Abstract

The Er3+ ion’s 4F7/2-4I15/2 transition, which has been less reported in the past, is studied in CaWO4:Yb3+/Er3+ phosphors. It has been confirmed that this transition is from the two-photon upconversion mechanism when the 980 nm laser diode is used as the excitation source. Moreover, the transition has the same lifetime with the neighboring lower 2H11/2/4S3/2 states, suggesting that the 4F7/2/4S3/2 states are thermally linked. It is shown that the 4F7/2/4S3/2-4I15/2 emissions can be used for ratiometric temperature measurement. Their relative thermal sensitivity is up to 2820/T2, one of the largest sensitivities reported so far. It is very close to the theoretical maximum 2877/T2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ratiometric temperature sensing based on non-thermal coupling levels in BaZrO3: Yb3+/Er3+ ceramics

Hui Li, Yundong Zhang, Lin Shao, ZinMaung Htwe, and Pin Yuan
Opt. Mater. Express 7(8) 3003-3010 (2017)

Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+: BaGd2(MoO4)4 phosphors

Ruoshan Lei, Degang Deng, Xin Liu, Feifei Huang, Huanping Wang, Shilong Zhao, and Shiqing Xu
Opt. Mater. Express 8(10) 3023-3035 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref]
  2. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
    [Crossref]
  3. L. Tong, X. Li, J. Zhang, S. Xu, J. Sun, H. Zheng, Y. Zhang, X. Zhang, R. Hua, H. Xia, and B. Chen, “NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe,” Opt. Express 25(14), 16047–16058 (2017).
    [Crossref]
  4. X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder−level assisted thermal coupling and thermal−enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
    [Crossref]
  5. H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
    [Crossref]
  6. Y. Zhang, S. Xu, X. Li, J. Zhang, J. Sun, H. Xia, R. Hua, and B. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
    [Crossref]
  7. B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
    [Crossref]
  8. C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
    [Crossref]
  9. S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Biomed. Opt. Express 7(8), 3069–3078 (2016).
    [Crossref]
  10. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  11. X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
    [Crossref]
  12. M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
    [Crossref]
  13. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
    [Crossref]
  14. X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
    [Crossref]
  15. M. Quintanilla and L. M. Liz-Marzán, “Guiding Rules for Selecting a Nanothermometer,” Nano Today 19, 126–145 (2018).
    [Crossref]
  16. L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
    [Crossref]
  17. A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
    [Crossref]
  18. G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
    [Crossref]
  19. R. Lei, D. Deng, X. Liu, F. Huang, H. Wang, S. Zhao, and S. Xu, “Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+:BaGd2(MoO4)4 phosphors,” Opt. Mater. Express 8(10), 3023–3035 (2018).
    [Crossref]
  20. T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
    [Crossref]
  21. H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
    [Crossref]
  22. M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
    [Crossref]
  23. P. Du and J and S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
    [Crossref]
  24. L. Liu, K. Lu, D. Yan, E. Zhao, H. Li, M. K. Shanzad, and Y. Zhang, “Concentration dependent optical transition probabilities in ultra-small upconversion nanocrystals,” Opt. Express 26(18), 23471–23479 (2018).
    [Crossref]
  25. O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
    [Crossref]
  26. S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
    [Crossref]
  27. V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
    [Crossref]
  28. A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
    [Crossref]
  29. M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
    [Crossref]
  30. L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
    [Crossref]
  31. J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
    [Crossref]
  32. S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
    [Crossref]
  33. J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
    [Crossref]
  34. G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
    [Crossref]
  35. L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
    [Crossref]
  36. L. Zhao, J. Mao, B. Jiang, X. Wei, Y. Chen, and M. Yin, “Temperature-dependent persistent luminescence of SrAl2O4:Eu2+, Dy3+, Tb3+: a strategy of optical thermometry avoiding real-time excitation,” Opt. Lett. 43(16), 3882–3884 (2018).
    [Crossref]
  37. J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
    [Crossref]
  38. X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
    [Crossref]
  39. L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
    [Crossref]
  40. S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
    [Crossref]
  41. P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
    [Crossref]
  42. M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
    [Crossref]
  43. P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
    [Crossref]

2019 (1)

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

2018 (10)

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

R. Lei, D. Deng, X. Liu, F. Huang, H. Wang, S. Zhao, and S. Xu, “Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+:BaGd2(MoO4)4 phosphors,” Opt. Mater. Express 8(10), 3023–3035 (2018).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

L. Liu, K. Lu, D. Yan, E. Zhao, H. Li, M. K. Shanzad, and Y. Zhang, “Concentration dependent optical transition probabilities in ultra-small upconversion nanocrystals,” Opt. Express 26(18), 23471–23479 (2018).
[Crossref]

Y. Zhang, S. Xu, X. Li, J. Zhang, J. Sun, H. Xia, R. Hua, and B. Chen, “Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles,” Opt. Mater. Express 8(2), 368–384 (2018).
[Crossref]

M. Quintanilla and L. M. Liz-Marzán, “Guiding Rules for Selecting a Nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

L. Zhao, J. Mao, B. Jiang, X. Wei, Y. Chen, and M. Yin, “Temperature-dependent persistent luminescence of SrAl2O4:Eu2+, Dy3+, Tb3+: a strategy of optical thermometry avoiding real-time excitation,” Opt. Lett. 43(16), 3882–3884 (2018).
[Crossref]

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

2017 (8)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

L. Tong, X. Li, J. Zhang, S. Xu, J. Sun, H. Zheng, Y. Zhang, X. Zhang, R. Hua, H. Xia, and B. Chen, “NaYF4:Sm3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell structured nanocalorifier with optical temperature probe,” Opt. Express 25(14), 16047–16058 (2017).
[Crossref]

P. Du and J and S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

2016 (10)

A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Biomed. Opt. Express 7(8), 3069–3078 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref]

J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
[Crossref]

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

2015 (2)

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

2014 (2)

X. Tian, X. Wei, Y. Chen, C. Duan, and M. Yin, “Temperature sensor based on ladder−level assisted thermal coupling and thermal−enhanced luminescence in NaYF4:Nd3+,” Opt. Express 22(24), 30333–30345 (2014).
[Crossref]

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

2013 (2)

X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref]

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

2012 (3)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

2011 (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

2005 (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

2004 (1)

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2000 (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Aebischer, A.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Aguiló, M.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

Alencar, M. A.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Amaral, V. S.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Ananias, D.

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

Balabhadra, S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

Benayas, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Brites, C. D. S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Bu, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Busko, D.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

Caballero, A. C.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cai, P.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Cantelar, E.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Cao, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Cao, W.

Caputo, G.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Carlos, L. D.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
[Crossref]

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Carvajal, J. J.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

Cascales, C.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

Chen, B.

Chen, R.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Chen, Y.

Childs, P. R. N.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Cortelletti, P.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Cui, J.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Cui, Y.

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

Cussó, F.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

de Araujo, C. B.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Debasu, M. L.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

Deng, D.

Díaz, F.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

Dong, B.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Dramicanin, M. D.

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Du and J, P.

P. Du and J and S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Duan, C.

Facciotti, C.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Feng, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Ferreira, R. A. S.

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Gao, G.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

García-Revilla, S.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Gerner, P.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Goldys, E. M.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Greenwood, J. R.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Güdel, H. U.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Guo, C.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Guo, P.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

He, Y.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Hou, D.

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Howard, I. A.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

Hreniak, D.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Hua, R.

Huang, A.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

Huang, F.

Huang, W.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Hutchinson, M. R.

Jaque, D.

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref]

Jiang, B.

Kauffmann-Weiss, S.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

Khaidukov, N. M.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Kowalska, D.

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

Kumar, S.

A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
[Crossref]

Lei, R.

Li, H.

Li, L.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref]

Li, T.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Li, X.

Li, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Liang, Z.

Lima, P. P.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Liu, C.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, L.

Liu, Q.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, S.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Liu, T.

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Liu, X.

R. Lei, D. Deng, X. Liu, F. Huang, H. Wang, S. Zhao, and S. Xu, “Influence of excitation power and doping concentration on the upconversion emission and optical temperature sensing behavior of Er3+:BaGd2(MoO4)4 phosphors,” Opt. Mater. Express 8(10), 3023–3035 (2018).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Liu, Z.

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Liz-Marzán, L. M.

M. Quintanilla and L. M. Liz-Marzán, “Guiding Rules for Selecting a Nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

Loiko, P. A.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Lojpur, V.

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Long, C. A.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

Lu, K.

Ma, C.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Maciel, G. S.

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Malta, O. L.

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

Mao, J.

Marciniak, L.

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Mateos, X.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Meier, R. J.

X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref]

Méndez-Ramos, J.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Millán, A.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Ming, H.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Monro, T. M.

Musolino, S.

Nie, H.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Nikolic, G.

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

Palacio, F.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Patra, A.

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Pedroni, M.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Pinna, N.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Qian, G.

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

Qin, F.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

Qin, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Qiu, J.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

Quintanilla, M.

M. Quintanilla and L. M. Liz-Marzán, “Guiding Rules for Selecting a Nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Rai, V. K.

A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
[Crossref]

Rakov, N.

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

Richards, B. S.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

Rocha, J.

J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
[Crossref]

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

Ruan, J.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

Salem, A.

Savchuk, O. A.

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

Schartner, E. P.

Seo, H. J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Shanzad, M. K.

Shi, R.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

Silva, N. J. O.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

Skripka, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Song, Z.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

Soni, A. K.

A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
[Crossref]

Speghini, A.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Strek, W.

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Sun, J.

Suo, H.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Suyver, J. F.

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Tian, X.

Tong, L.

Tsiminis, G.

Turshatov, A.

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

Vetrone, F.

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref]

Vilejshikova, E. V.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Villegas, M.

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Vu, T.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, H.

Wang, J.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Wang, R.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

Wang, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref]

Wang, Y.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Waszniewska, K.

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

Wei, X.

Wolfbeis, O. S.

X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref]

Wu, Y.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

Xia, H.

Xia, T.

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

Xiang, J.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

Xie, X.

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Xu, S.

Xu, W.

Yan, D.

Yan, X.

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

Yang, Y.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

Yang, Z.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

Ye, X.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Yin, M.

You, W.

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Yu, C.

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

Yu, S.

P. Du and J and S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Yumashev, K. V.

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

Zhang, H.

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

Zhang, J.

Zhang, X.

Zhang, Y.

Zhang, Z.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref]

Zhao, E.

Zhao, H.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

Zhao, L.

Zhao, S.

Zhao, X.

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Zheng, H.

Zheng, J.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Zheng, L.

Zheng, Y.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

Zhou, B.

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

Zhou, M.

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Zhou, Y.

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

L. Li, L. Zheng, W. Xu, Z. Liang, Y. Zhou, Z. Zhang, and W. Cao, “Optical thermometry based on the red upconversion fluorescence of Er3+ in CaWO4:Yb3+/Er3+ polycrystalline powder,” Opt. Lett. 41(7), 1458–1461 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (3)

H. Suo, C. Guo, J. Zheng, B. Zhou, C. Ma, X. Zhao, T. Li, P. Guo, and E. M. Goldys, “Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix,” ACS Appl. Mater. Interfaces 8(44), 30312–30319 (2016).
[Crossref]

O. A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, “Benefits of Silica Core−Shell Structures on the Temperature Sensing Properties of Er,Yb:GdVO4 Up-Conversion Nanoparticles,” ACS Appl. Mater. Interfaces 8(11), 7266–7273 (2016).
[Crossref]

J. Ruan, Z. Yang, A. Huang, H. Zhang, J. Qiu, and Z. Song, “Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor,” ACS Appl. Mater. Interfaces 10(17), 14941–14947 (2018).
[Crossref]

Adv. Mater. (1)

B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, and Z. Feng, “Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare−earth oxides,” Adv. Mater. 24(15), 1987–1993 (2012).
[Crossref]

Appl. Phys. Express (1)

M. Quintanilla, E. Cantelar, F. Cussó, M. Villegas, and A. C. Caballero, “Temperature Sensing with Up-Converting Submicron-Sized LiNbO3:Er3+/Yb3+ Particles,” Appl. Phys. Express 4(2), 022601 (2011).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4755 (2004).
[Crossref]

Biomed. Opt. Express (1)

Chem. - Eur. J. (1)

J. Rocha, C. D. S. Brites, and L. D. Carlos, “Lanthanide organic framework luminescent thermometers,” Chem. - Eur. J. 22(42), 14782–14795 (2016).
[Crossref]

Chem. Eng. J. (1)

P. Du and J and S. Yu, “Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry,” Chem. Eng. J. 327, 109–119 (2017).
[Crossref]

Chem. Soc. Rev. (1)

X. Wang, O. S. Wolfbeis, and R. J. Meier, “Luminescent probes and sensors for temperature,” Chem. Soc. Rev. 42(19), 7834–7869 (2013).
[Crossref]

J. Am. Ceram. Soc. (1)

A. Huang, Z. Yang, C. Yu, J. Qiu, and Z. Song, “Splitting upconversion emission and phonon−assisted population inversion of Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor,” J. Am. Ceram. Soc. 100(11), 4994–4998 (2017).
[Crossref]

J. Appl. Phys. (2)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

V. Lojpur, G. Nikolić, and M. D. Dramićanin, “Luminescence thermometry below room temperature via up-conversion emission of Y2O3:Yb3+,Er3+ nanophosphors,” J. Appl. Phys. 115(20), 203106 (2014).
[Crossref]

J. Lumin. (2)

L. Li, F. Qin, Y. Zhou, Y. Zheng, H. Zhao, and Z. Zhang, “Temperature sensing based on the 4F7/2/4S3/2−4I15/2 upconversion luminescence intensity ratio in NaYF4:Er3+/Yb3+ nanocrystals,” J. Lumin. 206, 335–341 (2019).
[Crossref]

P. A. Loiko, E. V. Vilejshikova, N. M. Khaidukov, J. Méndez-Ramos, X. Mateos, and K. V. Yumashev, “Judd–Ofelt modeling, emission lifetimes and non-radiative relaxation for Er3+ doped Cs2NYF6 elpasolite crystals,” J. Lumin. 185, 279–285 (2017).
[Crossref]

J. Mater. Chem. C (3)

G. Gao, D. Busko, S. Kauffmann-Weiss, A. Turshatov, I. A. Howard, and B. S. Richards, “Wide-range non-contact fluorescence intensity ratio thermometer based on Yb3+/Nd3+ co-doped La2O3 microcrystals operating from 290 to 1230 K,” J. Mater. Chem. C 6(15), 4163–4170 (2018).
[Crossref]

L. Marciniak, A. Bednarkiewicz, D. Kowalska, and W. Strek, “A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues,” J. Mater. Chem. C 4(24), 5559–5563 (2016).
[Crossref]

T. Xia, Y. Cui, Y. Yang, and G. Qian, “A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF,” J. Mater. Chem. C 5(21), 5044–5047 (2017).
[Crossref]

J. Phys. Chem. C (3)

L. Marciniak, K. Waszniewska, A. Bednarkiewicz, D. Hreniak, and W. Strek, “Sensitivity of a Nanocrystalline Luminescent Thermometer in High and Low Excitation Density Regimes,” J. Phys. Chem. C 120(16), 8877–8882 (2016).
[Crossref]

S. Liu, H. Ming, J. Cui, S. Liu, W. You, X. Ye, Y. Yang, H. Nie, and R. Wang, “Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba3Y4O9:Er3+/Yb3+ Phosphors,” J. Phys. Chem. C 122(28), 16289–16303 (2018).
[Crossref]

S. Balabhadra, M. L. Debasu, C. D. S. Brites, R. A. S. Ferreira, and L. D. Carlos, “Upconverting Nanoparticles Working As Primary Thermometers In Different Media,” J. Phys. Chem. C 121(25), 13962–13968 (2017).
[Crossref]

Methods Appl. Fluoresc. (1)

M. D. Dramićanin, “Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review,” Methods Appl. Fluoresc. 4(4), 042001 (2016).
[Crossref]

Nano Today (1)

M. Quintanilla and L. M. Liz-Marzán, “Guiding Rules for Selecting a Nanothermometer,” Nano Today 19, 126–145 (2018).
[Crossref]

Nanoscale (4)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos, “Thermometry at the nanoscale,” Nanoscale 4(16), 4799–4829 (2012).
[Crossref]

H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, and C. Guo, “Local symmetric distortion boosted photon up-conversion and thermometric sensitivity in lanthanum oxide nanospheres,” Nanoscale 10(19), 9245–9251 (2018).
[Crossref]

P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, and A. Speghini, “Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows,” Nanoscale 10(5), 2568–2576 (2018).
[Crossref]

Nat. Nanotechnol. (1)

C. D. S. Brites, X. Xie, M. L. Debasu, X. Qin, R. Chen, W. Huang, J. Rocha, X. Liu, and L. D. Carlos, “Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry,” Nat. Nanotechnol. 11(10), 851–856 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (1)

M. L. Debasu, D. Ananias, J. Rocha, O. L. Malta, and L. D. Carlos, “Energy-transfer from Gd(III) to Tb(III) in (Gd,Yb,Tb)PO4 nanocrystals,” Phys. Chem. Chem. Phys. 15(37), 15565–15571 (2013).
[Crossref]

Phys. Rev. B (1)

J. F. Suyver, A. Aebischer, S. García-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B 71(12), 125123 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71(8), 2959–2978 (2000).
[Crossref]

RSC Adv. (3)

X. Wang, Q. Liu, Y. Bu, C. Liu, T. Liu, and X. Yan, “Optical temperature sensing of rare-earth ion doped phosphors,” RSC Adv. 5(105), 86219–86236 (2015).
[Crossref]

G. S. Maciel and N. Rakov, “Photon conversion in lanthanide-doped powder phosphors: concepts and applications,” RSC Adv. 5(22), 17283–17295 (2015).
[Crossref]

S. Liu, S. Liu, M. Zhou, X. Ye, D. Hou, and W. You, “Upconversion luminescence enhancement and temperature sensing behavior of F- co-doped Ba3Lu4O9:Er3+/Yb3+ phosphors,” RSC Adv. 7(59), 36935–36948 (2017).
[Crossref]

Sci. Rep. (1)

X. Wang, Y. Wang, Y. Bu, X. Yan, J. Wang, P. Cai, T. Vu, and H. J. Seo, “Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4,” Sci. Rep. 7(1), 43383 (2017).
[Crossref]

Sens. Actuators, B (1)

A. K. Soni, V. K. Rai, and S. Kumar, “Cooling in Er3+:BaMoO4 phosphor on codoping with Yb3+ for elevatedtemperature sensing,” Sens. Actuators, B 229, 476–482 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) XRD pattern, (b)/(c) SEM images, (d) Ca, (e) O, (f) W, (g) Yb and (h) Er elemental mappings of the as-prepared phosphors.
Fig. 2.
Fig. 2. (a) Emission spectra of the samples at 333/813 K, respectively, following the 980 nm laser diode excitation; (b) Green emission intensity as a function of pump power.
Fig. 3.
Fig. 3. (a) The possible processes for the 490/530/551 nm emissions; (b) Normalized emission spectra of the samples in the 693-813 K temperature range, following the 980 nm laser diode excitation.
Fig. 4.
Fig. 4. (a) LIR between the 490/551 nm emission bands and its relative sensitivity as a function of temperature in the 693-813 K range; (b) Temperature uncertainty δT for the 490/551 nm emission bands.
Fig. 5.
Fig. 5. Time resolved spectra of the prepared phosphors at (a) 693 K, (b) 713 K, (c) 733 K, (d) 753 K, (e) 773 K, (f) 793 K, and (g) 813 K, respectively; (h) Comparison of the lifetimes for the 490/530/551 nm emission bands in the 693-813 K temperature range.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

LIR = A exp ( Δ E k T ) ,
S r = | d LIR d T | 1 LIR .
δ T = δ L I R / L I R S r .
I ( t ) = I 0 exp ( t τ ) + B ,
τ = 1 A R + W N R ,