Abstract

The persistent interest of the epitaxy of group IV alloy GeSn is mainly driven by the demand for an efficient light source that could be monolithically integrated on Si for mid-infrared Si photonics. For chemical vapor deposition of GeSn, the exploration of the growth window is difficult from the beginning due to the metastable nature of the material requiring non-equilibrium growth condition. In this work, we demonstrated an effective pathway to achieve high quality GeSn with high levels of Sn incorporation. The GeSn films were grown on Ge-buffered Si via ultra-high vacuum chemical vapor deposition using GeH4 and SnCl4 as the precursor. The influence of both SnCl4 flow fraction and growth temperature on the Sn incorporation and material quality were investigated. Different growth regimes were explored leading to an optimized regime at low temperature which suppressed the Sn precipitation allowing for increased Sn incorporation. The prototype GeSn photoconductors were fabricated with typical samples, which show the promising device applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Crystalline GeSn growth by plasma enhanced chemical vapor deposition

Wei Dou, Bader Alharthi, Perry C. Grant, Joshua M. Grant, Aboozar Mosleh, Huong Tran, Wei Du, Mansour Mortazavi, Baohua Li, Hameed Naseem, and Shui-Qing Yu
Opt. Mater. Express 8(10) 3220-3229 (2018)

Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics

Haofeng Li, Jeremy Brouillet, Alan Salas, Xiaoxin Wang, and Jifeng Liu
Opt. Mater. Express 3(9) 1385-1396 (2013)

Germanium tin: silicon photonics toward the mid-infrared [Invited]

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov
Photon. Res. 1(2) 69-76 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
    [Crossref]
  2. S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).
  3. S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).
  4. S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
    [Crossref]
  5. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  6. W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
    [Crossref]
  7. S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
    [Crossref]
  8. W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).
  9. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
    [Crossref]
  10. O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
    [Crossref]
  11. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
    [Crossref]
  12. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
    [Crossref]
  13. M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
    [Crossref]
  14. P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
    [Crossref]
  15. S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
    [Crossref]
  16. Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
    [Crossref]
  17. J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
    [Crossref]
  18. S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
    [Crossref]
  19. A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
    [Crossref]
  20. S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
    [Crossref]
  21. A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
    [Crossref]
  22. A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
    [Crossref]
  23. J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
    [Crossref]
  24. J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
    [Crossref]
  25. J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
    [Crossref]
  26. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
    [Crossref]
  27. J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
    [Crossref]
  28. S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
    [Crossref]
  29. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
    [Crossref]
  30. J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
    [Crossref]
  31. C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
    [Crossref]
  32. P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
    [Crossref]
  33. B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
    [Crossref]
  34. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
    [Crossref]
  35. J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
    [Crossref]
  36. R. D. Vengrenovitch, “On the ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
    [Crossref]
  37. H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
    [Crossref]
  38. N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
    [Crossref]
  39. B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
    [Crossref]

2019 (1)

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

2018 (1)

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

2017 (6)

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

2016 (4)

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

2015 (5)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

2014 (7)

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
[Crossref]

2013 (3)

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

2012 (1)

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

2011 (2)

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

2007 (1)

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

2006 (1)

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

2001 (1)

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

1999 (1)

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

1998 (1)

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

1982 (1)

R. D. Vengrenovitch, “On the ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

Abu-safe, H.

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Alharthi, B.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

Alher, M.

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Alher, M. A.

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

Al-Kabi, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Aoki, T.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

Armand Pilon, F.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Aubin, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

Bauer, P.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Benamara, M.

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Bender, H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Bernardy, P.

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

Bertrand, M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Bhargava, N.

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Brehm, M.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Buca,

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Buca, D.

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

Burle, N.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Calvo, V.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Carlsson, J. R. A.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Caymax, M.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Chelnokov, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Chen, K. M.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Chen, R.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Cheng, H. H.

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chizmeshya, A. V. G.

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Collier, B.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Conley, B. R.

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

Coppinger, M.

S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Cousar, L.

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Cousar, L. C.

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

Couser, L.

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

D’Costa, V. R.

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Den Driesch, G.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Desjardins, P.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Domulevica, L.

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

Domulevicz, L.

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

Dou, W.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Douhard, B.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Du, W.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Escoubas, S.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fang, Y.-Y.

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Gallagher, J. D.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

Gassenq, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

Geiger, C.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Geiger, R.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Gencarelli, F.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Gerthsen, D.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Ghetmiri, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Ghetmiri, S. A.

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

Ghetmiri, S.A.

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Glaser, M.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Grant, J. M.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

Grant, P.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Grant, P. C.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Greene, J. E.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Groiss, H.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Grutzmacher, D.

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

Grützmacher, D.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Grützmacher, H.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Guilloy, K.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Gundersen, G.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Gupta, J.

Gupta, S.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Gurdal, O.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Haaland, A.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Hansen, O.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Harris, J. S.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Harris, J.S.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Hart, J.

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Hartmann, J. M.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hartmann, S.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Henrichsen, H. H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Heyns, M.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Hitzman, C.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Hollander, B.

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

Hu, C.-W.

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Huang, L.

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

Huo, Y.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Ikonic, D.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Ikonic, Z.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Jiang, L.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

Kamins, T. I.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

Kasper, E.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Kim, S.

S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Kimerling, L. C.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Klekovkin, A. V.

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Kloepsch, R.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Knipper, M.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Kolny-Olesiak, J.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Kolodzey, J.

S. Kim, N. Bhargava, J. Gupta, M. Coppinger, and J. Kolodzey, “Infrared photoresponse of GeSn/n-Ge heterojunctions grown by molecular beam epitaxy,” Opt. Express 22(9), 11029 (2014).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

Kouvetakis, J.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Lee, K. K.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Li, B.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Lim, D. R.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Lin, H.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Liu, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Loo, R.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Luan, H.-C.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Magyari-Kope, B.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Mantl, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

Mantl, Z.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Margetis, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Martovitsky, V. P.

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Marzban, N.V.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

McCartney, M. R.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Meersschaut, J.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Menendez, J.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Menéndez, J.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Merckling, C.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Milord, L.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Morgan, T.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

Mortazavi, M.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Mosleh, A.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Mussler, G.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

Mussler, T.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Nainani, A.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Naseem, H.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

Naseem, H. A.

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Naseem, H.A.

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Nazzal, A.

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Nishi, Y.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Oehl, N.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Oehme, M.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Parisi, J.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Pauc, N.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Petersen, D. H.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Pham, T.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

Placke, T.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Plaggenborg, T.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Quinde, R.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Radamson, H. H.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Reboud, V.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Roth, D.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Rothman, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rouchon, D.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Sadofyev, Y. G.

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Sandland, J. G.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Santana-Aranda, M. A.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Saraikin, V. V.

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Saraswat, K.C.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Schäffler, F.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Schatzl, M.

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Schmuelling, G.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Schulte-Braucks, B.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Schulze, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Senaratne, C. L.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

Sigg, H.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sigg, J.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Smith, D. J.

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Soref, R.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Soref, R. A.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

Soref, R.A.

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Stange, S.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Stoica, J.M.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Stoica, T.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

Sun, G.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Sundgren, J. E.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Tao, P.

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

Taraci, J.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Taylor, N.

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

Thai, Q. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Tiedemann, A. T.

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

Tolle, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Tran, H.

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Tsong, I. S. T.

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

Tutukin, A. V.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Vandervorst, W.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

Vasil’Evskii, I. S.

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Vengrenovitch, R. D.

R. D. Vengrenovitch, “On the ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

Vincent, B.

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

von den Driesch, N.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Wada, K.

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Wang, H.-H.

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

Werner, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Winter, M.

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

Wirths, R.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Wirths, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

Witzens, D.

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Wolf, G.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

Wu, X.-S.

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

Yang, B.

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

Yu, S.

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

Yu, S. Q.

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

Yu, S.Q.

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

Yu, S.-Q.

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

Zabel, T.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Zhou, Y.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Zollner, S.

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

ACS Photonics (2)

S. Stange, R. Wirths, C. Geiger, B. Schulte-Braucks, N.V. Marzban, G. Den Driesch, T. Mussler, T. Zabel, J.M. Stoica, S. Hartmann, Z. Mantl, D. Ikonic, H. Grützmacher, J. Sigg, D. Witzens, and Buca, “Optically Pumped GeSn Microdisk Lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 µm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Acta Metall. (1)

R. D. Vengrenovitch, “On the ostwald ripening theory,” Acta Metall. 30(6), 1079–1086 (1982).
[Crossref]

Appl. Phys. Lett. (10)

B. R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S. A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 µm long-wavelength cutoff,” Appl. Phys. Lett. 105(22), 221117 (2014).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Systematic study of GeSn heterostructure-based light-emitting diodes towards mid-infrared applications,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

M. Coppinger, J. Hart, N. Bhargava, S. Kim, and J. Kolodzey, “Photoconductivity of germanium tin alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 102(14), 141101 (2013).
[Crossref]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett. 99(18), 181125 (2011).
[Crossref]

W. Du, Y. Zhou, S. A. Ghetmiri, A. Mosleh, B. R. Conley, A. Nazzal, R. A. Soref, G. Sun, J. Tolle, J. Margetis, H. A. Naseem, and S. Q. Yu, “Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx,” Appl. Phys. Lett. 105(5), 051104 (2014).
[Crossref]

S. A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B. R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R. A. Soref, J. Tolle, B. Li, H. A. Naseem, and S. Yu, “Direct-bandgap GeSn grown on Silicon with 2230 nm photoluminescence,” Appl. Phys. Lett. 105(15), 151109 (2014).
[Crossref]

J. Tolle, A. V. G. Chizmeshya, Y.-Y. Fang, J. Kouvetakis, V. R. D’Costa, C.-W. Hu, J. Menéndez, and I. S. T. Tsong, “Low temperature chemical vapor deposition of Si-based compounds via SiH3 SiH2 SiH3: Metastable SiSn/GeSn/Si(100) heteroepitaxial structures,” Appl. Phys. Lett. 89(23), 231924 (2006).
[Crossref]

B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition,” Appl. Phys. Lett. 99(15), 152103 (2011).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 µm up to 180 K featured,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett. 75(19), 2909–2911 (1999).
[Crossref]

Appl. Surf. Sci. (1)

B. Alharthi, W. Dou, J. M. Grant, P. C. Grant, T. Morgan, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Low temperature epitaxy of high-quality Ge buffer using plasma enhancement via UHV-CVD system for photonic device applications,” Appl. Surf. Sci. 481, 246–254 (2019).
[Crossref]

Chin. Phys. B (1)

P. Tao, L. Huang, H. H. Cheng, H.-H. Wang, and X.-S. Wu, “Epitaxial growth of Ge1–xSnx films with x up to 0.14 grown on Ge (00 l) at low temperature,” Chin. Phys. B 23(8), 088112 (2014).
[Crossref]

CrystEngComm (1)

N. Oehl, G. Schmuelling, M. Knipper, R. Kloepsch, T. Placke, J. Kolny-Olesiak, T. Plaggenborg, M. Winter, and J. Parisi, “In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries,” CrystEngComm 17(44), 8500–8504 (2015).
[Crossref]

ECS J. Solid State Sci. Technol. (1)

S. Wirths, D. Buca, G. Mussler, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS J. Solid State Sci. Technol. 2(5), N99–N102 (2013).
[Crossref]

ECS Trans. (3)

J. Margetis, S. A. Ghetmiri, W. Du, B. R. Conley, A. Mosleh, R. A. Soref, G. Sun, L. Domulevica, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Comparison study of the low temperature growth of dilute GeSn and Ge,” ECS Trans. 64(6), 711–720 (2014).
[Crossref]

S. Wirths, D. Buca, A. T. Tiedemann, B. Hollander, P. Bernardy, T. Stoica, D. Grutzmacher, and S. Mantl, “Reduced Pressure CVD Growth of Ge and Ge1−xSnx Alloys,” ECS Trans. 50(9), 885–893 (2013).
[Crossref]

A. Mosleh, M. Alher, L. Cousar, H. Abu-safe, W. Dou, P. C. Grant, S. Al-Kabi, S.A. Ghetmiri, H. Tran, W. Du, M. Benamara, B. Li, M. Mortazavi, S.-Q. Yu, and H.A. Naseem, “Enhancement of Material Quality of (Si) GeSn Films Grown by SnCl4 Precursor,” ECS Trans. 69(5), 279–286 (2015).
[Crossref]

Front. Mater. (1)

A. Mosleh, M. A. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, T. Pham, J. M. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S.-Q. Yu, “Direct growth of Ge1− xSnx films on Si using a cold-wall ultra-high vacuum chemical-vapor-deposition system,” Front. Mater. 2, 30 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

J. Taraci, S. Zollner, M. R. McCartney, J. Menendez, M. A. Santana-Aranda, D. J. Smith, A. Haaland, A. V. Tutukin, G. Gundersen, G. Wolf, and J. Kouvetakis, “Synthesis of Silicon-Based Infrared Semiconductors in the Ge-Sn System Using Molecular Chemistry Methods,” J. Am. Chem. Soc. 123(44), 10980–10987 (2001).
[Crossref]

J. Appl. Phys. (2)

O. Gurdal, P. Desjardins, J. R. A. Carlsson, N. Taylor, H. H. Radamson, J. E. Sundgren, and J. E. Greene, “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1−xSnx (x≲0.26) alloys on Ge(001)2×1,” J. Appl. Phys. 83(1), 162–170 (1998).
[Crossref]

C. L. Senaratne, J. D. Gallagher, L. Jiang, T. Aoki, D. J. Smith, J. Menéndez, and J. Kouvetakis, “Ge1- y Sn y (y = 0.01-0.10) alloys on Ge-buffered Si: Synthesis, microstructure, and optical properties,” J. Appl. Phys. 116(13), 133509 (2014).
[Crossref]

J. Cryst. Growth (2)

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S. Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

J. Electron. Mater. (1)

A. Mosleh, M. Alher, L. C. Cousar, W. Du, S. A. Ghetmiri, S. Al-Kabi, W. Dou, P. C. Grant, G. Sun, R. A. Soref, B. Li, H. A. Naseem, and S. Q. Yu, “Buffer-Free GeSn and SiGeSn Growth on Si Substrate Using In Situ SnD4 Gas Mixing,” J. Electron. Mater. 45(4), 2051–2058 (2016).
[Crossref]

J. Mater. Chem. (1)

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S. Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35(6), 061204 (2017).
[Crossref]

Nat. Photonics (1)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Opt. Express (1)

Opt. Photonics News (1)

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: Driving Integrated Optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

Phys. Procedia (1)

Y. G. Sadofyev, V. P. Martovitsky, A. V. Klekovkin, V. V. Saraikin, and I. S. Vasil’Evskii, “Thermal Stability of Ge/GeSn Nanostructures Grown by MBE on (001)Si/Ge Virtual Wafers,” Phys. Procedia 72, 411–418 (2015).
[Crossref]

Sci. Rep. (1)

H. Groiss, M. Glaser, M. Schatzl, M. Brehm, D. Gerthsen, D. Roth, P. Bauer, and F. Schäffler, “Free-running Sn precipitates: an efficient phase separation mechanism for metastable Ge 1− x Sn x epilayers,” Sci. Rep. 7(1), 16114 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

J. Margetis, S.-Q. Yu, N. Bhargava, B. Li, W. Du, and J. Tolle, “Strain engineering in epitaxial Ge1− x Sn x: a path towards low-defect and high Sn-content layers,” Semicond. Sci. Technol. 32(12), 124006 (2017).
[Crossref]

Thin Solid Films (1)

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Other (3)

S.Q. Yu, S.A. Ghetmiri, W. Du, J. Margetis, Y. Zhou, A. Mosleh, S. Al-Kabi, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, and H. A. Naseem, “Si based GeSn light emitter: mid-infrared devices in Si photonics,” Proc. SPIE 9367, Silicon Photonics X 9367, 93670R (2015).

S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap,” Tech. Dig. - Int. Electron Devices Meet. IEDM 398 (2011).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.Q. Yu, “Optically Pumped GeSn-edge-emitting Laser with Emission at 3 µm for Si Photonics,” Conference on Lasers and Electro-Optics (CLEO) , San Jose, CA (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Summary of growth conditions for samples studied in this paper.
Fig. 2.
Fig. 2. PL spectra for samples of the growth temperature dependent experiment. The spectra are normalized and stacked to easily show the shifting peaks. For the Ge sample, the spectra was fitted with two Gaussian peaks for direct transitions (green line) and the indirect transition (red line). For GeSn samples (Samples A-G), two Gaussian peaks were fitted for two layers: Low-Sn-content GeSn (red line) and high-Sn-content GeSn (green line). The overall peak fit (blue line) was shown for eye guidance.
Fig. 3.
Fig. 3. XRD (004) patterns for selected samples of group 1 from growth-temperature dependent experiment. Arrows indicate the growth temperature dependent region of GeSn while the shaded area corresponds to 1-2% Sn layer.
Fig. 4.
Fig. 4. (a) XRD RSM ($\bar{2}\bar{2}4$) of Sample E1 (grown at 270 °C for 30 min) showing the Ge buffer and GeSn peaks. Dashed line show the relaxation for psuedomorphic growth (R = 0), (b) Corresponding dark field TEM image of an area with a Sn droplet. (c) EDS point measurement from Sn droplet shows no Ge incorporation. The inset shows the position of the EDS measurement on the droplet.
Fig. 5.
Fig. 5. Visual images of samples E2, H, I and J are shown in (a1), (b1), (c1) and (d1), respectively. From sample E2 to J the flow fraction of SnCl4 decreases from 2.9×10−3 to 2.3×10−4 while the temperature was fixed at 270°C. Room-temperature PL of samples E2, H, I and J are shown in (a2), (b2), (c2) and (d2), respectively. The inset: The SEM images exhibit the cloudy surface (sample E2), hazy surface (sample H) and mirror surface (sample J), respectively.
Fig. 6.
Fig. 6. (a) (004) XRD rocking curves of Sn reduction tests (samples I and J). The GeSn film thickness of 228 and 310 nm for samples I and J, respectively, was derived using spectroscopic ellipsometry (not shown); (b) XRD-RSM ($\bar{2}\bar{2}4$) for sample J. Dashed lines show the relaxation when R = 0 for psuedomorphic growth, while R = 1 is for relaxed growth; (c) Dark field TEM image of sample J. No Sn droplets were observed on the GeSn surface.
Fig. 7.
Fig. 7. Room-temperature PL spectra of (a) reference sample, (b) sample J, (c) sample K and (d) sample L, respectively. The 1064 pulsed laser was used as the pumping source for reference sample and samples J, K and L while the 532 nm continuous wave laser was used for sample K as comparison. The samples J, K and L were grown at the growth temperature of 270, 260 and 250°C, respectively. The inset: visual images of sample J, K and L.
Fig. 8.
Fig. 8. The XRD rocking curves (004) of (a) reference sample, (b) sample J, (c) sample K and (d) sample L, respectively. The Si, Ge and GeSn peaks were marked in XRD rocking curves, respectively.
Fig. 9.
Fig. 9. (a) I-V curves for interdigitated GeSn photoconductors. Inset shows measured device; (b) Calculated D* for the GeSn photoconductors. Upper inset is a visible image of the object. Lower inset is infrared image generated using the GeSn photoconductor.

Tables (1)

Tables Icon

Table 1. The summary of Sn compositions, strains and PL peak positions for all the samples.