 1 N R + 1 )
S = ( 4 π r λ ) 2
F = π R 1 R