Abstract

We present detailed measurements of effective emission cross section spectra of the Alexandrite gain medium in the 25-450 °C temperature range and provide analytic formulas that can be used to match the measured spectra. The measurement results have been used to investigate the wavelength and temperature dependence of small signal gain, as well as gain bandwidth relevant for ultrafast pulse generation/amplification. We show that the estimated laser performance based on the measured spectroscopic data provides a good fit to the results in the literature. We further discuss the need for a detailed measurement of excited-state absorption cross section in future studies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet

Jun Dong, Michael Bass, Yanli Mao, Peizhen Deng, and Fuxi Gan
J. Opt. Soc. Am. B 20(9) 1975-1979 (2003)

Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation

Xavier Délen, François Balembois, and Patrick Georges
J. Opt. Soc. Am. B 28(5) 972-976 (2011)

Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses

Jun Dong, Michael Bass, and Craig Walters
J. Opt. Soc. Am. B 21(2) 454-457 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
    [Crossref]
  2. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
    [Crossref]
  3. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).
  4. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
    [Crossref]
  5. B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48(6), 989–1011 (2003).
    [Crossref]
  6. B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8(5), 970–977 (1991).
    [Crossref]
  7. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
    [Crossref]
  8. D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
    [Crossref]
  9. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
    [Crossref]
  10. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
    [Crossref]
  11. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
    [Crossref]
  12. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency > 26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
    [Crossref]
  13. M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
    [Crossref]
  14. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
    [Crossref]
  15. A. Munk, B. Jungbluth, M. Strotkamp, H. D. Hoffmann, R. Poprawe, J. Hoffner, and F. J. Lubken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
    [Crossref]
  16. U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
    [Crossref]
  17. S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
    [Crossref]
  18. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped Alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
    [Crossref]
  19. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
    [Crossref]
  20. X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
    [Crossref]
  21. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
    [Crossref]
  22. E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
    [Crossref]
  23. P. Pichon, A. Barbet, J. P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
    [Crossref]
  24. M. Fibrich, J. Šulc, and H. Jelínková, “Alexandrite microchip lasers,” Opt. Express 27(12), 16975–16982 (2019).
    [Crossref]
  25. G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
    [Crossref]
  26. S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
    [Crossref]
  27. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
    [Crossref]
  28. C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
    [Crossref]
  29. C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
    [Crossref]
  30. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [Crossref]
  31. M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
    [Crossref]
  32. W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
    [Crossref]
  33. W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33(12), 2525–2534 (2016).
    [Crossref]
  34. P. Loiko and A. Major, “Dispersive properties of alexandrite and beryllium hexaaluminate crystals,” Opt. Mater. Express 6(7), 2177–2183 (2016).
    [Crossref]
  35. P. Loiko, S. Ghanbari, V. Matrosov, K. Yumashev, and A. Major, “Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal,” Opt. Mater. Express 8(10), 3000–3006 (2018).
    [Crossref]
  36. M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-Pulse Amplification of 100-Fsec Pulses,” Opt. Lett. 14(15), 797–799 (1989).
    [Crossref]
  37. A. Hariharan, M. E. Fermann, M. L. Stock, D. J. Harter, and J. Squier, “Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification,” Opt. Lett. 21(2), 128–130 (1996).
    [Crossref]
  38. M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron. 19(3), 480–484 (1983).
    [Crossref]
  39. S. Guch and C. E. Jones, “Alexandrite-Laser Performance at High-Temperature,” Opt. Lett. 7(12), 608–610 (1982).
    [Crossref]
  40. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  41. D. Pugh-Thomas, B. M. Walsh, and M. C. Gupta, “Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing,” Appl. Opt. 49(15), 2891–2897 (2010).
    [Crossref]
  42. M. L. Shand and J. C. Walling, “Excited-State Absorption in the Lasing Wavelength Region of Alexandrite,” IEEE J. Quantum Electron. 18(7), 1152–1155 (1982).
    [Crossref]
  43. R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
    [Crossref]
  44. H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
    [Crossref]
  45. K. L. Schepler, “Fluorescence of Inversion Site Cr-3+ Ions in Alexandrite,” J. Appl. Phys. 56(5), 1314–1318 (1984).
    [Crossref]
  46. W. Gadomski and B. Ratajska-Gadomska, “Homoclinic orbits and chaos in the vibronic short-cavity standing-wave alexandrite laser,” J. Opt. Soc. Am. B 17(2), 188–197 (2000).
    [Crossref]
  47. H. Burton, C. Debardelaben, W. Amir, and T. A. Planchon, “Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser,” Opt. Express 25(6), 6954–6962 (2017).
    [Crossref]
  48. A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
    [Crossref]
  49. U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr: LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
    [Crossref]
  50. L. G. DeShazer and K. W. Kangas, “Extended infared operation of titanium sapphire laser,” Conference on Lasers and Electro Optics14, 296–298 (1987).
  51. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “Low-cost, broadly tunable (375-433 nm & 746-887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51(35), 8440–8448 (2012).
    [Crossref]
  52. J. C. E. Coyle, A. J. Kemp, J. M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti: sapphire laser with broad tunability,” Opt. Express 26(6), 6826–6832 (2018).
    [Crossref]
  53. U. Demirbas, J. Wang, G. S. Petrich, S. Nabanja, J. R. Birge, L. A. Kolodziejski, F. X. Kartner, and J. G. Fujimoto, “100-nm tunable femtosecond Cr:LiSAF laser mode locked with a broadband saturable Bragg reflector,” Appl. Opt. 56(13), 3812–3816 (2017).
    [Crossref]
  54. S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
    [Crossref]
  55. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
    [Crossref]
  56. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [Crossref]
  57. M. L. Shand, “Quantum Efficiency of Alexandrite,” J. Appl. Phys. 54(5), 2602–2604 (1983).
    [Crossref]
  58. Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
    [Crossref]
  59. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).
  60. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9(12), 2271–2273 (1992).
    [Crossref]
  61. J. H. Wolter, M. A. Ahmed, and T. Graf, “Thin-disk laser operation of Ti:sapphire,” Opt. Lett. 42(8), 1624–1627 (2017).
    [Crossref]
  62. U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+ : LiCAF lasers,” J. Opt. Soc. Am. B 26(1), 64–79 (2009).
    [Crossref]
  63. R. Paschotta, article on ‘effective transition cross sections’ in the Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).
  64. M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
    [Crossref]
  65. W. Koechner, Solid-state laser engineering (Springer, New York, 2006).
  66. A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill Education, 2010).

2019 (2)

2018 (9)

S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
[Crossref]

C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
[Crossref]

C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
[Crossref]

P. Loiko, S. Ghanbari, V. Matrosov, K. Yumashev, and A. Major, “Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal,” Opt. Mater. Express 8(10), 3000–3006 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H. D. Hoffmann, R. Poprawe, J. Hoffner, and F. J. Lubken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

J. C. E. Coyle, A. J. Kemp, J. M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti: sapphire laser with broad tunability,” Opt. Express 26(6), 6826–6832 (2018).
[Crossref]

2017 (7)

2016 (5)

2015 (2)

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr: LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (1)

2010 (1)

2009 (2)

U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+ : LiCAF lasers,” J. Opt. Soc. Am. B 26(1), 64–79 (2009).
[Crossref]

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

2005 (1)

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

2004 (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

2003 (1)

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48(6), 989–1011 (2003).
[Crossref]

2000 (1)

1996 (1)

1993 (3)

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
[Crossref]

1992 (1)

1991 (1)

1990 (1)

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

1989 (2)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-Pulse Amplification of 100-Fsec Pulses,” Opt. Lett. 14(15), 797–799 (1989).
[Crossref]

1988 (1)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

1986 (1)

1985 (2)

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

1984 (1)

K. L. Schepler, “Fluorescence of Inversion Site Cr-3+ Ions in Alexandrite,” J. Appl. Phys. 56(5), 1314–1318 (1984).
[Crossref]

1983 (2)

M. L. Shand, “Quantum Efficiency of Alexandrite,” J. Appl. Phys. 54(5), 2602–2604 (1983).
[Crossref]

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron. 19(3), 480–484 (1983).
[Crossref]

1982 (3)

S. Guch and C. E. Jones, “Alexandrite-Laser Performance at High-Temperature,” Opt. Lett. 7(12), 608–610 (1982).
[Crossref]

M. L. Shand and J. C. Walling, “Excited-State Absorption in the Lasing Wavelength Region of Alexandrite,” IEEE J. Quantum Electron. 18(7), 1152–1155 (1982).
[Crossref]

M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
[Crossref]

1981 (1)

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

1979 (1)

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Ahmed, M. A.

Akbari, R.

Amir, W.

Arbabzadah, E. A.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Archugov, S. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).

Atherton, L. J.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Baali, I.

Balembois, F.

Barbet, A.

Bass, M.

Baylam, I.

Bensalah, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Beyatli, E.

Birge, J. R.

Blanchot, J. P.

Boulon, G.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Brandle, C. D.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Brenier, A.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Burton, H.

Cech, M.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Chai, B. H. T.

M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9(12), 2271–2273 (1992).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).

Cihan, C.

Coyle, J. C. E.

Damzen, M. J.

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped Alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable Alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33(12), 2525–2534 (2016).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref]

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency > 26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref]

Davis, L. E.

Debardelaben, C.

Demirbas, U.

C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
[Crossref]

C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
[Crossref]

U. Demirbas, J. Wang, G. S. Petrich, S. Nabanja, J. R. Birge, L. A. Kolodziejski, F. X. Kartner, and J. G. Fujimoto, “100-nm tunable femtosecond Cr:LiSAF laser mode locked with a broadband saturable Bragg reflector,” Appl. Opt. 56(13), 3812–3816 (2017).
[Crossref]

U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr: LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
[Crossref]

I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold Alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4(4), 776–789 (2014).
[Crossref]

E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30(12), 3184–3192 (2013).
[Crossref]

U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “Low-cost, broadly tunable (375-433 nm & 746-887 nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51(35), 8440–8448 (2012).
[Crossref]

U. Demirbas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Comparative investigation of diode pumping for continuous-wave and mode-locked Cr3+ : LiCAF lasers,” J. Opt. Soc. Am. B 26(1), 64–79 (2009).
[Crossref]

DeShazer, L. G.

L. G. DeShazer and K. W. Kangas, “Extended infared operation of titanium sapphire laser,” Conference on Lasers and Electro Optics14, 296–298 (1987).

Druon, F.

Erbert, G.

Fedorova, K. A.

Fermann, M. E.

Fibrich, M.

M. Fibrich, J. Šulc, and H. Jelínková, “Alexandrite microchip lasers,” Opt. Express 27(12), 16975–16982 (2019).
[Crossref]

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Fujimoto, J. G.

Fukuda, T.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Gadomski, W.

Gang, X.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

Georges, P.

Ghanbari, S.

Glesne, T. R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Graf, T.

Grattan, K. T. V.

Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
[Crossref]

Guch, S.

Gupta, M. C.

Guyot, Y.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Hariharan, A.

Harter, D. J.

Heller, D. F.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Hoffmann, H. D.

Hoffner, J.

Hopkins, J. M.

Hughes, R. S.

Ito, M.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Jelinkova, H.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Jelínková, H.

Jenssen, H. P.

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron. 19(3), 480–484 (1983).
[Crossref]

M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Jones, C. E.

Jungbluth, B.

Kangas, K. W.

L. G. DeShazer and K. W. Kangas, “Extended infared operation of titanium sapphire laser,” Conference on Lasers and Electro Optics14, 296–298 (1987).

Kartner, F. X.

Kemp, A. J.

Kerridge-Johns, W. R.

Klimm, D.

Kocabas, A.

Kocabas, C.

Koechner, W.

W. Koechner, Solid-state laser engineering (Springer, New York, 2006).

Kolodziejski, L. A.

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Krysa, A. B.

Kuper, J. W.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).

Kurt, A.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

Lagatsky, A. A.

Leitenstorfer, A.

Loiko, P.

Lubken, F. J.

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Major, A.

Marion, J. E.

Matrosov, V.

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Mikhailov, G. G.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Mildren, R. P.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

Minassian, A.

Morris, R. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Moulton, P. F.

Mourou, G.

Munk, A.

Muti, A.

Myers, J. F.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Nabanja, S.

Newkirk, H. W.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

O’Dell, E. W.

Odell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

Ogilvy, H.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

Palmer, A. W.

Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
[Crossref]

Parali, U.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).

R. Paschotta, article on ‘effective transition cross sections’ in the Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).

Payne, S. A.

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

B. W. Woods, S. A. Payne, J. E. Marion, R. S. Hughes, and L. E. Davis, “Thermomechanical and thermooptic properties of the LiCaAlF6-Cr3+ laser material,” J. Opt. Soc. Am. B 8(5), 970–977 (1991).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Pessot, M.

Pete, J. A.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Petrich, G. S.

Pichon, P.

Piper, J. A.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

Planchon, T. A.

Popov, P. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Poprawe, R.

Powell, R. C.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

Pugh-Thomas, D.

Quarles, G. J.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

Rafailov, E. U.

Ratajska-Gadomska, B.

Samelson, H.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

Sathian, J.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

Sato, H.

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Schepler, K. L.

K. L. Schepler, “Fluorescence of Inversion Site Cr-3+ Ions in Alexandrite,” J. Appl. Phys. 56(5), 1314–1318 (1984).
[Crossref]

Scheps, R.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Sennaroglu, A.

Serreze, H. B.

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Sevast’yanov, B. K.

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48(6), 989–1011 (2003).
[Crossref]

Shand, M. L.

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron. 19(3), 480–484 (1983).
[Crossref]

M. L. Shand, “Quantum Efficiency of Alexandrite,” J. Appl. Phys. 54(5), 2602–2604 (1983).
[Crossref]

M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
[Crossref]

M. L. Shand and J. C. Walling, “Excited-State Absorption in the Lasing Wavelength Region of Alexandrite,” IEEE J. Quantum Electron. 18(7), 1152–1155 (1982).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

Sheng, X.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

Squier, J.

Stalder, M.

Stock, M. L.

Strotkamp, M.

Sulc, J.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Šulc, J.

Sumpf, B.

Tawy, G.

Teppitaksak, A.

Thomas, G. M.

Uecker, R.

Vinnik, D. A.

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

Vyhlidal, D.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Walling, J. C.

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

M. L. Shand and J. C. Walling, “Excited-State Absorption in the Lasing Wavelength Region of Alexandrite,” IEEE J. Quantum Electron. 18(7), 1152–1155 (1982).
[Crossref]

M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

Walsh, B. M.

Wang, J.

Withford, M. J.

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

Wolter, J. H.

Woods, B. W.

Xi, L.

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

Yorulmaz, I.

Yumashev, K.

Zhang, Z. Y.

Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
[Crossref]

Annu. Rev. Mater. Sci. (1)

L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23(1), 453–502 (1993).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (1)

H. Ogilvy, M. J. Withford, R. P. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B: Lasers Opt. 81(5), 637–644 (2005).
[Crossref]

Crystallogr. Rep. (1)

B. K. Sevast’yanov, “Excited-state absorption spectroscopy of crystals doped with Cr3+, Ti3+, and Nd3+ ions. Review,” Crystallogr. Rep. 48(6), 989–1011 (2003).
[Crossref]

Dokl. Phys. (1)

D. A. Vinnik, P. A. Popov, S. A. Archugov, and G. G. Mikhailov, “Heat conductivity of chromium-doped alexandrite single crystals,” Dokl. Phys. 54(10), 449–450 (2009).
[Crossref]

IEEE J. Quantum Electron. (6)

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24(11), 2243–2252 (1988).
[Crossref]

J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable Alexandrite Lasers - Development and Performance,” IEEE J. Quantum Electron. 21(10), 1568–1581 (1985).
[Crossref]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable Alexandrite Lasers,” IEEE J. Quantum Electron. 16(12), 1302–1315 (1980).
[Crossref]

M. L. Shand and H. P. Jenssen, “Temperature-Dependence of the Excited-State Absorption of Alexandrite,” IEEE J. Quantum Electron. 19(3), 480–484 (1983).
[Crossref]

M. L. Shand and J. C. Walling, “Excited-State Absorption in the Lasing Wavelength Region of Alexandrite,” IEEE J. Quantum Electron. 18(7), 1152–1155 (1982).
[Crossref]

M. L. Shand, J. C. Walling, and H. P. Jenssen, “Ground-State Absorption in the Lasing Wavelength Region of Alexandrite - Theory and Experiment,” IEEE J. Quantum Electron. 18(2), 167–169 (1982).
[Crossref]

J. Appl. Phys. (5)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66(3), 1051–1056 (1989).
[Crossref]

M. L. Shand, “Quantum Efficiency of Alexandrite,” J. Appl. Phys. 54(5), 2602–2604 (1983).
[Crossref]

Z. Y. Zhang, K. T. V. Grattan, and A. W. Palmer, “Thermal-Characteristics of Alexandrite Fluorescence Decay at High-Temperatures, Induced by a Visible Laser Diode Emission,” J. Appl. Phys. 73(7), 3493–3498 (1993).
[Crossref]

K. L. Schepler, “Fluorescence of Inversion Site Cr-3+ Ions in Alexandrite,” J. Appl. Phys. 56(5), 1314–1318 (1984).
[Crossref]

M. L. Shand, J. C. Walling, and R. C. Morris, “Excited-State Absorption in the Pump Region of Alexandrite,” J. Appl. Phys. 52(2), 953–955 (1981).
[Crossref]

J. Opt. Soc. Am. B (7)

Laser Phys. (1)

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78-400 K temperature range,” Laser Phys. 27(11), 115801 (2017).
[Crossref]

Laser Phys. Lett. (3)

W. R. Kerridge-Johns and M. J. Damzen, “Analysis of pump excited state absorption and its impact on laser efficiency,” Laser Phys. Lett. 12(12), 125002 (2015).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14(10), 105001 (2017).
[Crossref]

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13(6), 065002 (2016).
[Crossref]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[Crossref]

Opt. Commun. (2)

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic End-Pumped Operation of an Alexandrite Laser,” Opt. Commun. 97(5-6), 363–366 (1993).
[Crossref]

Opt. Express (11)

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24(24), 27212–27224 (2016).
[Crossref]

H. Burton, C. Debardelaben, W. Amir, and T. A. Planchon, “Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser,” Opt. Express 25(6), 6954–6962 (2017).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped Alexandrite slab lasers,” Opt. Express 25(10), 11622–11636 (2017).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency > 26 W diode end-pumped Alexandrite laser,” Opt. Express 22(13), 16386–16392 (2014).
[Crossref]

J. C. E. Coyle, A. J. Kemp, J. M. Hopkins, and A. A. Lagatsky, “Ultrafast diode-pumped Ti: sapphire laser with broad tunability,” Opt. Express 26(6), 6826–6832 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw Alexandrite lasers under diode end-pumping,” Opt. Express 26(6), 7771–7785 (2018).
[Crossref]

A. Munk, B. Jungbluth, M. Strotkamp, H. D. Hoffmann, R. Poprawe, J. Hoffner, and F. J. Lubken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26(12), 14928–14935 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability,” Opt. Express 26(24), 31129–31136 (2018).
[Crossref]

M. Fibrich, J. Šulc, and H. Jelínková, “Alexandrite microchip lasers,” Opt. Express 27(12), 16975–16982 (2019).
[Crossref]

G. Tawy and M. J. Damzen, “Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control,” Opt. Express 27(13), 17507–17520 (2019).
[Crossref]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24(13), 14836–14840 (2016).
[Crossref]

Opt. Lett. (10)

C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond Alexandrite laser,” Opt. Lett. 43(16), 3969–3972 (2018).
[Crossref]

C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser,” Opt. Lett. 43(6), 1315–1318 (2018).
[Crossref]

U. Demirbas and I. Baali, “Power and efficiency scaling of diode pumped Cr: LiSAF lasers: 770–1110 nm tuning range and frequency doubling to 387–463 nm,” Opt. Lett. 40(20), 4615–4618 (2015).
[Crossref]

P. Pichon, A. Barbet, J. P. Blanchot, F. Druon, F. Balembois, and P. Georges, “LED-pumped alexandrite laser oscillator and amplifier,” Opt. Lett. 42(20), 4191–4194 (2017).
[Crossref]

S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber,” Opt. Lett. 43(2), 232–234 (2018).
[Crossref]

J. H. Wolter, M. A. Ahmed, and T. Graf, “Thin-disk laser operation of Ti:sapphire,” Opt. Lett. 42(8), 1624–1627 (2017).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4(6), 182–183 (1979).
[Crossref]

S. Guch and C. E. Jones, “Alexandrite-Laser Performance at High-Temperature,” Opt. Lett. 7(12), 608–610 (1982).
[Crossref]

M. Pessot, J. Squier, G. Mourou, and D. J. Harter, “Chirped-Pulse Amplification of 100-Fsec Pulses,” Opt. Lett. 14(15), 797–799 (1989).
[Crossref]

A. Hariharan, M. E. Fermann, M. L. Stock, D. J. Harter, and J. Squier, “Alexandrite-pumped alexandrite regenerative amplifier for femtosecond pulse amplification,” Opt. Lett. 21(2), 128–130 (1996).
[Crossref]

Opt. Mater. (1)

A. Bensalah, Y. Guyot, M. Ito, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Growth of Yb3+-doped YLiF4 laser crystal by the Czochralski method. Attempt of Yb3+ energy level assignment and estimation of the laser potentiality,” Opt. Mater. 26(4), 375–383 (2004).
[Crossref]

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, and B. H. T. Chai, “Flashlamp-Pumped Laser Performance of LiCaAlF6 Cr3+,” Opt. Quantum Electron. 22(S1), S259–S268 (1990).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Phys. Rev. B (1)

R. C. Powell, L. Xi, X. Gang, G. J. Quarles, and J. C. Walling, “Spectroscopic Properties of Alexandrite Crystals,” Phys. Rev. B 32(5), 2788–2797 (1985).
[Crossref]

Other (6)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).

L. G. DeShazer and K. W. Kangas, “Extended infared operation of titanium sapphire laser,” Conference on Lasers and Electro Optics14, 296–298 (1987).

R. Paschotta, article on ‘effective transition cross sections’ in the Encyclopedia of Laser Physics and Technology (Wiley-VCH2008).

W. Koechner, Solid-state laser engineering (Springer, New York, 2006).

A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill Education, 2010).

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of Alexandrite laser at elevated temperetures,” in Advanced Solid State Lasers (OSA, Salt Lake City, Utah, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Simplified energy level diagram of Alexandrite laser gain medium. Broadband lasing occurs between the vibronically widened 4T2 and 4A2 levels. The metastable 2E level acts as a reservoir (storage level), and similar to ruby, this level can also enable narrowband lasing around 680 nm (via 2E → 4A2 transition). (b) Normalized absorption and emission cross section of Alexandrite at room temperature (RT: 25 °C). Normalized emission spectrum of Alexandrite at 400 °C is also given. All spectra are given for E//b polarization.
Fig. 2.
Fig. 2. A simplified schematic of the setup used for fluorescence measurements of Alexandrite crystals. The Alexandrite crystal was an a-cut sample, with the axes oriented as shown. BPF: band-pass-filter, P: film polarizer, Spec 1: Spectrometer used for measuring the emission spectrum in the b and c axis, Spec 2: Spectrometer used for measuring the emission spectrum in the a and c axis.
Fig. 3.
Fig. 3. Measured emission fluorescence spectra of Alexandrite for E//b polarization at crystal temperatures ranging from 25 °C to 450 °C. In (a) spectra are normalized to the peak emission wavelength intensity, whereas in (b) spectra are normalized to the peak of phonon broadened 4T24A2 transition. The peak corresponding to the pump laser (He-Ne) emission at 632.8 nm is electronically removed from the measurements.
Fig. 4.
Fig. 4. Calculated emission cross section spectra of Alexandrite for E//b polarization at crystal temperatures ranging from 25 °C to 450 °C. The spectra are normalized to the peak of the phonon broadened 4T24A2 transition.
Fig. 5.
Fig. 5. Measured variation of Alexandrite emission peak and emission spectrum width (FWHM) as a function of temperature for the phonon broadened 4T24A2 transition.
Fig. 6.
Fig. 6. Calculated normalized emission cross section curves for Alexandrite, Cr:LiCAF and Cr:LiSAF at room temperature (RT). For Alexandrite, the emission cross section curve at 400 °C is also shown.
Fig. 7.
Fig. 7. Calculated variation of the radiative quantum efficiency, effective radiative lifetime and fluorescence lifetime for Alexandrite as a function of temperature.
Fig. 8.
Fig. 8. Calculated effective emission cross section spectra of Alexandrite for E//b polarization at crystal temperatures ranging from 25 °C to 450 °C.
Fig. 9.
Fig. 9. Poisson distribution fit to selected effective emission cross section curves. The darker solid lines are experimental data, whereas the light solid lines are the fitted curves.
Fig. 10.
Fig. 10. Estimated variation of the effective emission cross section of Alexandrite with temperature at selected wavelengths for the E//b polarization.
Fig. 11.
Fig. 11. Calculated gain cross section (GCS) at crystal temperatures of 25 °C, 85 °C, 150 °C and 250 °C. ESA: Excited state absorption, GSA: Grounds state absorption. Upper and lower values for gain cross section is also shown assuming ±30% error in ESA measurements. The calculations have been performed assuming a fixed inversion (β) level of 5%.
Fig. 12.
Fig. 12. Calculated variation of the small signal gain at a crystal temperature of 25 °C for inversion (β) levels of %1, %5, 10% and 20%.
Fig. 13.
Fig. 13. (a) Calculated gain cross section (GCS) spectra at crystal temperatures of 25 °C, 85 °C, 150 °C and 250 °C. The calculation has been performed assuming a fixed inversion level of 5%. (b) Calculated small signal gain spectra at crystal temperatures of 25 °C, 85 °C, 150 °C and 250 °C. The calculation has been performed under fixed pumping rate assumption (due to the decreased fluorescence lifetime with temperature, inversion levels decrease at higher temperatures).
Fig. 14.
Fig. 14. Calculated variation of small signal gain with temperature at selected lasing wavelengths at a fixed pump intensity.

Tables (2)

Tables Icon

Table 1. Poisson distribution fit results for Eq. (6).*

Tables Icon

Table 2. Best fit values of the temperature coefficients in Eq. (8) for the calculation of effective emission cross section at different temperatures.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

1 τ R ( T ) = 1 τ E p E ( T ) + 1 τ T p T ( T ) ,
τ R ( T ) = τ E 1 + E x p ( Δ E k ( T + 273 ) ) 1 + τ E τ T E x p ( Δ E k ( T + 273 ) ) ,
τ F ( T ) = τ R ( T ) η R E ( T )
η R E ( T ) = ( 1 + τ E τ N R 0 E x p ( Δ E N R k ( T + 273 ) ) ) 1 ,
σ e m ( λ ) = λ 5 8 π c n 2 τ R I b ( λ ) ( 1 3 I a ( λ ) + 1 3 I b ( λ ) + 1 3 I c ( λ ) ) λ d λ ,
σ e m ( λ , T ) = a m P Γ ( 1 + P ) ,
Γ ( 1 + P ) = 0 x P e x d x .
σ em ( λ ,T) =  a o  +  a 1 T +  a 2 T 2  +  a 3 T 3  +  a 4 T 4
σ a ( E , T ) = σ e ( E , T ) E x p ( E E k T ) ,
σ g ( λ , T ) = β [ σ e ( λ , T ) σ e s a ( λ , T ) ] ( 1 β ) σ a ( λ , T ) ,
g o ( λ , T ) = σ g ( λ , T ) N c r ,
β ( T ) = I p / I s a 1 + I p / I s a I p / I s a ,
I s a = h c λ p σ a τ f .