Abstract

Silicon (Si) nanostructures are emerging in the fields of metasurfaces and nanophotonics, while aluminum (Al) is a plasmonic material that is active in the ultraviolet (UV) region. While Si is active in the visible range, its performance in the UV region is not well understood. Here, we discuss our experimental results of the confinement effect in the UV region of Si and Al nanostructures. We prepared Si and Al nanocylinder arrays with a periodicity in the UV range, so that UV light is diffracted coherently and trapped in the plane of the array. We deposited a UV absorbing film on top of the arrays and examined the UV confinement effect by measuring the photoluminescence (PL) intensity from the film. The PL intensity from the film on the Al nanocylinder array was found to be higher than it was from the Si array, showing that the confinement effect is more pronounced in the Al array in the UV region. The result is useful for selecting a constituent material when fabricating nanostructures that are active at specific wavelengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region

Yuki Kawachiya, Shunsuke Murai, Motoharu Saito, Hiroyuki Sakamoto, Koji Fujita, and Katsuhisa Tanaka
Opt. Express 26(5) 5970-5982 (2018)

Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: effect of layer thickness

Yuki Kawachiya, Shunsuke Murai, Motoharu Saito, Koji Fujita, and Katsuhisa Tanaka
J. Opt. Soc. Am. B 36(7) E1-E8 (2019)

Temperature sensing of a plasmonic nanocylinder array by a polymer film containing chameleon complex

Shunsuke Murai, Motoharu Saito, Yuki Kawachiya, Satoshi Ishii, Takayuki Nakanishi, and Katsuhisa Tanaka
J. Opt. Soc. Am. B 36(7) E15-E20 (2019)

References

  • View by:
  • |
  • |
  • |

  1. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
    [Crossref]
  2. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
    [Crossref]
  3. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref]
  4. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
    [Crossref]
  5. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
    [Crossref]
  6. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref]
  7. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref]
  8. R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
    [Crossref]
  9. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  10. R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
    [Crossref]
  11. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  12. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, A. V. Zayats, W. Dickson, and D. Gerard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691 (2017).
    [Crossref]
  13. I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
    [Crossref]
  14. Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
    [Crossref]
  15. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref]
  16. M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
    [Crossref]
  17. J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
    [Crossref]
  18. M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  19. S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
    [Crossref]
  20. M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
    [Crossref]
  21. M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
    [Crossref]
  22. V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
    [Crossref]
  23. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref]
  24. V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
    [Crossref]
  25. Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
    [Crossref]
  26. C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
    [Crossref]
  27. Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
    [Crossref]
  28. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
    [Crossref]
  29. M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
    [Crossref]
  30. Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
    [Crossref]
  31. Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
    [Crossref]
  32. K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
    [Crossref]
  33. J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).
  34. W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [Crossref]
  35. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
    [Crossref]
  36. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref]
  37. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  38. S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
    [Crossref]
  39. S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
    [Crossref]
  40. Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
    [Crossref]

2019 (5)

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

2018 (6)

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

2017 (9)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, A. V. Zayats, W. Dickson, and D. Gerard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34(3), 691 (2017).
[Crossref]

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

2016 (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

2015 (2)

2014 (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

2013 (2)

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

2011 (1)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

2009 (1)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

2008 (2)

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

2007 (1)

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

2004 (3)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

2003 (2)

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

1999 (1)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

1966 (1)

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Auguie, B.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Bagheri, S.

Barcikowski, S.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

Barsukova, M. G.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Bergstresser, T. K.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Berrier, A.

Bohn, J.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Bonod, N.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Brugger, J.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Bucher, T.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chiarelli, G.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Choi, D.-Y.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chong, K. E.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Chu, Y. Z.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Cohen, M. L.

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Cortes, E.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

De Zuani, S.

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Dickson, W.

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Fedyanin, A. A.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Flauraud, V.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Fujita, K.

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Gargiulo, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Gerard, D.

Giannini, V.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Giessen, H.

Gissibl, T.

Gómez Rivas, J.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Goto, T.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Grigorenko, A. N.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Hada, M.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Hanulia, T.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Hara, M.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Hasegawa, Y.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Hashimoto, T.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Hayashi, T.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Hegde, R. S.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Hu, E. L.

Inami, W.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Ishii, S.

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Jakobi, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Kabashin, A. V.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Kai, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kamakura, R.

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Kanehisa, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Kawachiya, Y.

Kawai, H.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Kawamura, Y.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Kawata, S.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Kawata, Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Khlopin, D.

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Kivshar, Y. S.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Komar, A.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

König, M.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

Krawczyk, M.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Kuznetsov, A. I.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Laux, F.

Le-Van, Q.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

Maier, S. A.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Martin, J.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Miyata, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Murai, S.

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Musorin, A. I.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Nagamura, T.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Nagao, T.

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

Nagasaki, Y.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nakajima, M.

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

Nakamura, K.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Nakamura, K. G.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Nakanishi, T.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Nakashima, N.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Neshev, D. N.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Ohkubo, T.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Olmos-Trigo, J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Ozaki, Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Paniagua-Domínguez, R.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Pertsch, T.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

Peyronel, T.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Pirruccio, G.

Plain, J.

Provencio, P. N.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Ramezani, M.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Reyes, M.

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

Richter, G.

Rodriguez, S. R. K.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Sáenz, J. J.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Saito, M.

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Sakamoto, H.

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Samara, G. A.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Schlücker, S.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Schumacher, L.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Serebryannikov, A. E.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Shorokhov, A. S.

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Sogabe, K.

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Staude, I.

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stauden, T.

Stefani, F. D.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Sterl, F.

Suzuki, M.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Takahara, J.

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Takeishi, T.

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

Tanabe, I.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Tanaka, K.

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, K. Fujita, and K. Tanaka, “Photoluminescence decay rate of an emitter layer on an Al nanocylinder array: Effect of layer thickness,” J. Opt. Soc. Am. B 36(7), E1–E8 (2019).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

Y. Kawachiya, S. Murai, M. Saito, H. Sakamoto, K. Fujita, and K. Tanaka, “Collective plasmonic modes excited in Al nanocylinder arrays in the UV spectral region,” Opt. Express 26(5), 5970–5982 (2018).
[Crossref]

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Tanaka, Y. Y.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Tiecke, T. G.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Tittl, A.

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Tsuchimoto, Y.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Vaidya, G.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Van Hoof, N.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Vashistha, V.

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

Vecchi, G.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Verschuuren, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Verschuuren, M. A.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. K. Rodriguez, and J. Gómez Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Violi, I. L.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Wada, Y.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Walter, R.

Wang, S.

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Wardley, W. P.

Watari, K.

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Wilcoxon, J. P.

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

Winn, N. J.

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Wurtz, G. A.

Yamamoto, M.

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

Yamamuro, M.

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Yanagida, S.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

Yang, J. K. W.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

Yano, T.-A.

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Yasuda, N.

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Zayats, A. V.

Zaza, C.

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

Zgrabik, C. M.

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

ACS Photonics (7)

R. Kamakura, S. Murai, S. Ishii, T. Nagao, K. Fujita, and K. Tanaka, “Plasmonic-photonic hybrid modes excited on a titanium nitride nanoparticle array in the visible region,” ACS Photonics 4(4), 815–822 (2017).
[Crossref]

R. Kamakura, T. Takeishi, S. Murai, K. Fujita, and K. Tanaka, “Surface-enhanced infrared absorption for the periodic array of indium tin oxide and gold microdiscs: Effect of in-plane light diffraction,” ACS Photonics 5(7), 2602–2608 (2018).
[Crossref]

M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, D. N. Neshev, Y. S. Kivshar, and A. A. Fedyanin, “Magneto-optical response enhanced by Mie resonances in nanoantennas,” ACS Photonics 4(10), 2390–2395 (2017).
[Crossref]

V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A. I. Kuznetsov, and J. Brugger, “Silicon nanostructures for bright field full color prints,” ACS Photonics 4(8), 1913–1919 (2017).
[Crossref]

V. Vashistha, G. Vaidya, R. S. Hegde, A. E. Serebryannikov, N. Bonod, and M. Krawczyk, “All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut,” ACS Photonics 4(5), 1076–1082 (2017).
[Crossref]

C. Zaza, I. L. Violi, J. Gargiulo, G. Chiarelli, L. Schumacher, J. Jakobi, J. Olmos-Trigo, E. Cortes, M. König, S. Barcikowski, S. Schlücker, J. J. Sáenz, S. A. Maier, and F. D. Stefani, “Size-selective optical printing of silicon nanoparticles through their dipolar magnetic resonance,” ACS Photonics 6(4), 815–822 (2019).
[Crossref]

S. Wang, Q. Le-Van, T. Peyronel, M. Ramezani, N. Van Hoof, T. G. Tiecke, and J. Gómez Rivas, “Plasmonic nanoantenna arrays as efficient etendue reducers for optical detection,” ACS Photonics 5(6), 2478–2485 (2018).
[Crossref]

APL Photonics (2)

S. Murai, M. Saito, H. Sakamoto, M. Yamamoto, R. Kamakura, T. Nakanishi, K. Fujita, M. Verschuuren, Y. Hasegawa, and K. Tanaka, “Directional outcoupling of photoluminescence from Eu(III)-complex thin films by plasmonic array,” APL Photonics 2(2), 026104 (2017).
[Crossref]

M. G. Barsukova, A. I. Musorin, A. S. Shorokhov, and A. A. Fedyanin, “Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces,” APL Photonics 4(1), 016102 (2019).
[Crossref]

Appl. Phys. Lett. (3)

Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, and S. Yanagida, “Polymer thin films containing Eu(III) complex as lanthanide lasing medium,” Appl. Phys. Lett. 83(17), 3599–3601 (2003).
[Crossref]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008).
[Crossref]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
[Crossref]

Chem. Rev. (1)

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118(12), 5912–5951 (2018).
[Crossref]

J. Appl. Phys. (2)

M. Miyata, M. Nakajima, and T. Hashimoto, “Impedance-matched dielectric metasurfaces for non-discrete wavefront engineering,” J. Appl. Phys. 125(10), 103106 (2019).
[Crossref]

S. Murai, M. Saito, Y. Kawachiya, S. Ishii, and K. Tanaka, “Comparison of directionally outcoupled photoluminescences from luminous layers on Si and Al nanocylinder arrays,” J. Appl. Phys. 125(13), 133101 (2019).
[Crossref]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: Role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: A low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (2)

Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, and S. Yanagida, “Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency,” J. Phys. Chem. A 107(11), 1697–1702 (2003).
[Crossref]

K. Nakamura, Y. Hasegawa, H. Kawai, N. Yasuda, N. Kanehisa, Y. Kai, T. Nagamura, S. Yanagida, and Y. Wada, “Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands,” J. Phys. Chem. A 111(16), 3029–3037 (2007).
[Crossref]

Light: Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources,” Light: Sci. Appl. 2(5), e66 (2013).
[Crossref]

Mater. Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21(3), 303–314 (2018).
[Crossref]

Nano Lett. (4)

J. Bohn, T. Bucher, K. E. Chong, A. Komar, D.-Y. Choi, D. N. Neshev, Y. S. Kivshar, T. Pertsch, and I. Staude, “Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces,” Nano Lett. 18(6), 3461–3465 (2018).
[Crossref]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref]

Y. Nagasaki, M. Suzuki, and J. Takahara, “All-dielectric dual-color pixel with subwavelength resolution,” Nano Lett. 17(12), 7500–7506 (2017).
[Crossref]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. (1)

M. L. Cohen and T. K. Bergstresser, “Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures,” Phys. Rev. 141(2), 789–796 (1966).
[Crossref]

Phys. Rev. B (2)

J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles,” Phys. Rev. B 60(4), 2704–2714 (1999).
[Crossref]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B 80(20), 201401 (2009).
[Crossref]

Phys. Rev. Lett. (1)

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref]

Sci. Rep. (1)

I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, and Y. Ozaki, “Far- and deep-ultraviolet surface plasmon resonance sensors working in aqueous solutions using aluminum thin films,” Sci. Rep. 7(1), 5934 (2017).
[Crossref]

Small (1)

Y. Tsuchimoto, T.-A. Yano, M. Hada, K. G. Nakamura, T. Hayashi, and M. Hara, “Controlling the visible electromagnetic resonances of Si/SiO2 dielectric core–shell nanoparticles by thermal oxidation,” Small 11(37), 4844–4849 (2015).
[Crossref]

Other (1)

J. D. Joannopoulos, R. D. Meade, and N. J. WinnPhotonic crystals: Molding the flow of light (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Refractive index (n, left axis) and extinction coefficient (k, right) of the polycrystalline Si used in this study. Both n and k were deduced from the ellipsometry data. (b) Absorption length (a) calculated from the relation a = 1/α = λ/(4πk) where α is the absorption coefficient.
Fig. 2.
Fig. 2. SEM images of the Al (a) and Si (b) arrays with a lattice constant a = 200 nm (scale bar = 500 nm). The coordinate axes used in this study are also denoted. The right inset in (a) is the experimental configuration: The incident light is polarized along the y-direction, and θin was varied to give momentum in the x-direction.
Fig. 3.
Fig. 3. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. White dashed lines represent the in-plane diffraction conditions with n = 1.51 (Eu(hfa)3(TPPO)2), appears at longer wavelengths, and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from the deuterium lamp.
Fig. 4.
Fig. 4. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 200 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d–g) Distribution of light energy under the illumination with an s-polarized plane wave (electric field oscillating in the y-direction) from the SiO2 glass side under the resonant conditions at θin = 0°. (d) λ = 306 and (e) 362 nm for the Al array, and (f) 306 and (g) 412 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick
Fig. 5.
Fig. 5. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with a = 200 nm and on flat glass substrates. The inset shows the experimental configuration: The samples were excited at θin = 0° from the substrate side at λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.
Fig. 6.
Fig. 6. I/I0 at the main peak for Eu3+ PL (λ = 617 nm) excited with a He-Cd laser (λ = 325 nm) at θin = 0° (circles, left axis) and the squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 and integrated over the film at λ = 325 nm and θin = 0° (squares, right axis) as a function of the lattice constant a of the Al and Si arrays. The dashed lines are the guides for the eyes.
Fig. 7.
Fig. 7. PL decay curves of the Eu(hfa)3(TPPO)2 thin films (125 nm) on the Al (black) and Si (blue) nanocylinder arrays with a = 200 nm and on a flat SiO2 glass substrate (gray dotted line) The decays were monitored at λ = 617 nm with a central excitation wavelength = 320 nm.
Fig. 8.
Fig. 8. Squared magnitude of the electric field normalized to that of the reference, |Efilm|2/|Efilmref|2 averaged over the Eu(hfa)3(TPPO)2 film as a function of λ at θin = 0° on the Al and Si nanocylinder arrays with a = 200, 250, 300, 350, and 400 nm. The vertical dashed lines denote the in-plane diffraction conditions with n = 1.46.
Fig. 9.
Fig. 9. SEM images of the Al arrays with a = (a) 250 and (b) 300 nm, and Si arrays with a = (c) 250 and (d) 300 nm. Scale bar = 500 nm.
Fig. 10.
Fig. 10. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.
Fig. 11.
Fig. 11. (a), (b) Zeroth-order transmittance T(λ, θin) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. White dashed lines are the in-plane diffraction conditions with n = 1.54 (Eu(hfa)3(TPPO)2) and 1.46 (SiO2 glass). (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. A spike at λ = 580 nm is from a deuterium lamp.
Fig. 12.
Fig. 12. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 250 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 396 nm for the Al array, and (e) 418 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.
Fig. 13.
Fig. 13. (a), (b) Simulated T(λ, θin) using a 3D finite-element method (COMSOL) of the thin film of Eu(hfa)3(TPPO)2 on (a) Al and (b) Si nanocylinder arrays with a = 300 nm. (c) T(λ, θin = 0 °) for Al and Si nanocylinder arrays. (d), (e) Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y-direction) from the emitter film side under the resonant conditions associated with in-plane diffraction at θin = 0°: (d) λ = 456 nm for the Al array, and (e) 448 nm for the Si array. The light energy normalized to that of the incident light, |E|2/|E0|2, is plotted in the z–x (z–y) plane, at y (x) intersecting the middle of the nanocylinder embedded in the Eu(hfa)3(TPPO)2 thin film with a 125 nm thick.
Fig. 14.
Fig. 14. Distribution of light energy under the illumination with a s-polarized plane wave (electric field oscillating in y direction) from the SiO2 glass side under the excitation condition for the PL measurement at θin = 0° and λ = 325 nm for (a) Al and (b) Si nanocylinder arrays with a = 200 nm.
Fig. 15.
Fig. 15. Normalized PL spectra of the Eu(hfa)3(TPPO)2 thin films on the Al and Si nanocylinder arrays with (top panel) a = 250 and (bottom panel) 300 nm, and on flat glass substrates. The inset sketches the experimental configuration: The samples were excited at θin = 0° from the substrate side and with λ = 325 nm, and PL was detected at θem = 10° from the emitter film side.

Tables (1)

Tables Icon

Table 1. PL lifetimes of the Eu(hfa)3(TPPO)2 thin films on different arrays deduced from the single exponential fit to the PL decay curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

b 1 = ( 2 π / a ) ( x + y / 3 ) b 2 = ( 2 π / a ) ( x y / 3 ) ,
k out | | 2 = k in 2 + 2 ( 2 π / a ) ( m 1 + m 2 ) k in + ( 2 π / a ) 2 ( m 1 + m 2 ) 2 + ( 2 π / a ) 2 ( m 1 m 2 ) 2 / 3 ,