Abstract

In this paper, a solar thermal absorber based on a dielectric filled two-dimensional nickel grating is designed and numerically investigated for wide-angle and polarization-independent broadband absorption. The absorption of the proposed two-dimensional meta-surface absorber reaches nearly 100% in the whole visible region (400-800 nm). The physical mechanisms responsible for the high absorption including the impedance matching with the free space, the cavity resonances and the surface plasmonic resonances have been elucidated in detail. The strong resonances effectively trap the incident light in the nano-cavities and then dissipate it by the ohmic losses of the metal, giving rise to the high absorption of the proposed absorber. The meta-surface absorber may find applications in solar cells, photovoltaics, thermos-photovoltaics, thermal emitters, plasmonic sensors, and solar-energy harvesting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array

Yun Zhou, Minghui Luo, Su Shen, Heng Zhang, Donglin Pu, and Linsen Chen
Opt. Express 26(21) 27482-27491 (2018)

Titanium-nitride-based integrated plasmonic absorber/emitter for solar thermophotovoltaic application

Huacun Wang, Qin Chen, Long Wen, Shichao Song, Xin Hu, and Gaiqi Xu
Photon. Res. 3(6) 329-334 (2015)

Dielectric-based subwavelength metallic meanders for wide-angle band absorbers

Su Shen, Wen Qiao, Yan Ye, Yun Zhou, and Linsen Chen
Opt. Express 23(2) 963-970 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  2. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [Crossref]
  3. Y. Matsuno and A. Sakurai, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
    [Crossref]
  4. T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization independent absorber based on multiple metal groove structures,” Appl. Opt. 56(21), 5844 (2017).
    [Crossref]
  5. B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
    [Crossref]
  6. A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
    [Crossref]
  7. M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
    [Crossref]
  8. B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
    [Crossref]
  9. Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
    [Crossref]
  10. E. Palik, Handbook of Optical Constants of Solids, 3 (Academic Press, 1998).
  11. C. A. Balanis, Advanced Engineering ElectromagneticsJohn Wiley & Sons, New York, 1989.
  12. A. Taflove and S. Hagness, “Computational Electrodynamics: Finite-Difference Time-Domain Method,” Artech House, Norwood, MA, USA, 2005.
  13. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  14. T. C. Choy, “Effective Medium Theory: Principles and Applications”, 102 (Oxford University Press on Demand, 1999).
  15. D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
    [Crossref]
  16. N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
    [Crossref]
  17. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
    [Crossref]
  18. I. S. Maksymov, “Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures,” Nanomaterials 5(2), 577–613 (2015).
    [Crossref]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).
  20. F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
    [Crossref]
  21. H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
    [Crossref]
  22. Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
    [Crossref]
  23. S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
    [Crossref]
  24. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref]
  25. Z. Peng and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal dielectric- metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  26. Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), Available from: http://rredc.nrel.gov/solar/spectra/am1.5/
  27. M. Planck, “Über das Gesetz dar Energieverteilung im Normalspectrum,” Ann. Phys. 309(3), 553–563 (1901).
    [Crossref]
  28. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref]
  29. Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
    [Crossref]
  30. Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
    [Crossref]

2018 (3)

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

2017 (6)

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Y. Matsuno and A. Sakurai, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

T. Wu, J. Lai, S. Wang, X. Li, and Y. Huang, “UV-visible broadband wide-angle polarization independent absorber based on multiple metal groove structures,” Appl. Opt. 56(21), 5844 (2017).
[Crossref]

2016 (2)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

2015 (2)

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
[Crossref]

I. S. Maksymov, “Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures,” Nanomaterials 5(2), 577–613 (2015).
[Crossref]

2014 (1)

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

2013 (2)

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref]

2012 (2)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Z. Peng and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal dielectric- metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

2010 (1)

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

2008 (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

2005 (1)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

2002 (1)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

1982 (1)

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[Crossref]

1901 (1)

M. Planck, “Über das Gesetz dar Energieverteilung im Normalspectrum,” Ann. Phys. 309(3), 553–563 (1901).
[Crossref]

Ahmad, N.

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Aspnes, D.

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering ElectromagneticsJohn Wiley & Sons, New York, 1989.

Bozhevolnyi, S. I.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Chen, L.

Chen, Y.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Chen, Y.-B.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Chiu, F.-C.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Choy, T. C.

T. C. Choy, “Effective Medium Theory: Principles and Applications”, 102 (Oxford University Press on Demand, 1999).

Cryan, M. J.

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Dai, P.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Ding, F.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Duan, H.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Duan, X.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Ezhov, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Fedyanin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Ganshina, E. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Grunin, A. A.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Hagness, S.

A. Taflove and S. Hagness, “Computational Electrodynamics: Finite-Difference Time-Domain Method,” Artech House, Norwood, MA, USA, 2005.

Han, S.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

Huang, Y.

Jae Lee, B.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Jay Guo, L.

Z. Peng and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal dielectric- metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Jeong, H.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Jin Lee, H.

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Jonas, B.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

Kim, I.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Kjeld, P.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Lai, J.

Li, X.

Li, Y.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Lin, Z.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Liu, N.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Long, Y.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Luo, M.

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

Maksymov, I. S.

I. S. Maksymov, “Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures,” Nanomaterials 5(2), 577–613 (2015).
[Crossref]

Marko, P.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Matsuno, Y.

Y. Matsuno and A. Sakurai, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Matuschek, M.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Mehmood, M. Q.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

Neubrech, F.

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

Núñez-Sánchez, S.

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids, 3 (Academic Press, 1998).

Peng, Z.

Z. Peng and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal dielectric- metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Planck, M.

M. Planck, “Über das Gesetz dar Energieverteilung im Normalspectrum,” Ann. Phys. 309(3), 553–563 (1901).
[Crossref]

Pors, A.

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Pugh, J. R.

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Qiao, W.

Qiu, C. W.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Rana, A. S.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

René, L. E.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Rho, J.

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Ruan, Q.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

Sakurai, A.

Y. Matsuno and A. Sakurai, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Sergey, I. B.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Shen, S.

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Smith, D. R.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

Taflove, A.

A. Taflove and S. Hagness, “Computational Electrodynamics: Finite-Difference Time-Domain Method,” Artech House, Norwood, MA, USA, 2005.

Thomas, S.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Tobias, H.

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Wang, H.

Wang, L.

Wang, S.

Wang, Y.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Wu, S.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Wu, T.

Yang, J. K. W.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Yang, Z.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Ye, Y.

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

Zhang, Z.

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Zhdanov, A. G.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Zheng, M.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Zhou, L.

Zhou, Y.

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
[Crossref]

Zhu, X.

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Adv. Opt. Mater. (2)

Z. Yang, Y. Zhou, Y. Chen, Y. Wang, P. Dai, Z. Zhang, and H. Duan, “Reflective Color Filters and Monolithic Color Printing Based on Asymmetric Fabry-Perot Cavities Using Nickel as a Broadband Absorber,” Adv. Opt. Mater. 4(8), 1196–1202 (2016).
[Crossref]

Z. Yang, Y. Chen, Y. Zhou, Y. Wang, P. Dai, X. Zhu, and H. Duan, “Microscopic Interference Full-Color Printing Using Grayscale-Patterned Fabry–Perot Resonance Cavities,” Adv. Opt. Mater. 5(10), 1700029 (2017).
[Crossref]

Am. J. Phys. (1)

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50(8), 704–709 (1982).
[Crossref]

Ann. Phys. (1)

M. Planck, “Über das Gesetz dar Energieverteilung im Normalspectrum,” Ann. Phys. 309(3), 553–563 (1901).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. Luo, Y. Zhou, S. Wu, and L. Chen, “Wide-angle broadband absorber based on one-dimensional metasurface in the visible region,” Appl. Phys. Express 10(9), 092601 (2017).
[Crossref]

Appl. Phys. Lett. (2)

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010).
[Crossref]

Z. Peng and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal dielectric- metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

J. Heat Transfer (1)

B. Jae Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. Jin Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

J. Micromech. Microeng. (1)

H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures,” J. Micromech. Microeng. 15(9), S243–S249 (2005).
[Crossref]

J. Opt. (2)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermophotovoltaic Systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

N. Ahmad, S. Núñez-Sánchez, J. R. Pugh, and M. J. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Nano Lett. (2)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[Crossref]

Y. Chen, X. Duan, M. Matuschek, Y. Zhou, F. Neubrech, H. Duan, and N. Liu, “Dynamic Color Displays Using Stepwise Cavity Resonators,” Nano Lett. 17(9), 5555–5560 (2017).
[Crossref]

Nanomaterials (1)

I. S. Maksymov, “Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Dielectric Nanostructures,” Nanomaterials 5(2), 577–613 (2015).
[Crossref]

New J. Phys. (1)

B. Jonas, L. E. René, S. Thomas, H. Tobias, P. Kjeld, and I. B. Sergey, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Opt. Commun. (1)

Y. Matsuno and A. Sakurai, “Electromagnetic resonances of wavelength-selective solar absorbers with film-coupled fishnet gratings,” Opt. Commun. 385, 118–123 (2017).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Rep. Prog. Phys. (1)

F. Ding, A. Pors, and S. I. Bozhevolnyi, “Gradient metasurfaces: a review of fundamentals and applications,” Rep. Prog. Phys. 81(2), 026401 (2018).
[Crossref]

Research (1)

Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. W. Yang, and H. Duan, “Stepwise-Nanocavity-Assisted Transmissive Color Filter Array Microprints,” Research 2018, 1–10 (2018).
[Crossref]

Sci. Rep. (1)

A. S. Rana, M. Q. Mehmood, H. Jeong, I. Kim, and J. Rho, “Tungsten-based ultrathin absorber for visible regime,” Sci. Rep. 8(1), 2443 (2018).
[Crossref]

Other (6)

E. Palik, Handbook of Optical Constants of Solids, 3 (Academic Press, 1998).

C. A. Balanis, Advanced Engineering ElectromagneticsJohn Wiley & Sons, New York, 1989.

A. Taflove and S. Hagness, “Computational Electrodynamics: Finite-Difference Time-Domain Method,” Artech House, Norwood, MA, USA, 2005.

T. C. Choy, “Effective Medium Theory: Principles and Applications”, 102 (Oxford University Press on Demand, 1999).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

Air Mass 1.5 Spectra, American Society for Testing and Materials (ASTM), Available from: http://rredc.nrel.gov/solar/spectra/am1.5/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic diagram and (b) 2D topography of two by two arrays of the proposed meta-surface perfect absorber. The corresponding cross-section configuration of the proposed meta-surface perfect absorber with the geometric dimension of ${t_1} = 200nm$, ${t_2} = 300nm$, ${t_3} = 60nm$, ${w_1} = 60nm$, ${w_2} = 200nm$, and $P = 260nm$, respectively. (c) The numerical simulated absorption spectrum of the proposed meta-surface absorber for normal incidence. The inset is the calculated real and image parts of the effective impedance for the proposed meta-surface perfect absorber.
Fig. 2.
Fig. 2. (a) Absorption spectrum with different angle of polarization at normal incidence. (b) Absorption spectrum with different incident angle of the TM polarization.
Fig. 3.
Fig. 3. (a) Comparison absorption spectra of the proposed absorber, the absorber composed of 2D Ni grating (filled with SiO2) /Ni film, and the absorber composed of 2D Ni grating /Ni film. The absorption spectra of the proposed absorber with the thickness of the topmost SiO2 film varies from (b) 0 to 50 nm, (c) 50 to 90 nm.
Fig. 4.
Fig. 4. Comparison absorption spectra of the proposed absorber with 2D grating, the absorber with 1D grating in x-direction and the absorber with 1D grating in y-direction.
Fig. 5.
Fig. 5. Distributions of the electric field (|E|2) (color maps) and the energy flow (arrow maps) of the structure in (a) x-z plane and (b) y-z plane. Distributions of the magnetic field (|H|2) in (c) x-z plane and (d) y-z plane. The incident light is TM wave at 450 nm, 550 nm, 650 nm, and 750 nm, respectively.
Fig. 6.
Fig. 6. (a) The contributions of the top SiO2 film, the 2D Ni grating (filled with SiO2) and bottom Ni film to the absorbance. (b) The contribution of three different parts of the 2D Ni grating (filled with SiO2) to the absorbance.
Fig. 7.
Fig. 7. (a) AM1.5 reference solar spectrum, and the absorption spectrum of the proposed meta-surface absorber in the ultra-visible and near infrared region (0.3–4 $\mu$m). (b)The normalized emission at 100°C for the blackbody and the proposed structure in the longer wavelength region from 0.3 $\mu$m to 20 $\mu$m.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z e f f = μ e f f ε e f f = ± ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2
λ c a v = 2 ε ( i / i x x ) 2 + ( j / j y y ) 2 + ( k / k 2 z 2 z ) 2
P a b s = 1 2 ω ε | E | 2
A t o t a l = 0.3 μ m 4 μ m A λ I A M 1.5 ( λ ) d λ 0.3 μ m 4 μ m I A M 1.5 ( λ ) d λ
I B ( λ , T ) = 2 h c 2 λ 5 1 e h c / h c λ k B T λ k B T 1
ε t o t a l = 0.3 μ m 20 μ m ε λ I B ( λ , T ) d λ 0.3 μ m 20 μ m I B ( λ , T ) d λ