Abstract

We have experimentally demonstrated a Q-switched fiber laser operating in the 1 µm region by using tris-(8-hydroxyquinoline) aluminum (Alq3) as a saturable absorber (SA). The Alq3 was fabricated through a drop-casting technique, where the material was embedded into a polyvinyl alcohol (PVA) film so that it can effectively incorporated into a laser cavity. The fiber laser has produced a high pulse energy of 0.8 µJ and peak power of 90 mW. When the laser cavity was reduced from 25 m to 5 m, the peak power increased and the pulse energy dropped to 237.62 mW and 451.5 nJ, respectively. Additionally, the minimum pulse width was reduced from 9 µs to 1.9 µs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Q-switched ytterbium-doped fiber laser by using FIrpic as a saturable absorber

Sameer Salam, Sana Sulaiman, A. H. H. Al-Masoodi, Alabbas A. Al-Azzawi, and S. W. Harun
OSA Continuum 2(7) 2145-2152 (2019)

Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber

Mohd F. A. Rahman, Anas A. Latiff, Muhammad F. M. Rusdi, Kaharudin Dimyati, and Sulaiman W. Harun
Appl. Opt. 57(22) 6510-6515 (2018)

High energy passively Q-switched Er-doped fiber laser based on Mo0.5W0.5S2 saturable absorber

Junli Wang, Chenxi Dou, Lei Chen, Haiting Yan, Lingjie Meng, Jiangfeng Zhu, and Zhiyi Wei
Opt. Mater. Express 8(2) 324-331 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 ?m,” Opt. Lett. 24(6), 388–390 (1999).
    [Crossref]
  2. C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).
  3. C. Rulliere, Femtosecond laser pulses (Springer, 2005).
  4. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref]
  5. S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
    [Crossref]
  6. E. Snitzer and R. Woodcock, “9C8-Saturable absorption of color centers in Nd 3+ and Nd 3+-Yb 3+ laser glass,” IEEE J. Quantum Electron. 2(9), 627–632 (1966).
    [Crossref]
  7. M. Zhang, E. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. Popov, and J. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
    [Crossref]
  8. D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
    [Crossref]
  9. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
    [Crossref]
  10. T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
    [Crossref]
  11. G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
    [Crossref]
  12. J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
    [Crossref]
  13. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  14. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
    [Crossref]
  15. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
    [Crossref]
  16. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
    [Crossref]
  17. S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref]
  18. Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
    [Crossref]
  19. Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
    [Crossref]
  20. Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
    [Crossref]
  21. A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
    [Crossref]
  22. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
    [Crossref]
  23. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
    [Crossref]
  24. J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
    [Crossref]
  25. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  26. D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233(ACS1983).
  27. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
    [Crossref]
  28. R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
    [Crossref]
  29. C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
    [Crossref]
  30. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
    [Crossref]
  31. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.
  32. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
    [Crossref]
  33. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
    [Crossref]
  34. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
    [Crossref]
  35. R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
    [Crossref]
  36. O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
    [Crossref]
  37. K. S. Yook and J. Y. Lee, “Simplified pin organic light-emitting diodes using an universal ambipolar material,” J. Ind. Eng. Chem. 18(1), 309–311 (2012).
    [Crossref]
  38. M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
    [Crossref]
  39. A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
    [Crossref]
  40. C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
    [Crossref]
  41. J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
    [Crossref]
  42. W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
    [Crossref]
  43. H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
    [Crossref]
  44. T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
    [Crossref]
  45. P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
    [Crossref]
  46. Sigm-Aaldrich, “Tris-(8-hydroxyquinoline)aluminum,” [cited 20/June/2019], https://www.sigmaaldrich.com/catalog/product/aldrich/697737?lang = en&region = IQ .
  47. X. Chen, “Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials,” J. Mater. Sci. Lett. 21(21), 1637–1639 (2002).
    [Crossref]
  48. K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
    [Crossref]
  49. I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
    [Crossref]
  50. S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
    [Crossref]
  51. M. Cuba and G. Muralidharan, “Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq 3 composite films,” J. Fluoresc. 25(6), 1629–1635 (2015).
    [Crossref]
  52. Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
    [Crossref]
  53. O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
    [Crossref]
  54. M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
    [Crossref]
  55. M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
    [Crossref]
  56. S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
    [Crossref]
  57. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
    [Crossref]
  58. H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
    [Crossref]
  59. Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
    [Crossref]
  60. Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
    [Crossref]
  61. R. Herda, S. Kivistö, and O. G. Okhotnikov, “Dynamic gain induced pulse shortening in Q-switched lasers,” Opt. Lett. 33(9), 1011–1013 (2008).
    [Crossref]
  62. L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
    [Crossref]
  63. K.-X. Huang, B.-L. Lu, D. Li, X.-Y. Qi, H.-W. Chen, N. Wang, Z.-R. Wen, and J.-T. Bai, “Black phosphorus flakes covered microfiber for Q-switched ytterbium-doped fiber laser,” Appl. Opt. 56(23), 6427–6431 (2017).
    [Crossref]
  64. M. F. Rahman, A. A. Latiff, M. F. Rusdi, K. Dimyati, and S. W. Harun, “Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber,” Appl. Opt. 57(22), 6510–6515 (2018).
    [Crossref]
  65. J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
    [Crossref]
  66. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [Crossref]

2018 (5)

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

M. F. Rahman, A. A. Latiff, M. F. Rusdi, K. Dimyati, and S. W. Harun, “Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber,” Appl. Opt. 57(22), 6510–6515 (2018).
[Crossref]

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

2017 (7)

K.-X. Huang, B.-L. Lu, D. Li, X.-Y. Qi, H.-W. Chen, N. Wang, Z.-R. Wen, and J.-T. Bai, “Black phosphorus flakes covered microfiber for Q-switched ytterbium-doped fiber laser,” Appl. Opt. 56(23), 6427–6431 (2017).
[Crossref]

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

2016 (2)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

2015 (8)

M. Cuba and G. Muralidharan, “Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq 3 composite films,” J. Fluoresc. 25(6), 1629–1635 (2015).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref]

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

2014 (4)

C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
[Crossref]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

2013 (4)

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
[Crossref]

2012 (4)

M. Zhang, E. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. Popov, and J. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

K. S. Yook and J. Y. Lee, “Simplified pin organic light-emitting diodes using an universal ambipolar material,” J. Ind. Eng. Chem. 18(1), 309–311 (2012).
[Crossref]

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

2010 (2)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

2009 (3)

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

2008 (2)

R. Herda, S. Kivistö, and O. G. Okhotnikov, “Dynamic gain induced pulse shortening in Q-switched lasers,” Opt. Lett. 33(9), 1011–1013 (2008).
[Crossref]

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

2007 (4)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
[Crossref]

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

2006 (4)

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[Crossref]

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

2005 (1)

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

2004 (2)

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

2003 (3)

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref]

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

2002 (1)

X. Chen, “Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials,” J. Mater. Sci. Lett. 21(21), 1637–1639 (2002).
[Crossref]

2001 (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

1999 (1)

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

1986 (1)

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[Crossref]

1966 (1)

E. Snitzer and R. Woodcock, “9C8-Saturable absorption of color centers in Nd 3+ and Nd 3+-Yb 3+ laser glass,” IEEE J. Quantum Electron. 2(9), 627–632 (1966).
[Crossref]

Abdullah, O. G.

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Adachi, C.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Ahmad, H.

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Albrow-Owen, T.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Ali, A.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Andersen, M.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Atram, R.

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Aziz, S. B.

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Bai, J.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Bai, J.-T.

Bai, Y.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Baldo, M. A.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Balog, R.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Bao, Z.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Baraldi, A.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Bianchi, M.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Boulet, J.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Briseno, A. L.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Brown, J.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Cai, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Chand, R.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Chen, B.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Chen, H.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Chen, H.-W.

Chen, J.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref]

Chen, L.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Chen, S.

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Chen, X.

X. Chen, “Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials,” J. Mater. Sci. Lett. 21(21), 1637–1639 (2002).
[Crossref]

Chen, Y.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Chhowalla, M.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Cölle, M.

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Crommie, M. F.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Cuba, M.

M. Cuba and G. Muralidharan, “Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq 3 composite films,” J. Fluoresc. 25(6), 1629–1635 (2015).
[Crossref]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

Demchuk, M.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Dhoble, S.

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Dimyati, K.

Divayana, Y.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Dou, C.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Du, D.-Y.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Du, J.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Duvenhage, M.-M.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Eda, G.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Elashmawi, I.

I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Facchetti, A.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
[Crossref]

Fan, D.

Fanetti, M.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Feng, Y.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Ferrari, A. C.

Forrest, S.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Forrest, S. R.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Fu, X.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Fukuda, T.

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

Gan, X.

Gao, C.

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Gao, M.

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Gaponenko, M.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Garon, S.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Ghica, C.

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Gini, E.

Girit, C.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Grecu, M. N.

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Guo, H.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Guo, Z.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

Gwak, J.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Hakeem, N.

I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Hao, Z.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Häring, R.

Harun, S. W.

M. F. Rahman, A. A. Latiff, M. F. Rusdi, K. Dimyati, and S. W. Harun, “Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber,” Appl. Opt. 57(22), 6510–6515 (2018).
[Crossref]

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Hasan, T.

He, W.-W.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Heeger, A. J.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Herda, R.

Holmes, R.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Honda, K.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

Hong, X.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Horiguchi, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

Hosseinzadeh Kassani, S.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Hou, L.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Howe, R. C.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Hu, G.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Hu, Y.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Huang, K.-X.

Iba, S.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Ichikawa, M.

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

Ismail, E. I.

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Ismail, M. F.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Jeong, H.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Jeun, J.-H.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Jha, S. K.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Jia, Z.

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Jiang, G.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Jin, C.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Jin, X.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Jørgensen, B.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Kadir, N. A.

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Kang, Z.

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Kato, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Kawaguchi, H.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Kelleher, E.

Keller, U.

Khazaeinezhad, R.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Kim, C.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
[Crossref]

Kim, J.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Kim, J.-M.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Kim, O. Y.

C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
[Crossref]

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

Kim, Y.-S.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Kivistö, S.

Kokode, N. J. L.

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Kwong, D.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Kwong, R.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Lægsgaard, E.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Lan, Y.-Q.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Latiff, A. A.

M. F. Rahman, A. A. Latiff, M. F. Rusdi, K. Dimyati, and S. W. Harun, “Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber,” Appl. Opt. 57(22), 6510–6515 (2018).
[Crossref]

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Lee, C. W.

C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
[Crossref]

Lee, D.-H.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Lee, J. Y.

C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
[Crossref]

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

K. S. Yook and J. Y. Lee, “Simplified pin organic light-emitting diodes using an universal ambipolar material,” J. Ind. Eng. Chem. 18(1), 309–311 (2012).
[Crossref]

Lee, K.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Li, D.

Li, H.

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

Li, L.-J.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Li, N.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Li, S.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Li, S.-L.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Li, X.

Li, Z.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Lin, Q.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Ling, M. M.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Liu, C.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Liu, L.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Liu, M.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Liu, S.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Lizzit, S.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Lo, G.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Loh, K. P.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lu, B.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Lu, B.-L.

Lu, S.

Luo, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Mädler, L.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Malyarevich, A.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Mannsfeld, S. C.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Mao, D.

Marks, T. J.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
[Crossref]

Martin, M. C.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Mei, L.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Mei, T.

Melchior, H.

Meng, L.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Miao, L.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

Mirea, A.

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Mohammadpour, A.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Muccini, M.

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[Crossref]

Muhamad, A.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Muralidharan, G.

M. Cuba and G. Muralidharan, “Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq 3 composite films,” J. Fluoresc. 25(6), 1629–1635 (2015).
[Crossref]

Nakashima, N.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

Nejezchleb, K.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Nel, A.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Niidome, Y.

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

Nilsson, L.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Norizan, S. F.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Ntwaeaborwa, M.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Offerhaus, H. L.

Oh, K.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Okhotnikov, O. G.

Omer, K. M.

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Paschotta, R.

Paulson, B.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Peng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Peng, P.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Peumans, P.

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Pispas, S.

T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
[Crossref]

Popa, D.

Popov, S.

Qi, X.

Qi, X.-Y.

Qin, G.

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Qin, J.-S.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Qin, W.

Z. Kang, M. Liu, C. Tang, X. Xu, Z. Jia, G. Qin, and W. Qin, “Microfiber coated with gold nanorods as saturable absorbers for 2 µm femtosecond fiber lasers,” Opt. Mater. Express 8(12), 3841–3850 (2018).
[Crossref]

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Raaben, H.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Rahman, M. F.

Rand, B. P.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

Rasheed, M. A.

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

Reese, C.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Richardson, D. J.

Rienks, E.

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

Roberts, M. E.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Rotermund, F.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Rulliere, C.

C. Rulliere, Femtosecond laser pulses (Springer, 2005).

Rusdi, M. F.

Saeed, S. R.

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

Sakurai, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Salih, Y. M.

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Samion, M.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Sarma, K.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Savitski, V.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Schwoerer, M.

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Sekitani, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Selim, M. S.

I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Shaharuddin, R.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Shamsuddin, H.

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Shankar, K.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Sharbirin, A. S.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Shehzad, K.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Shen, Y. R.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Shi, S.-F.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Shin, H. S.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Skaltsas, T.

T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
[Crossref]

Snitzer, E.

E. Snitzer and R. Woodcock, “9C8-Saturable absorption of color centers in Nd 3+ and Nd 3+-Yb 3+ laser glass,” IEEE J. Quantum Electron. 2(9), 627–632 (1966).
[Crossref]

Someya, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Su, Z.-M.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Sun, C.-Y.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Sun, J.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Sun, X.

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Sun, Y.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Sun, Z.

Swart, H. C.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Swarts, J. C.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Swarts, P. J.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Tagmatarchis, N.

T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
[Crossref]

Tang, C.

Tang, C. W.

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[Crossref]

Tang, D.

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tang, P.

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Tang, T.-T.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Taniguchi, Y.

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

Taylor, J.

Thambiratnam, K.

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Thejo Kalyani, N.

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Thompson, M.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Thompson, M. E.

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

Tongay, S.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Torrisi, F.

Tseng, R. J.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Tung, Y.-J.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Uchida, S.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Visser, H. G.

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Wang, A.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

M. Zhang, E. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. Popov, and J. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

Wang, F. J. N.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Wang, J.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

K. Wu, X. Zhang, J. Wang, X. Li, and J. Chen, “WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers,” Opt. Express 23(9), 11453–11461 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, L.

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Wang, N.

Wang, Q.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Wang, S.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Wang, Y.

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref]

D. Mao, S. Zhang, Y. Wang, X. Gan, W. Zhang, T. Mei, Y. Wang, Y. Wang, H. Zeng, and J. Zhao, “WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm,” Opt. Express 23(21), 27509–27519 (2015).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

Wei, B.

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

Wei, Z.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Wen, S.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Wen, Z.-R.

Weng, J.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Williams, D. J.

D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233(ACS1983).

Woodcock, R.

E. Snitzer and R. Woodcock, “9C8-Saturable absorption of color centers in Nd 3+ and Nd 3+-Yb 3+ laser glass,” IEEE J. Quantum Electron. 2(9), 627–632 (1966).
[Crossref]

Woodward, R. I.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Wu, D.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Wu, J.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Wu, K.

Wudl, F.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Xia, T.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Xie, W.

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Xu, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Xu, S.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Xu, X.

Xu, Y.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Xue, J.

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

Yan, H.

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Yan, Y. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, Y.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Yang, Z.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Yawalkar, P.

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Yeom, D.-I.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Yook, K. S.

K. S. Yook and J. Y. Lee, “Simplified pin organic light-emitting diodes using an universal ambipolar material,” J. Ind. Eng. Chem. 18(1), 309–311 (2012).
[Crossref]

Yu, H.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Yumashev, K.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Zeng, H.

Zettl, A.

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Zhang, F.

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

Zhang, H.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Zhang, J.

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

Zhang, L.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhang, M.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

M. Zhang, E. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. Popov, and J. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012).
[Crossref]

Zhang, S.

Zhang, W.

Zhang, X.

Zhang, Y.

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

Zhao, C.

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

S. Lu, L. Miao, Z. Guo, X. Qi, C. Zhao, H. Zhang, S. Wen, D. Tang, and D. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref]

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Zhao, D.

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

Zhao, J.

Zhao, M.

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Zheng, D.

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

Zheng, Z.

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Zhilin, A.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Zhu, C.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Zhu, X.

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Zolotovskaya, S.

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Adv. Mater. (1)

S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, and J. Wang, “Broadband few-layer MoS2 saturable absorbers,” Adv. Mater. 26(21), 3538–3544 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Z. Kang, Y. Xu, L. Zhang, Z. Jia, L. Liu, D. Zhao, Y. Feng, G. Qin, and W. Qin, “Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers,” Appl. Phys. Lett. 103(4), 041105 (2013).
[Crossref]

C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48(2), 183–185 (1986).
[Crossref]

J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett. 85(23), 5757–5759 (2004).
[Crossref]

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Chem. - Eur. J. (1)

T. Skaltsas, S. Pispas, and N. Tagmatarchis, “Photoinduced Charge-Transfer Interactions on a Graphene/Block Copolymer Electrostatically Bound to Tetracationic Porphyrin in Aqueous Media,” Chem. - Eur. J. 19(28), 9286–9290 (2013).
[Crossref]

Chem. Commun. (1)

W. Xie, W.-W. He, D.-Y. Du, S.-L. Li, J.-S. Qin, Z.-M. Su, C.-Y. Sun, and Y.-Q. Lan, “A stable Alq3@MOF composite for white-light emission,” Chem. Commun. 52(16), 3288–3291 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[Crossref]

E. Snitzer and R. Woodcock, “9C8-Saturable absorption of color centers in Nd 3+ and Nd 3+-Yb 3+ laser glass,” IEEE J. Quantum Electron. 2(9), 627–632 (1966).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang, H. Zhang, S. Wen, and D. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

IEEE Photonics J. (1)

Q. Wang, Y. Chen, G. Jiang, L. Miao, C. Zhao, X. Fu, S. Wen, and H. Zhang, “Drop-Casted Self-Assembled Topological Insulator Membrane as an Effective Saturable Absorber for Ultrafast Laser Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Int. J. Electrochem. Sci. (1)

S. B. Aziz, M. A. Rasheed, S. R. Saeed, and O. G. Abdullah, “Synthesis and characterization of CdS nanoparticles grown in a polymer solution using in-situ chemical reduction technique,” Int. J. Electrochem. Sci. 12, 3263–3274 (2017).
[Crossref]

J. Appl. Phys. (1)

C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90(10), 5048–5051 (2001).
[Crossref]

J. Fluoresc. (1)

M. Cuba and G. Muralidharan, “Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq 3 composite films,” J. Fluoresc. 25(6), 1629–1635 (2015).
[Crossref]

J. Ind. Eng. Chem. (4)

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

K. S. Yook and J. Y. Lee, “Simplified pin organic light-emitting diodes using an universal ambipolar material,” J. Ind. Eng. Chem. 18(1), 309–311 (2012).
[Crossref]

C. W. Lee, O. Y. Kim, and J. Y. Lee, “Organic materials for organic electronic devices,” J. Ind. Eng. Chem. 20(4), 1198–1208 (2014).
[Crossref]

J. Mater. Sci. Lett. (1)

X. Chen, “Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials,” J. Mater. Sci. Lett. 21(21), 1637–1639 (2002).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

J. Phys.: Condens. Matter (1)

M. N. Grecu, A. Mirea, C. Ghica, M. Cölle, and M. Schwoerer, “Paramagnetic defect centres in crystalline Alq3,” J. Phys.: Condens. Matter 17(39), 6271–6283 (2005).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Fukuda, B. Wei, M. Ichikawa, and Y. Taniguchi, “Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode,” Jpn. J. Appl. Phys. 46(12), 7880–7884 (2007).
[Crossref]

Langmuir (1)

Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces,” Langmuir 24(20), 12026–12031 (2008).
[Crossref]

Laser Phys. (1)

H. Ahmad, M. Samion, A. Muhamad, A. S. Sharbirin, R. Shaharuddin, K. Thambiratnam, S. F. Norizan, and M. F. Ismail, “Tunable 2.0 µm Q-switched fiber laser using a silver nanoparticle based saturable absorber,” Laser Phys. 27(6), 065110 (2017).
[Crossref]

Laser Phys. Lett. (1)

L. Hou, J. Sun, H. Guo, Q. Lin, Y. Wang, Y. Bai, B. Lu, H. Chen, and J. Bai, “High-efficiency, high-energy ytterbium-doped Q-switched fibre laser with graphene oxide-COOH saturable absorber,” Laser Phys. Lett. 15(7), 075103 (2018).
[Crossref]

Luminescence (1)

P. Yawalkar, S. Dhoble, N. Thejo Kalyani, R. Atram, and N. J. L. Kokode, “Photoluminescence of Alq3-and Tb-activated aluminium–tris (8-hydroxyquinoline) complex for blue chip-excited OLEDs,” Luminescence 28(1), 63–68 (2013).
[Crossref]

Mater. Chem. Phys. (1)

I. Elashmawi, N. Hakeem, and M. S. Selim, “Optimization and spectroscopic studies of CdS/poly (vinyl alcohol) nanocomposites,” Mater. Chem. Phys. 115(1), 132–135 (2009).
[Crossref]

Mater. Sci. Eng., B (1)

H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum,” Mater. Sci. Eng., B 100(1), 40–46 (2003).
[Crossref]

Nanoscale (1)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, J. Weng, S. Xu, C. Zhu, and F. Wang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8(2), 1066–1072 (2016).
[Crossref]

Nanotechnology (1)

J. Wang, L. Chen, C. Dou, H. Yan, L. Meng, and Z. Wei, “Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser,” Nanotechnology 29(22), 224002 (2018).
[Crossref]

Nat. Chem. (1)

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem. 5(4), 263–275 (2013).
[Crossref]

Nat. Commun. (1)

G. Hu, T. Albrow-Owen, X. Jin, A. Ali, Y. Hu, R. C. Howe, K. Shehzad, Z. Yang, X. Zhu, and R. I. Woodward, “Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics,” Nat. Commun. 8(1), 278 (2017).
[Crossref]

Nat. Mater. (2)

R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, and S. Lizzit, “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nat. Mater. 9(4), 315–319 (2010).
[Crossref]

M. Muccini, “A bright future for organic field-effect transistors,” Nat. Mater. 5(8), 605–613 (2006).
[Crossref]

Nat. Nanotechnol. (1)

X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures,” Nat. Nanotechnol. 9(9), 682–686 (2014).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Nature (3)

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. J. N. Wang, “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature 459(7248), 820–823 (2009).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref]

Opt. Commun. (1)

A. A. Latiff, N. A. Kadir, E. I. Ismail, H. Shamsuddin, H. Ahmad, and S. W. Harun, “All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber,” Opt. Commun. 389, 29–34 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (2)

S. Zolotovskaya, V. Savitski, M. Gaponenko, A. Malyarevich, K. Yumashev, M. Demchuk, H. Raaben, A. Zhilin, and K. Nejezchleb, “Nd: KGd (WO4)2 laser at 1.35 µm passively Q-switched with V3+: YAG crystal and PbS-doped glass,” Opt. Mater. 28(8-9), 919–924 (2006).
[Crossref]

M.-M. Duvenhage, M. Ntwaeaborwa, H. G. Visser, P. J. Swarts, J. C. Swarts, and H. C. Swart, “Determination of the optical band gap of Alq3 and its derivatives for the use in two-layer OLEDs,” Opt. Mater. 42, 193–198 (2015).
[Crossref]

Opt. Mater. Express (1)

Photonics Res. (1)

Z. Kang, M. Liu, Z. Li, S. Li, Z. Jia, C. Liu, W. Qin, and G. Qin, “Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber,” Photonics Res. 6(6), 549–553 (2018).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. U. S. A. 101(27), 9966–9970 (2004).
[Crossref]

Sci. Rep. (2)

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

J. Du, M. Zhang, Z. Guo, J. Chen, X. Zhu, G. Hu, P. Peng, Z. Zheng, and H. Zhang, “Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers,” Sci. Rep. 7(1), 42357 (2017).
[Crossref]

Science (3)

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

C. Kim, A. Facchetti, and T. J. Marks, “Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance,” Science 318(5847), 76–80 (2007).
[Crossref]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Solid-State Electron. (1)

Y. Divayana, X. Sun, B. Chen, G. Lo, K. Sarma, and D. Kwong, “Bandgap engineering in Alq3-and NPB-based organic light-emitting diodes for efficient green, blue and white emission,” Solid-State Electron. 51(11-12), 1618–1623 (2007).
[Crossref]

Other (5)

Sigm-Aaldrich, “Tris-(8-hydroxyquinoline)aluminum,” [cited 20/June/2019], https://www.sigmaaldrich.com/catalog/product/aldrich/697737?lang = en&region = IQ .

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233(ACS1983).

C. Gao, L. Wang, M. Gao, Q. Wang, J. Zhang, and D. Tang, “Q-switched ceramic lasers for remote sensing,” SPIE Newsroom (2014).

C. Rulliere, Femtosecond laser pulses (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Molecular structure of Alq3. (b) Optical absorption spectrum of Alq3: PVA thin film (c)Tauc plot of Alq3: PVA thin film where dashed lines represent the extrapolation of the linear part of the curve to energy axis to calculate the band gaps. (d) Scanning electron microscopy (SEM) image of the SA, (e) Nonlinear transmission and (f) linear optical absorption spectrum of Alq3: PVA SA
Fig. 2.
Fig. 2. Q-switched YDFL cavity setup
Fig. 3.
Fig. 3. Characteristic of Q-switched YDFL in 25 m cavity. (a) optical spectrum, (b) pulse train at the maximum input LD power, (c) pulse duration and pulse repetition rate and as a function of input LD power, (d) pulse energy and average output power as a versus input LD power, (e) peak power against LD power and (f) Radio frequency spectrum, inset figure shows SNR at span of 40 kHz.
Fig. 4.
Fig. 4. Characteristic of Q-switched YDFL in 5 m cavity: (a) optical spectrum, (b) pulse train at the maximum LD power, (c) pulse repetition rate and pulse width duration versus input LD power, (d) output power and pulse energy as a function of input LD power, (e) Peak power versus input LD power (f) and RF spectrum, inset figure shows SNR at span of 80 kHz.
Fig. 5.
Fig. 5. Shows the Optical spectrum output for the total duration of 135 minute